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Fate of Majorana zero modes, exact location of critical states, and unconventional real-complex
transition in non-Hermitian quasiperiodic lattices

Tong Liu ,1,* Shujie Cheng,2,† Hao Guo ,3,‡ and Gao Xianlong 2,§

1Department of Applied Physics, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2Department of Physics, Zhejiang Normal University, Jinhua 321004, China

3Department of Physics, Southeast University, Nanjing 211189, China

(Received 3 October 2020; revised 4 March 2021; accepted 5 March 2021; published 18 March 2021)

We study a one-dimensional p-wave superconductor subject to non-Hermitian quasiperiodic potentials. Al-
though non-Hermiticity exists, the Majorana zero mode is still robust against the disorder perturbation. The
analytic topological phase boundary is verified by calculating the energy gap closing point and the topological
invariant. Furthermore, we investigate the localized properties of this model, quantitatively revealing that
the topological phase transition is accompanied by the Anderson localization phase transition, and a wide
critical phase emerges with amplitude increments of the non-Hermitian quasiperiodic potentials. Finally, we
numerically uncover a unconventional real-complex transition of the energy spectrum, which is different from
the conventional PT symmetric transition.
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I. INTRODUCTION

The discovery of Anderson localization [1] belongs to
the very heart in understanding how the disorder affects
the mobility of carriers through the spatial distribution of
the wave function. After half a century, the Anderson lo-
calization phenomena were observed in a ultracold atomic
experiment with correlated disordered potentials [2] and
incommensurate/quasiperiodic potentials [3]. Nowadays, An-
derson localization has been one of the important and highly
explored research subjects in condensed matter physics [4–7].
In one-dimensional systems it has been shown that the in-
terplay between particle interactions and random disordered
or incommensurate disordered external potentials forms the
many-body localization [8–13], a many-body version of An-
derson localization.

A paradigm to understand the Anderson localization is
the Aubry-André-Harper (AAH) model [14,15], in which
the increased strength of the incommensurate potential leads
to a localized transition. In some variants of the AAH
models, the rich localization phenomena can be observed
[16–20]. Another interesting aspect of generalized AAH
models is the presence of a mobility edge in energy sepa-
rating extended from localized states [20–26]. It should be
noted that the one-dimensional AAH model can be under-
stood as the projection of the two-dimensional Hofstadter
model in the one-dimensional direction [14,27,28], which
supports topologically protected edge states localized at the
boundary, similar to the edge states in quantum Hall insu-

*t6tong@njupt.edu.cn
†2818917376@qq.com
‡guohao.ph@seu.edu.cn
§gaoxl@zjnu.edu.cn

lators [29,30]. Consequently, the topological properties of
one-dimensional quasicrystals have been gradually excavated
according to this projection [31–35]. In topological commu-
nity, the one-dimensional p-wave superconductor chain is
another important paradigm [36–39]. A key feature of the
one-dimensional p-wave superconductor is that it hosts topo-
logically protected Majorana zero modes (MZMs) [40–43],
an ideal platform for the error-free quantum computation due
to the immunity to the weakly disordered perturbation of the
qubits [44,45]. Thus, the interplay of disorder and topology
in one-dimensional quasiperiodic lattices with p-wave super-
conducting pairing deserves further investigations. Reference
[46] uncovered that the topological phase transition is ac-
companied by the Anderson localization phase transition in a
Hermitian quasiperiodic chain with p-wave superconducting
pairing. Further research showed that there exists a critical
phase in the topologically nontrivial region [28].

Non-Hermitian lattices show exotic physical phenom-
ena without Hermitian counterparts, such as the exceptional
points, breakdown of the Bloch bulk-boundary correspon-
dence, and the non-Hermitian skin effect [47–52]. However, a
systematical study about the interplay between the quasiperi-
odic disorder, topology, and non-Hermitian [53–57] is still
absent to the best of our knowledge. Here a major question
arises: what kind of physical phenomena can be shown in
a one-dimensional p-wave superconductor subject to non-
Hermitian quasiperiodic potentials? What is the fate of the
MZMs and the critical states? Is there real-complex transi-
tion in the presence of non-Hermiticity? In this work we are
devoted to answer these questions.

II. MODEL AND HAMILTONIAN

We consider the one-dimensional p-wave superconductor
subject to non-Hermitian quasiperiodic potentials, described
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by

Ĥ =
L−1∑
n=1

(−t ĉ†
nĉn+1 + �ĉnĉn+1 + H.c.) +

L∑
n=1

Vnĉ†
nĉn, (1)

where ĉ†
n (ĉn) is the fermion creation (annihilation) opera-

tor, and L is the total number of sites. The nearest-neighbor
hopping amplitude t and the p-wave pairing amplitude �

are real constants, and Vn = Vei2παn is the non-Hermitian
quasiperiodic potential. Specially, the real � can be realized
by manipulating the interaction strength and the loss rate in
a BEC system [58,59]. A typical choice for parameter α is
α = (

√
5 − 1)/2. For computational convenience, t = 1 is set

as the energy unit. In the topological classification, this model
belongs to the D class [60] and it does not preserve PT
symmetry [49]. When � is equal to zero, this model reduces
to the non-Hermitian AAH model [22], where the localized
transition and the topological properties are well understood.
When α = 0, this Hamiltonian describes the Kitaev model,
where there are topologically protected MZMs [38,45]. When
the imaginary part of the non-Hermitian potential is omitted,
the model reduces to the Hermitian non-Abelian AAH model
[28,46], in which the topological phase transition and the
Anderson localization transition are well studied.

The Hamiltonian (1) can be diagonalized by using
the Bogoliubov–de Gennes (BdG) transformation: χ̂†

m =∑L
n=1[um,nĉ†

n + vm,nĉn], where L denotes the total number of
sites, n is the site index, and um,n, vm,n are the two components
of wave functions. It is widely known that the particle-hole
symmetry is preserved [38]. Under this transformation, the
BdG equations can be expressed as

t (un+1 + un−1) + Vei2παnun − �(vn+1 − vn−1) = Emun,

�(un+1 − un−1) − Vei2παnvn − t (vn+1 + vn−1) = Emvn.
(2)

where Em is the complex eigenenergy, indexed according to
its real part Re(Em) and arranged in ascending order with m
being the energy level index.

By numerically solving Eq. (2), we can obtain the en-
ergy spectrum of the system and the components um,n and
vm,n of the wave functions. The inverse participation ratio
(IPR) is usually used to study the localization-delocalization
transition [14,22,28,46]. For any given normalized wave
function, the corresponding IPR is defined as IPRm =∑L

n=1 (|um,n|4 + |vm,n|4) which measures the inverse of the
number of sites being occupied by particles. It is well known
that the IPR of an extended state scales like L−1 which ap-
proaches zero in the thermodynamic limit. However, for a
localized state, since only finite number of sites are occupied,
the IPR is finite even in the thermodynamic limit. The mean of
IPR over all the 2L eigenstates is dubbed the MIPR expressed
as MIPR = 1

2L

∑2L
m=1 IPRm.

III. FATE OF MAJORANA ZERO MODES

In this part we will study the fate of the MZMs and the
topological phase transition. The top panel in Fig. 1 shows
the real part of the energy spectrum of Eq. (1) as a function
of the non-Hermitian potential strength V under the open
boundary condition (OBC), with the parameters � = 0.5 and

FIG. 1. Top panel: The real part of eigenvalues of Eq. (1) as a
function of V under OBC. Definitely there are stable MZMs when
V < t + �. As the value of V continuously increases, the MZM
eventually vanishes, and the phase transition point is roughly located
at Vc = t + �. Bottom panel: Spatial distributions of φ and ψ for
the lowest excitation modes with V = 1.4 (bottom panel left) and
with V = 1.6 (bottom panel right). Obviously when V = 1.4, φ and
ψ are symmetrically distributed at the ends of the chain, indicating
the topological nontrivial phase, whereas they are located inside
of the chain when V = 1.6. Other involved parameters are t = 1,
α = (

√
5 − 1)/2, � = 0.5, and L = 500.

L = 500. As shown in the figure, there are stable MZMs
when V < t + �. However, when V is larger than the critical
value Vc, MZMs annihilate and then enter into the bulk of
the system. Hence, the systems will undergo a topological
nontrivial to a trivial phase transition as V increases, and the
visible phase transition point is about Vc = t + �. Similar to
the previous works [28,38,45,46], MZMs in our system are
still localized at ends of the system. To understand the Majo-
rana edge state deeply, we introduce the Majorana operators,
namely λA

n = ĉ†
n + ĉn and λB

n = i(ĉ†
n − ĉn), which obey the

relations (λβ
n )† = λβ

n and {λβ
n , λ

β ′
n′ } = 2δnn′δββ ′ , with β, β ′ ∈

{A, B}. Accordingly, in the Majorana picture, the quasiparti-
cle operator χ̂†

m can be rewritten as χ̂†
m = 1

2

∑L
n=1[φm,nλ

A
n −

iψm,nλ
B
n ], in which φm,n = (um,n + vm,n) and ψm,n = (um,n −

vm,n).
The bottom panel of Fig. 1 plots the spatial distributions of

φ and ψ for the lowest excitation mode [46,61] under OBC,
with � = 0.5 and V = 1.4 (left bottom panel) and V = 1.6
(right bottom panel). When V = 1.4, the lowest excitation
mode is just the MZM. Our numerical investigations show
that there is no anomalous edge state [62] and the skin effect
[63,64] and the Majorana edge states φ and ψ are localized
at the ends of the system. On the contrary, when V = 1.6, the
lowest excitation mode is no longer the MZM. As a result,
the visible distributions of φ and ψ in the right bottom panel
are located inside the bulk of the system. Therefore, only if
V is less than Vc, the system is topologically nontrivial and
supports the MZMs.

Due to the bulk-edge correspondence, the topological prop-
erties of non-Hermitian systems are generally protected by
the real gap [45,65]. We suppose that this correspondence is
still applicative for our model. Therefore, we first deduce the
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FIG. 2. (a) The real energy gap �g as a function of V − � un-
der PBC. Intuitively, the gap closes at Vc = t + �. (b) and (c) The
topological invariant Q as a function of V with two chosen �. When
V < t + �, Q = −1, corresponding to the topologically nontrivial
phase; when V > t + �, Q = 1, corresponding to the topologically
trivial phase. Intuitively, Q jumps at the phase transition point, i.e.,
the gap-closing point Vc = t + �. Other involved parameters are
t = 1, α = (

√
5 − 1)/2, and L = 500.

topological phase transition point by calculating the gap-
closing point. By the method in Refs. [46,66] we eventually
obtain the following constraint condition:

L∏
n=1

ei2παn =
(

t + �

V

)L

. (3)

In the thermodynamic limit L → ∞, V has a real solution if
V = t + � (see details in Appendix A), thus, we obtain the
gap-closing point Vc = t + �.

In order to verify the accuracy of the analytical Vc,
and to understand the relationship between the topological
phase transition and the gap closing, we numerically plot
the variation of the real energy gap �g with respect to the
non-Hermitian quasiperiodic potential strength V under PBC,
as shown in Fig. 2(a). It is readily seen that the real energy
gap closes at Vc = t + � even though the size of the system is
finite.

In addition to the mentioned MZM and the gap-closing
point, the topological phase transition is more precisely
characterized by the topological invariant Q, which can be
evaluated by the transfer matrix numerically [67,68] (see
details in Appendix B). In Figs. 2(b) and 2(c) we plot the
variation of the topological invariant Q versus V for different
�. When V < t + �, Q = −1 corresponds to the topologi-
cally nontrivial phase; when V > t + �, Q = 1 corresponds
to the topologically trivial phase. Intuitively, Q jumps at the
phase transition point, i.e., the gap-closing point Vc = t + �.
This illustrates that the topological properties of the system
are exactly protected by the real gap and the introduced non-
Hermiticity compresses the topologically nontrivial region
relative to the Hermitian counterpart [46].

0 0.5 1 1.5 2 3

10-2

100

0.2 1 1.5 2.2 3

10-2

100

0 0.05 0.1
0

0.5

1

( ,V)=(0.5,0.2)
( ,V)=(0.5,1)
( ,V)=(0.5,2)

0 100 200 300 400 500

0.01

0.02

(a) (b)

(c) (d)

FIG. 3. MIPR as a function of V with (a) � = 0.5 and (b) � =
1.2. The dashed lines show the sharp increase of the MIPR at phase
boundaries Vec = |t − �| and Vc = t + �. (c) βmin as a function of
the inverse Fibonacci index 1/m at (�,V ) = (0.5, 0.2), (0.5, 1), and
(0.5, 2). These three points are located in the extended, critical, and
localized phases, respectively. (d) The representative wave function
is illustrated for the critical phase (�,V ) = (0.5, 1) and L = 500.
Other involved parameters are t = 1, α = (

√
5 − 1)/2.

IV. EXACT LOCATION OF THE CRITICAL STATES

Recalling the localized distributions of the lowest excita-
tion modes in Fig. 1 when V > Vc, we are well aware that
there is an Anderson localization phase transition together
with the topological phase transition. Figures 3(a) and 3(b)
plot the variation of MIPR as a function of the potential
strength V with various �. Intuitively, the MIPR increases
steeply at Vc and approaches 1. Such a phenomenon signals
a delocalization-localization phase transition, and the region
where V > Vc denotes the Anderson localization phase. How-
ever, the region where V < Vc is not necessarily the extended
phase. Instead, it is divided into two phases, i.e., the extended
phase and the critical one. The MIPR of the critical phase
is greater than that of the extended one and less than that of
the localized one and forms a platform. The extended-critical
phase transition point Vec is readily seen at Vec = t − �.

We further validate our analysis by using the fractal dimen-
sion βmin (see details in Appendix C). For localized (extended)
states, βmin → 0 (1), whereas 0 < βmin < 1 for the critical
states. Figure 3(c) shows the βmin as a function of the inverse
Fibonacci index 1/m (L is chosen as the mth Fibonacci num-
ber Fm) for various parameter points (�,V ). We find that βmin

tends to 1 at (�,V ) = (0.5, 0.2), suggesting that the system
is in the extended phase. βmin extrapolates to 0 at (�,V ) =
(0.5, 2), indicating that the system is in the localized phase.
For (�,V ) = (0.5, 1), the corresponding βmin in the thermo-
dynamic limit is intuitively between 0 and 1, signaling the
typical critical wave function in Fig. 3(d). We emphasize that
such an analysis strategy works for other parameter points
as well. Hence, we verify that there are indeed extended and
critical phases in the topologically nontrivial region.

Actually, for the Hermitian quasiperiodic chain with
p-wave superconducting pairing, Wang et al. [28] also
numerically uncover a similar critical region located at

104203-3



LIU, CHENG, GUO, AND XIANLONG PHYSICAL REVIEW B 103, 104203 (2021)

-1 -0.5 0 0.5 1
-0.05

0

0.05

-2 -1 0 1 2
-0.2

0

0.2

-2 -1 0 1 2
-0.5

0

0.5

-2 -1 0 1 2
-1

0

1

(a)

(c)

(b)

(d)

FIG. 4. The eigenenergies of Eq. (1) with � = 0.5 and L = 5000
under OBC. (a) V = 0.2 is taken from the extended and topologically
nontrivial phase. The eigenenergies are totally real. (b) V = 0.5
is taken at the extended-critical transition point and the imaginary
parts of eigenenergies have a certain width. (c) V = 1 is taken
from the critical phase and the imaginary parts of eigenenergies are
completely broadened. (d) V = 2 is taken from the localized phase,
the imaginary parts of eigenenergies are also completely broadened.
Other involved parameters are t = 1 and α = (

√
5 − 1)/2.

2(t − �) � V � 2(t + �). However, it is a long-standing un-
solved question to quantitatively explain the location of the
critical region. By making use of the transfer matrix method
for Majorana zero modes (see details in Appendix D), we
analytically demonstrate that when V > t + �, the Majorana
wave function ψ becomes localized (also regarded as the
topological phase transition), while V > t − �, the Majorana
wave function φ becomes localized. Consequently, within the
region Vec � V � Vc, the ensemble of the Majorana wave
functions can be regarded as semiextended and semilocalized,
i.e., critical. Thus we phenomenologically conclude the emer-
gence of the critical states for the non-Hermitian version of
the quasiperiodic p-wave pairing model, which can be directly
generalized to the Hermitian counterpart [28].

V. UNCONVENTIONAL REAL-COMPLEX TRANSITION

By analyzing the energy spectrum, we find that there
exists the unconventional real-complex transition of energy.
The unconventionality has two implications. For one thing,
compared to the PT -symmetric systems [22,45,49–58], this
transition still exists in our system without PT symmetry.
For another, our finding is very different from what uncovered
by Hamazaki et al. [69]. The difference lies in three aspects:
First, Hamazaki et al. found that such a transition occurred
when the time reversal symmetry was present, but it appears
in our model without time reversal symmetry. Second, the real
energy region was located in the localized phase, whereas in
our model, it locates in the extended phase. Third, the time
reversal symmetry was responsible for the presented real-
complex transition, while our model provides an exception.

In Fig. 4 we take � = 0.5 and fix the size of the sys-
tem L = 5000 and display the eigenenergies of Eq. (1) with

FIG. 5. Phase diagram of the model in this paper. Vec = t − �

(the left red dot) is the transition point of the extended-critical
transition and the real-complex transition. Vc = t + � (the right red
dot) is the transition point of the critical-localized transition and the
topological phase transition.

various V under OBC. As the figure shows, when V = 0.2,
the eigenenergies are real, and the system is in the extended
and topologically nontrivial phase. V = 0.5 is chosen at the
extended-critical transition point. Although the system is still
in the topologically nontrivial phase, the imaginary parts of
eigenenergies have a certain width. V = 1 is in the critical
and topologically nontrivial phase, it can be distinctly shown
that the eigenenergies of the system are complex. The similar
phenomenon also occurs in the case of V = 2, in which the
system is in the localized and topologically trivial phase. The
energy spectra with loop in Figs. 4(c) and 4(d) imply that such
a unconventional real-complex transition is independent of the
skin effect [70,71]. We have also checked other combinations
of parameters and get the same results as expected. Accord-
ingly, we draw another conclusion that only the extended
phase support the fully real eigenenergies, thus, provide a new
result to explore the rich physics of non-Hermitian systems.

Synthesizing the above analyses, we finally obtain the total
phase diagram of the system, shown in Fig. 5. As the diagram
shows, the left red dot denotes the extended-critical and the
real-complex transition point Vec, satisfying Vec = t − �. The
right red dot corresponds to the critical-localized and the
topological phase transition point Vc, satisfying Vc = t + �.

VI. SUMMARY

In summary, we have studied the topological properties
and investigated the extended, critical, and localized phases
of a one-dimensional p-wave superconductor subject to the
non-Hermitian quasiperiodic potentials. By analyzing the en-
ergy spectrum, it is shown that there are MZMs protected
by the energy gap, and the analytic topological transition
point is verified by calculating the energy gap and the topo-
logical invariant. Furthermore, we quantitatively demonstrate
the exact location of the critical region for the quasiperiodic
p-wave pairing model through the transfer matrix method,
which solves a long-standing question. More impressively, for
our system without PT symmetry, we find an unconventional
real-complex transition of the eigenenergies and the energies
in the extended phase are fully real. Our finding may form a
new universality class about the real-complex transition. Un-
fortunately we have failed to obtain an analytical expression of
the real-complex transition point. However, it remains an open
question to explore the relationship between the extended
phase and the real energy, even if there is no PT symmetry.
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APPENDIX A: DERIVATION OF THE GAP-
CLOSING POINT Vc

Under the periodic boundary condition (PBC), the Hamil-
tonian in Eq. (1) can be rewritten as

Ĥ =
∑
nn′

[
ĉ†

nMnn′ ĉn′ + 1

2
(ĉ†

nNnn′ ĉ†
n′ + H.c.)

]
, (A1)

where M is a Hermitian matrix and N is an antisymmetric
matrix, respectively expressed as

M =

⎛
⎜⎜⎝

V1 −t · · · −t
−t V2
...

. . . −t
−t −t VL

⎞
⎟⎟⎠, N =

⎛
⎜⎜⎝

0 −� · · · �

� 0
...

. . . −�

−� � 0

⎞
⎟⎟⎠. (A2)

With the above matrices we can determine the excitation spec-
trum Em via solving the secular equation

det
[
(M + N )(M − N ) − E2

m

] = 0. (A3)

Accordingly, the transition point Vc can be solved by the
equation det[(M + N )(M − N )] = 0. Having known that
det(M − N ) = det(M − N )T = det(M + N ), then Vc is fur-
ther determined by det(M − N ) = 0. Eventually we obtain the
following constraint condition:

L∏
n=1

ei2παn =
(

t + �

V

)L

. (A4)

In the thermodynamic limit L → ∞, Vc has a real solution,
and Vc = t + �.

APPENDIX B: TRANSFER MATRIX METHOD
FOR TOPOLOGICAL INVARIANT Q

In this Appendix we introduce the transfer matrix method
to derive the topological invariant Q. In a p-wave supercon-
ducting wire, the topological phase transition is characterized
by the change of the topological quantum number Q. The
value of Q = (−1)m is determined by the parity of the number
m of Majorana bound states at each end of the wire, and
Q = −1 denotes the topological phase. The scattering ma-
trix S is defined to relate the incoming and outgoing wave
amplitudes. In the disordered p-wave superconducting wire,
the waves can come in from the left/right end of the chain
in two channels, i.e., particle and hole channels, so S is a
4 × 4 unitary matrix. The 2 × 2 subblocks R, R′ and T, T ′ are
defined as the reflection and transmission matrices at two ends
of the chain, respectively,

S =
(

R T ′
T R′

)
, (B1)

where

R =
(

ree reh

rhe rhh

)
. (B2)

Here ree and reh are the normal and Andreev reflection ampli-
tudes, respectively. Note the BdG Hamiltonian of the system
has a particle-hole symmetry

PHBdGP−1 = −HBdG, (B3)

where P = τxC with τx being the first Pauli matrix and C
being the complex conjugation operator. This leads to the
following constraint on the reflection matrix:

τxRτx = R∗, (B4)

which implies

det(R) = det(R)∗. (B5)

Here we have implicitly applied the condition that the Fermi
level E = 0. At the Fermi level the transmission T through the
superconducting wire is 0 because there are no extended states
from one end to the other. Therefore the reflection matrix R is
unitary, i.e., RR† = 1, which implies

| det(R)| = 1. (B6)

Combining with the condition (B5), we get det(R) = ±1.
Consequently the topological quantum number is Q =
sgn[det(R)].

In the practical numerical calculation, the scattering matrix
can be obtained by the transfer matrix scheme(

t̂i�i

�i+1

)
= Mi

(
t̂†
i−1�i−1

�i

)
, (B7a)

Mi =
(

0 t̂†
i

−t̂−1
i −t̂−1

i ĥi

)
, (B7b)

where �i = (φi, ψi )T is the two-component wave functions
on site i. Waves at the two ends of the chain are related by the
total transfer matrix

M = MLML−1 · · · M2M1. (B8)

Next, we transform to a new basis with right-moving and
left-moving waves separated in the upper and lower two com-
ponents by means of the unitary transformation

M̃ = U †MU, U =
√

1

2

(
1 1
iI −iI

)
. (B9)

Under this basis the transmission and reflection matrices are
related by (

T
0

)
= M̃

(
I
R

)
,

(
R′
I

)
= M̃

(
0
T ′

)
. (B10)

Finally, the topological invariant Q is evaluated by calculating
the transfer matrix M̃.

APPENDIX C: DEFINITION OF THE FRACTAL
DIMENSION βmin

The fractal theory has been widely applied in the quasiperi-
odic models [28,61,72–75]. The size of the system L is
chosen as the jth Fibonacci number Fj . The advantage of
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this arrangement is that the golden ratio can be approximately
replaced by the ratio of the nearest two Fibonacci numbers,
i.e., α = (

√
5 − 1)/2 = lim j→∞ Fj−1/Fj . Then a scaling in-

dex βm,n can be extracted from the on-site probability Pm,n =
u2

m,n + v2
m,n by

Pm,n ∼ (1/Fj )
βm,n . (C1)

As the fractal theorem tells, when the wave functions
are extended, the maximum of Pm,n scales as max(Pm,n) ∼
(1/Fj )1, implying βmin = 1. On the other hand, when wave
functions are localized, Pm,n peaks at very few sites and
nearly zero at the others, suggesting max(Pm,n) ∼ (1/Fj )0 and
βmin = 0. As for the critical wave functions, the corresponding
βmin is located within the interval (0, 1). For our system
with L = Fj sites, there are 2Fj eigenstates. Therefore we can
distinguish the extended, the critical, and the localized wave
functions by the average of βmin (denoted by βmin) over all the
eigenstates, and βmin is expressed as

βmin = 1

2L

2L∑
m=1

βm
min. (C2)

APPENDIX D: DERIVATION OF Vec AND Vc

BY TRANSFER MATRIX METHOD

In this Appendix we introduce the transfer matrix method
which is used to derive the extended-critical transition point
Vec = t − � and the critical-localized transition point Vc =
t + �. Under the Majorana representation, the BdG equa-
tion of Hamiltonian can be rewritten in terms of Majorana
fermions as

(t + �)ψ j+1 + (t − �)ψ j−1 − Vjψn = Eφ j,

(t + �)φ j−1 + (t − �)φ j+1 − Vjφn = Eψ j .
(D1)

For Majorana zero modes we only need to focus on the E = 0
case and thus two equations above are decoupled and can be
reorganized into the transfer matrix form as

(
ψ j+1

ψ j

)
= Tj

(
ψ j

ψ j−1

)
, where Tj =

( Vj

t+�
− t−�

t+�

1 0

)
,

(D2)
(

φ j+1

φ j

)
= T ′

j

(
φ j

φ j−1

)
, where T ′

j =
( Vj

t−�
− t+�

t−�

1 0

)
.

(D3)

The transfer matrix method can be used to determine
the Anderson localization properties of the normal disor-
dered system. First, we focus on the nature of the Majorana
wave function ψ . To transform the disordered p-wave su-
perconducting model to the normal disordered model, we
can perform a similarity transformation to the transfer matrix
Eq. (D2) as Tj = √

ξST̃jS−1 with S = diag(ξ 1/4, 1/ξ 1/4) and
ξ = t−�

t+�
. Notice that we have set 0 < � < t . The transfer

matrix T̃j is

T̃j =
( Vj√

t2−�2 −1
1 0

)
. (D4)

Thus, the total transfer matrix T ≡ �L
j=1Tj becomes

T(V,�) =
(√

t − �

t + �

)L

ST̃ S−1. (D5)

We can define the Lyapunov exponent as

γ = lim
L→∞

1

L
ln ‖T‖. (D6)

Combining Eqs. (D5) and (D6) we obtain

γ (V,�) = γ

(
V√

t2 − �2
, 0

)
+ ln

(√
t − �

t + �

)
. (D7)

When � = 0, the model is reduced to the non-Hermitian
AAH model [22] and the Lyapunov exponent γ (V, 0) =
ln(V ). The Lyapunov exponent γ is related to the localiza-
tion length ξ by γ = 1/ξ . When γ (V,�) = 0, there is a
delocalization-localization transition regarding the Majorana
wave function ψ . Substituting γ ( V√

t2−�2 , 0) = ln( V√
t2−�2 )

into Eq. (D7) and let Eq. (D7) = 0, we can obtain the local-
ization phase transition point Vc = t + �, which means when
V > t + �, the Majorana wave function ψ becomes local-
ized. Equation (D7) is also used to predict the topologically
phase transition Vc in the quasiperiodic lattice in the presence
of the p-wave pairing.

Similarly, regarding the Majorana wave function φ, we
can perform a similarity transformation to the transfer matrix
Eq. (D3) as T ′

j = √
ξ ′S′T̃ ′

jS′−1 with S′ = diag(ξ ′1/4, 1/ξ ′1/4)
and ξ ′ = t+�

t−�
, where T̃ ′

j = T̃j . Thus we obtain the Lyapunov
exponent

γ ′(V,�) = γ

(
V√

t2 − �2
, 0

)
+ ln

(√
t + �

t − �

)
. (D8)

Therefore we can obtain the delocalization-localization transi-
tion point Vec = t − � by setting Eq. (D8) = 0, which means
when V > t − �, the Majorana wave function φ becomes
localized.

[1] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[2] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Direct observation of Anderson localization of matter waves in
a controlled disorder, Nature (London) 453, 891 (2008).

[3] G. Roati, C. D. Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Ander-
son localization of a non-interacting Bose-Einstein condensate,
Nature (London) 453, 895 (2008).

[4] A. Pal and D. A. Huse, Many-body localization phase transition,
Phys. Rev. B 82, 174411 (2010).

104203-6

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07071
https://doi.org/10.1103/PhysRevB.82.174411


FATE OF MAJORANA ZERO MODES, EXACT LOCATION … PHYSICAL REVIEW B 103, 104203 (2021)

[5] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Comdens. Matter Phys. 6, 15 (2015).

[6] R. Vosk, D. A. Huse, and E. Altman, Theory of the Many-Body
Localization Transition in One-Dimensional Systems, Phys.
Rev. X 5, 031032 (2015).

[7] X. Li, S. Ganeshan, J. H. Pixley, and S. D. Sarma, Many-Body
Localization and Quantum Nonergodicit in a Model with a
Single-Particle Mobility Edge, Phys. Rev. Lett. 115, 186601
(2015).

[8] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasirandom optical lattice, Science 349, 842 (2015).

[9] H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U.
Schneider, and I. Bloch, Observation of Slow Dynamics Near
the Many-Body Localization Transition in One-Dimensional
Quasiperiodic Systems, Phys. Rev. Lett. 119, 260401 (2017).

[10] T. Kohlert, S. Scherg, X. Li, H. P. Lüschen, S. D. Sarma, I.
Bloch, and M. Aidelsburger, Observation Many-Body Local-
ization in a One-Dimensional System with a Single-Particle
Mobility Edge, Phys. Rev. Lett. 122, 170403 (2019).

[11] H. Yao, H. Khouldi, L. Bresque, and L. Sanchez-Palencia,
Critical Behavior and Fractality in Shallow One-Dimensional
Quasi-Periodic Potentials, Phys. Rev. Lett. 123, 070405
(2019).

[12] H. Yao, T. Giamarchi, and L. Sanchez-Palencia, Lieb-Liniger
Bosons in a Shallow Quasiperiodic Potential: Bose Glass Phase
and Fractal Mott Lobes, Phys. Rev. Lett. 125, 060401 (2020).

[13] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Colloquium:
Many-body localization, thermalization, and entanglement,
Rev. Mod. Phys. 91, 021001 (2019).

[14] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3,
133 (1980).

[15] P. G. Harper, The general motion of conduction electrons in a
uniform magnetic field, with application to the diamagnetism of
metals, Proc. Phys. Soc. London Sect. A 68, 874 (1955).

[16] S. Das Sarma, S. He, and X. C. Xie, Mobility Edge in a Model
One-Dimensional Potential, Phys. Rev. Lett. 61, 2144 (1988).

[17] D. J. Thouless, Localization by a Potential with Slowly Varying
Period, Phys. Rev. Lett. 61, 2141 (1988).

[18] S. Das Sarma, S. He, and X. C. Xie, Localization, mo-
bility edges, and metal-insulator transition in a class of
one-dimensional slowly varying deterministic potentials, Phys.
Rev. B 41, 5544 (1990).

[19] J. Biddle, B. Wang, D. J. Priour, and S. Das Sarma, Localization
in one-dimensional incommensurate lattices beyond the Aubry-
André model, Phys. Rev. A 80, 021603(R) (2009).

[20] J. Biddle and S. Das Sarma, Predicted Mobility Edges in
One-Dimensional Incommensurate Optical Lattices: An Ex-
actly Solvable Model of Anderson Localization, Phys. Rev.
Lett. 104, 070601 (2010).

[21] J. Biddle, D. J. Priour, B. Wang, and S. Das Sarma, Localization
in one-dimensional lattices with non-nearest-neighbor hopping:
Generalized Anderson and Aubry-André models, Phys. Rev. B
83, 075105 (2011).

[22] T. Liu, H. Guo, Y. Pu, and S. Longhi, Generalized Aubry-André
self-duality and mobility edges in non-Hermitian quasiperiodic
lattices, Phys. Rev. B 102, 024205 (2020).

[23] H. P. Luschen, S. Scherg, T. Kohlert, M. Schreiber, P. Bordia, X.
Li, S. Das Sarma, and I. Bloch, Single-Particle Mobility Edge
in a One-Dimensional Quasiperiodic Optical Lattice, Phys. Rev.
Lett. 120, 160404 (2018).

[24] T. Liu and H. Guo, Novel mobility edges in the off-diagonal dis-
ordered tight-binding models, Phys. Rev. B 98, 104201 (2018).

[25] Z. Xu, H. Huangfu, Y. Zhang, and S. Chen, Dynamical obser-
vation of mobility edges in one-dimensional incommensurate
optical lattice, New J. Phys. 22, 013036 (2020).

[26] X. Li and S. Das Sarma, Mobility edge and intermediate phase
in one-dimensional incommensurate lattice potentials, Phys.
Rev. B 101, 064203 (2020).

[27] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[28] J. Wang, X.-J. Liu, G. Xianlong, and H. Hu, Phase diagram of
a non-Abelian Aubry-André-Harper model with p-wave super-
fluidity, Phys. Rev. B 93, 104504 (2016).

[29] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den.
Nijs, Quantized Hall Conductance in a Two-Dimensional Peri-
odic Potential, Phys. Rev. Lett. 49, 405 (1982).

[30] Y. Hatsugai, Chern Number and Edge States in the Integer
Quantum Hall Effect, Phys. Rev. Lett. 71, 3697 (1993).

[31] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Topological States and Adiabatic Pumping in Quasicrystals,
Phys. Rev. Lett. 109, 106402 (2012).

[32] Y. E. Kraus and O. Zilberberg, Topological Equivalence be-
tween the Fibonacci Quasicrystal and the Harper Model, Phys.
Rev. Lett. 109, 116404 (2012).

[33] L.-J. Lang, X. Cai, and S. Chen, Edge States and Topological
Phases in One-Dimensional Optical Superlattices, Phys. Rev.
Lett. 108, 220401 (2012).

[34] L.-J. Lang and S. Chen, Majorana fermions in density-
modulated p-wave superconducting wires, Phys. Rev. B 86,
205135 (2012).

[35] S. Ganeshan, K. Sun, and S. Das Sarma, Topological Zero-
Energy Modes in Gapless Commensurate Aubry-André-Harper
Models, Phys. Rev. Lett. 110, 180403 (2013).

[36] M. Z Hassan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[37] X. L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[38] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[39] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vor-
tices in p-wave Superconductors, Phys. Rev. Lett. 86, 268
(2001).

[40] M. Stone and S.-B. Chung, Fusion rules and vortices in px + ipy

superconductors, Phys. Rev. B 73, 014505 (2006).
[41] L. Fu and C. L. Kane, Superconducting Proximity Effect and

Majorana Fermions at the Surface of a Topological Insulator,
Phys. Rev. Lett. 100, 096407 (2008).

[42] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
jorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys. Rev.
Lett. 105, 077001 (2010).

[43] J. Avila, F. Peñaranda, E. Prada, P. San-Jose, and R. Aguado,
Non-Hermitian topology as a unifying framework for the An-
dreev versus Majorana states controversy, Commun. Phys. 2,
133 (2019).

104203-7

https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1103/PhysRevLett.115.186601
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevLett.119.260401
https://doi.org/10.1103/PhysRevLett.122.170403
https://doi.org/10.1103/PhysRevLett.123.070405
https://doi.org/10.1103/PhysRevLett.125.060401
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevLett.61.2144
https://doi.org/10.1103/PhysRevLett.61.2141
https://doi.org/10.1103/PhysRevB.41.5544
https://doi.org/10.1103/PhysRevA.80.021603
https://doi.org/10.1103/PhysRevLett.104.070601
https://doi.org/10.1103/PhysRevB.83.075105
https://doi.org/10.1103/PhysRevB.102.024205
https://doi.org/10.1103/PhysRevLett.120.160404
https://doi.org/10.1103/PhysRevB.98.104201
https://doi.org/10.1088/1367-2630/ab64b2
https://doi.org/10.1103/PhysRevB.101.064203
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.93.104504
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.116404
https://doi.org/10.1103/PhysRevLett.108.220401
https://doi.org/10.1103/PhysRevB.86.205135
https://doi.org/10.1103/PhysRevLett.110.180403
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevB.73.014505
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1038/s42005-019-0231-8


LIU, CHENG, GUO, AND XIANLONG PHYSICAL REVIEW B 103, 104203 (2021)

[44] A. C. Potter and P. A. Lee, Multichannel Generalization of
Kitaev’s Majorana End States and a Practical Route to Realize
Them in Thin Films, Phys. Rev. Lett. 105, 227003 (2010).

[45] H. Menke and M. M. Hirschmann, Topological quantum
wires with balanced gain and loss, Phys. Rev. B 95, 174506
(2017).

[46] X. Cai, L.-J. Lang, S. Chen, and Y. Wang, Topological
Superconductor to Anderson Localization Transition in One-
Dimensional Incommensurate Lattices, Phys. Rev. Lett. 110,
176403 (2013).

[47] S. Longhi, Topological Phase Transition in Non-Hermitian
Quasicrystals, Phys. Rev. Lett. 122, 237601 (2019).

[48] S. Longhi, Metal-insulator phase transition in a non-Hermitian
Aubry-André-Harper Model, Phys. Rev. B 100, 125157
(2019).

[49] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian
Hamiltonians having PT Symmetry, Phys. Rev. Lett. 80, 5243
(1998).

[50] B. Zhu, R. Lü, and S. Chen, PT symmetry in the non-Hermitian
Su-Schrieffer-Heeger model with complex boundary potentials,
Phys. Rev. A 89, 062102 (2014).

[51] C. Yuce, Topological phase in a non-Hermitian PT symmetric
system, Phys. Lett. A 379, 1213 (2015).

[52] Y. Liu, X.-P. Jiang, J. Cao, and S. Chen, Non-Hermitian mo-
bility edges in one-dimensional quasicrystals with parity-time
symmetry, Phys. Rev. B 101, 174205 (2020).

[53] L.-Z. Tang, L.-F. Zhang, G.-Q. Zhang, and D.-W. Zhang, Topo-
logical Anderson insulators in two-dimensional non-Hermitian
disordered systems, Phys. Rev. A 101, 063612 (2020).

[54] D.-W. Zhang, L.-Z. Tang, L.-J. Lang, H. Yan, and S.-L. Zhu,
Non-Hermitian topological Anderson insulators, Sci. China-
Phys. Mech. Astron. 63, 267062 (2020).

[55] W. Gou, T. Chen, D. Xie, T. Xiao, T.-S. Deng, B. Gadway,
W. Yi, and B. Yan, Tunable Nonreciprocal Quantum Trans-
port through a Dissipative Aharonov-Bohm Ring in Ultracold
Atoms, Phys. Rev. Lett. 124, 070402 (2020).

[56] F. Alex An, E. J. Meier, and B. Gadway, Engineering a Flux-
Dependent Mobility Edge in Disordered Zigzag Chains, Phys.
Rev. X 8, 031045 (2018).

[57] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-Hermitian
Boundary Modes and Topology, Phys. Rev. Lett. 124, 056802
(2020).

[58] K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M. Ueda,
and N. Kawakami, Theory of Non-Hermitian Fermionic Su-
perfluidity with a Complex-Valued Interaction, Phys. Rev. Lett.
123, 123601 (2019).

[59] P. San-Jose, J. Cayao, E. Prada, and R. Aguado, Majorana
bound states from exceptional points in non-topological super-
conductors, Sci. Rep. 6, 21427 (2016).

[60] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[61] T. Liu, H.-Y. Yan, and H. Guo, Fate of topological states and
mobility edges in one-dimensional slowly varying incommen-
surate potentials, Phys. Rev. B 96, 174207 (2017).

[62] T. E. Lee, Anomalous Edge State in a Non-Hermitian Lattice,
Phys. Rev. Lett. 116, 133903 (2016).

[63] S. Yao and Z. Wang, Edge States and Topological Invariants of
Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).

[64] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal Bulk-Boundary Correspondence in
Non-Hermitian Systems, Phys. Rev. Lett. 121, 026808 (2018).

[65] K. Esaki, M. Sato, K. Hasebe, and M. Kohmoto, Edge states
and topological phases in non-Hermitian systems, Phys. Rev. B
84, 205128 (2011).

[66] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. (NY) 16, 407 (1961).

[67] I. Snyman, J. Tworzydlo, and C. W. J. Beenakker, Calculation
of the conductance of a graphene sheet using the Chalker-
Coddington network model, Phys. Rev. B 78, 045118 (2008).

[68] P. Zhang and F. Nori, Majorana bound states in a disordered
quantum dot chain, New J. Phys. 18, 043033 (2016).

[69] R. Hamazaki, K. Kawabata, and M. Ueda, Non-Hermitian
Many-Body Localization, Phys. Rev. Lett. 123, 090603 (2019).

[70] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topological
Origin of Non-Hermitian Skin Effects, Phys. Rev. Lett. 124,
086801 (2020).

[71] K. Zhang, Z. Yang, and C. Fang, Correspondence between
Winding Numbers and Skin Modes in Non-Hermitian Systems,
Phys. Rev. Lett. 125, 126402 (2020).

[72] M. Kohmoto and D. Tobe, Localization problem in a quasiperi-
odic system with spin-orbit interaction, Phys. Rev. B 77,
134204 (2008).

[73] H. Hiramoto and M. Kohmoto, Scaling analysis of quasiperi-
odic systems: Generalized Harper model, Phys. Rev. B 40, 8225
(1989).

[74] Y. Wang, Y. Wang, and S. Chen, Spectral statistics, finite-size
scaling and multifractal analysis of quasiperiodic chain with p-
wave pairing, Eur. Phys. J. B 89, 254 (2016).

[75] T. Liu, P. Wang, S. Chen, and G. Xianlong, Phase diagram
of a generalized off-diagonal Aubry-André model with p-wave
pairing, J. Phys. B 51, 025301 (2017).

104203-8

https://doi.org/10.1103/PhysRevLett.105.227003
https://doi.org/10.1103/PhysRevB.95.174506
https://doi.org/10.1103/PhysRevLett.110.176403
https://doi.org/10.1103/PhysRevLett.122.237601
https://doi.org/10.1103/PhysRevB.100.125157
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevA.89.062102
https://doi.org/10.1016/j.physleta.2015.02.011
https://doi.org/10.1103/PhysRevB.101.174205
https://doi.org/10.1103/PhysRevA.101.063612
https://doi.org/10.1007/s11433-020-1521-9
https://doi.org/10.1103/PhysRevLett.124.070402
https://doi.org/10.1103/PhysRevX.8.031045
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.123.123601
https://doi.org/10.1038/srep21427
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevB.96.174207
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevB.84.205128
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevB.78.045118
https://doi.org/10.1088/1367-2630/18/4/043033
https://doi.org/10.1103/PhysRevLett.123.090603
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevB.77.134204
https://doi.org/10.1103/PhysRevB.40.8225
https://doi.org/10.1140/epjb/e2016-70473-y
https://doi.org/10.1088/1361-6455/aa98d6

