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Compositional patterning in irradiated alloys: Effective potentials and effective interfacial energy
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Compositional patterning (CP) in binary alloys during energetic particle irradiation is studied using a kinetic
model that considers two competing kinetic processes, a thermally activated one promoting macroscopic phase
separation (MPS) of the concentration field c(r, t ), and a forced one resulting in finite-range random atomic
mixing. The forced mixing is modeled by a Gaussian relocation distribution with a characteristic distance R. A
series of approximate kinetic models are introduced by expanding the mixing function into a series of n terms,
thus replacing the nonlocal evaluations of the concentration field c(r′ − r, t ) by local derivatives of c(r, t ).
This approach makes it possible to obtain exact effective potentials and build steady-state diagrams for each
order-n model. Phase-field (PF) simulations using these order-n models reveal that near the onset of patterning,
phase evolution is accurately described using an order-3 model, which changes smoothly from an extended
Cahn-Hilliard free energy in the MPS regime to a one-mode Swift-Hohenberg functional in the CP regime.
Deeper into the patterning regime, higher-order models are required to achieve convergence, yielding squarelike
concentration profiles characteristic of a strong segregation regime. These higher-order effective free energies
are analogous to multimodal Swift-Hohenberg functionals. An alternative definition for the effective interfacial
energy is proposed in the CP regime, since the interfacial area is no longer an excess quantity in that regime,
precluding the use of the standard thermodynamic definition of interfacial energy.
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I. INTRODUCTION

A remarkable aspect of dissipative systems is their ability
to self-organize into stable, nonequilibrium microstructures
[1–4]. In solid elements and alloys, for instance, irradiation
with energetic particles can result in the formation of patterns
comprised of voids [5,6], bubbles [7,8] and nanoprecipitates
[9], while sustained plastic deformation can lead to disloca-
tion patterning [10] as well to chemical nanolayering [11].
Modeling and simulations have established that in many of
these cases, self-organization results from a dynamic compe-
tition between opposing kinetic processes. External forcing,
irradiation, or plastic deformation in the above cases intro-
duces structural and chemical disorder and drives the system
into excited states, while thermally activated processes tend
to promote relaxation toward lower free-energy states. For
nonequilibrium systems whose overall evolution is controlled
by the minimization of a potential, which then serves as a Lya-
punov potential [4], the challenge is in deriving expressions
of the overall, effective potential in terms of the character-
istics and parameters of the competing dynamical processes
[12,13]. Furthermore, self-organization into patterns raises ad-
ditional questions, in particular regarding the possibility of an
apparent negative interfacial energy, since patterning results
in the spontaneous creation of interfaces [14].

Phase evolution in model alloys subjected to prolonged
irradiation provides an excellent opportunity to systematically
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study these various issues, since the relevant elementary pro-
cesses, such as the production of point defects and chemical
disorder, are now understood on a quantitative basis; see, e.g.,
Ref. [15]. Earlier work by Nelson et al. [9] indeed established
that, at moderate irradiation temperature, Ni-Al alloys form
steady-state compositional patterns whose mesoscopic length
scale is independent of the microstructure of the initial state.
It is now known in addition that irradiation of such γ -γ ’ al-
loys at low temperatures, where forced mixing dominates the
kinetics, leads to single-phase solid solutions, and at very high
irradiation temperatures, where thermal diffusion dominates,
macroscopic phase separation ensues [16,17]. More recent ex-
perimental studies performed for a range of dilute Cu-X alloys
[18,19], where the solute X is a transition metal, established
that the temperature range for patterning scales with the so-
lute diffusion coefficient, in agreement with the above picture
of competing dynamics. Moreover, recent experimental and
modeling results suggest that compositional patterning can
also take place in irradiated Fe-Cr alloys [20–24]. We further
note, as an aside, that the patterning regime is currently of
interest from the practical perspective that the microstructure
in this regime is immune to coarsening of precipitates, and
thus it can retain nanoscale features designed and introduced
to improve the material’s properties [19,25].

Modeling and simulations have provided important in-
sights into the origins and characteristics of compositional
patterning. A generic approach is to implement a kinetic
model with distinct dynamics acting in parallel, here adding
forced chemical mixing to the thermally activated diffusion
processes [26,27]. The latter dynamics can be included us-
ing the so-called model B [28], as composition is locally
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FIG. 1. (a) Steady-state phase diagram in R-γ space of an irradi-
ated A50B50 alloy. R and γ are normalized by the critical values. γ1

is the boundary between the MPS and CP regimes, two dashed lines
are asymptotics of γ1 in (b) for R � Rc, where CP is in SSR and
the compositional profile is fitted by a square wave, and in (c) for
R ∼ Rc, where CP is in WSR and the compositional profile is fitted
by a sine wave. γ2 is the boundary between CP and SS. Insets in (a)
are cuts of microstructures of 3D KMC simulations, after Ref. [27].

conserved by these dynamics. As for the mixing forced by
irradiation, Martin proposed a model that randomly switched
neighboring atoms, or “infinite temperature” dynamics [29],
in recognition that energetic recoils are little affected by
chemical interactions. Molecular dynamics have confirmed
the ballistic, i.e., random, nature of the forced mixing in alloys
with moderately positive heats of mixing, e.g., ≈0.25 eV/at
or less [15,30,31]. Continuum modeling and atomistic simu-
lations have furthermore revealed that if the jump distance for
forced mixing is identical to that for thermal diffusion, i.e.,
one nearest-neighbor distance, compositional patterning is not
possible since the outcome of the competition between the two
opposing dynamics—the thermal one and the forced one—
is trivially determined by the process with the largest rate.
Molecular dynamics simulations of displacement collision
cascades have shown, however, that when the primary recoil
energies exceed ≈1 keV, the forced mixing extends beyond
the short distance of point defect diffusional jumps [15,30,31].
Extending Martin’s approach, Enrique et al. [32] used a
phase-field model with two competing dynamics to study the
effect of the finite-range mixing: The thermal dynamics em-
ployed model B, using a Ginzburg-Landau (GL) free energy,
while the forced mixing was modeled using an exponential
decay of recoil distances, with a decay length R. This mod-
eling has made it possible to compute a generic steady-state
phase diagram, see Fig. 1, identifying boundaries separat-
ing the regimes of macroscopic phase separation (MPS) and
compositional patterning (CP), and those of patterning and
solid solution (SS). Two parameters control the steady-state
microstructure: (i) the relative forcing parameter γ = �M,
where � is the rate of ballistic relocation and M is the ther-
mally activated mobility, accelerated by the supersaturation
of point defects under irradiation, and (ii) the characteristic
ballistic relocation range R. It confirmed that R must exceed
a critical value Rc for patterning to be possible. Furthermore,
close to the critical point (γc, Rc) the steady-state composi-
tional profiles take on a sinewave-like shape, corresponding
to the so-called weak segregation regime (WSR), whereas
deeper into the patterning regime, i.e., when R � Rc and γ >

γ1 but near the γ1 boundary, the profile resembles a square-

wave, corresponding to the strong segregation regime (SSR)
[32–34]. The scaling of the dominant patterning wave vector
with γ is different in these two regimes. This driven system
can be characterized by an effective potential that plays the
role of a Lyapunov functional for the overall system, i.e., one
that continuously decreases with time [4].

Recent works have provided additional insight into the na-
ture of such effective potentials. By linearizing the nonlinear
term in the homogeneous GL free-energy density, Simeone
and co-workers were able to obtain analytical solutions of
the long-time evolution of the structure factor [35,36] using
an asymptotic analysis. The resulting steady-state phase di-
agrams (see, for instance, Fig. 3 in Ref. [35]) are overall
very similar to that shown in Fig. 1. Moreover, these authors
were able to derive an expression for the effective potential
in the patterning regime by performing a second-order Taylor
expansion of the so-called response function around the pat-
terning wave vector: It was found that the effective potential
reduces to a Swift-Hohenberg (SH) one [36], thus establishing
a direct connection between patterning in alloys driven by
irradiation and a broad family of self-organizing systems; see,
for instance, Ref. [3] for a review. It also allowed these authors
to calculate steady-state phase diagrams for two-dimensional
(2D) and three-dimensional (3D) systems, which are similar
to those expected for a conserved SH model, and to determine
the nature and symmetry of patterning states as a function
of forcing parameters and alloy composition [36,37]. Several
questions, however, remain unanswered for the case of alloys
under irradiation. First, it is not known whether an SH effec-
tive free energy is adequate throughout the whole patterning
regime since the derivation relies on a linearization of the
chemical free-energy density and on a second-order Taylor
expansion of the response function. Second, this derivation as-
sumes first that the system is in a patterning regime—and thus
it is not known what this effective potential becomes when the
control parameters are varied in such a way that the system
is taken outside of the patterning regime, for instance into
the macroscopic phase-separation regime. Around that bound-
ary, which denotes a discontinuous transition between steady
states, it would be intriguing in particular to determine how
the interfacial energy evolves and whether patterning can be
associated with a negative interfacial energy, as suggested for
other systems self-organizing into patterns; see, for instance,
Refs. [38,39]. Lastly, insights into effective potentials for self-
organizing dynamical systems can be obtained by considering
frustrated equilibrium systems. Indeed, it has been shown that
finite-range forced mixing is equivalent to introducing ef-
fective finite-range repulsive interactions between like atoms
[12]. These effective interactions then compete with the (phys-
ical) attractive short-range chemical interactions present in
a phase-separating system. From that perspective, a parallel
can be drawn between patterning in such a dynamical system
and the formation of modulated phases in equilibrium systems
with frustrated physical interactions [40,41].

In this work, we specifically address the above questions
using phase-field modeling based on model B dynamics with
a Cahn-Hilliard (CH) free energy for the thermal dynamics
and a finite Gaussian mixing for the forced mixing. The paper
is organized as follows: The details of forced and thermal
dynamics are introduced in Sec. II, and we define a series of

104110-2



COMPOSITIONAL PATTERNING IN IRRADIATED ALLOYS: … PHYSICAL REVIEW B 103, 104110 (2021)

order-n kinetic models based on an expansion and truncation
of the mixing terms up to order 2n. In Sec. III we use the
simplest of such models, the order-3 model, to determine the
corresponding steady-state phase diagram, and we introduce
an alternative definition for interfacial energy in the patterning
regime. We also show that the effective free energy for that
order-3 model encompasses both the CH free energy in the
MPS regime and a one-mode SH free energy in the CP regime.
In Sec. IV we show that far from the critical point (γc, Rc),
higher-order kinetic models are required to reproduce the
strong segregation regime. These results are then discussed
in Sec. V.

II. PHASE-FIELD MODELING OF ION-BEAM MIXING
UNDER IRRADIATION

A. Local model for finite-range mixing

As outlined in the Introduction, a necessary condition for
irradiation induced patterning is that forced atomic mixing
extends beyond a characteristic jump distance, R > Rc in
Fig. 1. We consider here an A-B binary alloy described by
its concentration field c(r, t ), defined as the atomic fraction
of species B. The finite-range mixing rate was expressed in
Ref. [32] using a nonlocal term, specifically the convolution
of c(r, t ) by the relocation distribution ωR(r):

∂c(r, t )

∂t

∣∣∣∣
mixing

= −�[c(r, t ) − ∫ωR(r − r′)c(r′, t )dr′]. (1)

We introduce here an alternate formulation that expresses
the finite-range forced mixing as a local term involving the
concentration field c(r, t ) and its spatial derivatives. We will
show in Sec. II A that this alternate formulation offers novel
physical insight, in particular regarding the question raised
in the introduction about the nature of the effective po-
tential governing the system once the thermal dynamics is
included. Additionally, this approach makes it straightforward
to evolve phase field equations using finite element method-
based solvers, as will be illustrated in Sec. III B.

We consider here the case of a Gaussian relocation distribu-
tion ωR(r). We note that Gaussian mixing is a natural model to
capture atomic relocations during thermal spikes, as indicated
in the MD studies on atomic mixing in displacement cascades
for Cu [42], Ni [42], and NiAl [43]. Furthermore, a Gaussian
model is advantageous for mathematical reasons that become
clear below. The forced relocation distribution is thus taken as
(m is the dimension of the space):

ωR(r − r′) =
(

m

2πR2

) m
2

e− m|r−r′|2
2R2 . (2)

The main idea here is to reexpress the mixing term by using
the spatial derivatives of c(r, t ). A simple way to do so is to
consider the Fourier transform of the mixing rate,

∂ ĉ(k, t )

∂t

∣∣∣∣
mixing

= −�
(
1 − e

−R2k2

2m
)
ĉ(k, t ), (3)

where ĉ(k, t ) represents the Fourier transform of the concen-
tration field, and then to expand the k-space Gaussian in a

Taylor series,

∂ ĉ(k, t )

∂t

∣∣∣∣
mixing

= ĉ(k, t )
∞∑

p=1

Dp(−k2)p, (4)

where the coefficients Dp are defined as

Dp = �
R2p

(2m)p p!
. (5)

Next, we transform Eq. (4) back to real space to obtain the
time evolution equation,

∂c(r, t )

∂t

∣∣∣∣
mixing

=
∞∑

p=1

Dp∇2pc(r, t ). (6)

It is then instructive to consider successive approximations
of the mixing term by truncating the summation in Eq. (6)
and retaining terms only up to p = n. We will refer to these
approximations as order-n mixing models. This truncation
is motivated by the fact that, in phase-field modeling, the
compositional profile is expected to be a smooth function
of position and therefore the higher-order derivatives should
become increasingly less relevant. This point will be illus-
trated by phase-field simulations for a particular alloy model
in Secs. III and IV. The order-1 model corresponds to the case
of a purely diffusive forced mixing, as for instance assumed
in Martin’s effective temperature model for alloys under irra-
diation [29]. D1 in this case would be the analog to Martin’s
ballistic mixing diffusion coefficient. As noted in earlier work
and in the Introduction, compositional patterning does not
take place in this order-1 model [44]. Higher-order terms in
Eq. (6) capture the finite range of the forced mixing introduced
by the relocation distribution ωR given by Eq. (2). Note from
Eq. (4) that these additional contributions should be added
in pairs, so that the term with the highest power in k has a
negative coefficient, ensuring that a homogeneous ideal solid
solution remains stable against fluctuations of arbitrary large
wave vectors. After the order-1 model, the next physically
meaningful approximation to Eq. (6) is thus an order-3 model,
which will be discussed in Sec. III.

We note that Eq. (6) was derived by taking advantage
of the simple form of ωR in k-space. Alternatively, one can
derive Eq. (6) by performing a Taylor expansion of ωR in
real space, then iteratively applying the divergence theorem
and assuming that the boundary conditions imposed on the
physical domain are such that boundary integrals are null. The
derivation through k-space [Eqs. (3)–(6)] is more direct and
it highlights the role played by the radius of convergence of
the Taylor series for a Gaussian, which is infinite; Eq. (4) is
thus valid for all wave vectors k . In contrast, if one were
to consider a decaying exponential mixing function for ωR,
as in Refs. [32,35], its Fourier transform is a Lorentzian, i.e.,
1/(1 + R2k2). This function cannot be expanded into a single
Taylor series with a radius of convergence spanning the full
range of possible wave vectors, i.e., from 0 < k2R2 < +∞,
thus making the present approach impractical for this mixing
function. Our use of a Gaussian mixing function, however,
is not a serious limitation as other mixing distributions with
similar physical characteristics could be used. In particular a
mixing distribution that has a unique relocation distance R,
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i.e., ωR(r − r′) = δ(|r − r′| − R) could be employed with an
order-n expansion since its Fourier transform is proportional
to 2[1− cos(kR)], whose Taylor expansion in k-space has
an infinite radius of convergence. This series is in fact very
similar to the one obtained for the Gaussian mixing function,
Eq. (4). Any physical mixing model, including a decaying
exponential, could therefore be considered by simply decom-
posing it into, or approximating it with, a series of Dirac
mixing distributions with suitable relocation distances.

B. An order-n extended Cahn-Hilliard model
for alloys under irradiation

We add the thermal component to the evolution equation
using the standard Cahn-Hilliard model [45]:

∂c(r, t )

∂t
= ∂c(r, t )

∂t

∣∣∣∣
thermal

+ ∂c(r, t )

∂t

∣∣∣∣
mixing

, (7)

∂c(r, t )

∂t

∣∣∣∣
thermal

= ∇ · M(c)∇ δF

δc
, (8)

F (c) =
∫

V
f (c) + κ

2
|∇c|2dV. (9)

M(c) is the atomic mobility, which in general depends on
c(r, t ). In this work, the atomic mobility is assumed to be a
constant so that compact analytical results can be obtained.
F (c), the free-energy functional of the system, is com-
prised of a mean-field bulk free energy f (c) and a gradient
energy term accounting for diffuse interfaces. A regular so-
lution model is used, f (c) = GBc + GA(1−c) + 	c(1−c) +
kBT [c lnc + (1−c)ln(1−c)], to describe a binary immiscible
alloy system. GB (GA) is the molar Gibbs energy for pure
element B (A), 	 is the interaction parameter in kJ/mol, kB

is the Boltzmann constant, and T is the absolute temperature.
With an order-n approximation for the forced mixing, the

evolution equation in real space and its linearized form in
Fourier space are

∂c(r, t )

∂t
= ∇ · M∇

(
∂ f

∂c
− κ∇2c

)
+ D1∇2c + D2∇4c

+ D3∇6c + · · · + Dn∇2nc, (10)

ω(k)

M
= −∂2 f

∂ ĉ2
k2 − κk4 − D1

M
k2 + D2

M
k4 − D3

M
k6

+ · · · + Dn

M
(−k2)n. (11)

We refer to such a model as an order-n extended Cahn-
Hilliard (ECH) model for alloys under irradiation. This
terminology generalizes the one already used for thermal
systems, where the addition of an inhomogeneity penalty pro-
portional to a Laplacian square, resulting in a k6 term in the
kinetic equation in Fourier space, has been referred to as an
“extended Cahn-Hilliard model [46].”

An effective free-energy-like quantity can be derived for
the driven system in the form Feff = F + γ G with γ = �M
defines a forcing intensity. G is the additional free energy due
to forced mixing. The time evolution of the system is then

governed by

∂c(r, t )

∂t
= ∇ · M∇ δFeff

δc
. (12)

The effective free energy for an order-n ECH model takes
the following form:

Feff =
∫

V

[
f (c) − D1

2M
c(1 − c) + κ − D2

M

2
|∇c|2

+ D3

2M
|∇2c|2 + · · · + Dn

2M
(−1)n−1|∇n−1c|2

]
dV (13)

while the effective chemical potential μeff is given by

μeff = ∂ f (c)

∂c
− κ∇2c + D1

2M
(2c − 1) + D2

M
∇2c

+ D3

M
∇4c + · · · + Dn

M
∇2(n−1)c. (14)

The existence of an effective free energy will make it
possible to assess the relative stability of different metastable
states generated by the phase field simulations presented in the
next sections. Note that in the above model, point defects are
not explicitly considered. It is assumed that the vacancies and
interstitials created by irradiation quickly reach steady state,
and thus the resulting excess of point defects can be captured
by simply rescaling M, see for instance Refs. [47,48]. Elimi-
nation of these fast variables, however, excludes any possible
coupling between defects and solute fluxes; these effects will
be considered in future work.

III. COMPOSITIONAL PATTERNING CLOSE TO THE
CRITICAL POINT: AN ORDER-3 EXTENDED CH MODEL

As indicated in Sec. II A, the diffusive order-1 model
does not predict patterning, and higher-order compositional
inhomogeneity terms in the order-n ECH model should be
added for pattern formation. In this section, we focus on the
order-3 ECH model as it is the simplest model that predicts
compositional patterning; plus, it yields simple analytical ex-
pressions for the phase boundaries between CP, MPS, and SS,
namely expressions for γ1 and γ2, the critical point of the
onset of patterning (γc, Rc) and the wave vectors k1, k2. We
also show that its effective free energy reduces to a one-mode
SH potential inside the patterning regime. We first investigate
this order-3 ECH model using a linear stability analysis in
Sec. III A, and then we employ phase-field simulations in
Secs. III B–III D to study the long-term evolution of the sys-
tem and its steady-state microstructures. We also report on
how the form of the effective free energy changes as the
operating point of the system moves from MPS to CP, and we
introduce an alternative definition for the effective interfacial
energy in the patterning regime.

A. Linear stability analysis

The evolution equation for the order-3 ECH model is given
by

∂c(r, t )

∂t
= ∇ · M∇

(
∂ f (c)

∂c
− κ∇2c

)
+ D1∇2c

+ D2∇4c + D3∇6c. (15)

104110-4



COMPOSITIONAL PATTERNING IN IRRADIATED ALLOYS: … PHYSICAL REVIEW B 103, 104110 (2021)

FIG. 2. Effect of γ on the growth rate ω(k) of perturbation wave
vectors k to a homogeneous solution. The CP regime is correspond-
ing to a window of growing wave vectors (k1, k2).

By grouping together terms with the same order of spatial
derivative on the right-hand side of Eq. (15), an effective bulk
free energy f eff

bulk (c), an effective coefficient of gradient energy
κeff

1 , and an effective second-order inhomogeneity coefficient
κeff

2 are defined as follows:

f eff
bulk (c) = f (c) − D1

2M
c(1 − c), (16)

κeff
1 = κ − D2

M
, (17)

κeff
2 = D3

M
. (18)

The effective free energy and chemical potential are

Feff =
∫

V

[
f eff
bulk (c) + κeff

1

2
|∇c|2 + κeff

2

2
|∇2c|2

]
dV, (19)

μeff = ∂ f eff
bulk (c)

∂c
− κeff

1 ∇2c + κeff
2 ∇4c. (20)

A linear stability analysis is performed to evaluate the re-
sponse of Eq. (15) to small perturbations of the form c(r, t ) =
c̄(1 + εeωt+ik·r ). The amplification factor ω is given by

ω(k)

M
= −∂2 f eff

bulk

∂ ĉ2
k2 − κeff

1 k4 − κeff
2 k6. (21)

In the absence of irradiation, ∂2 f
∂ ĉ2 is negative as the tem-

peratures and compositions studied here are always such that
the alloy is inside its spinodal, and κ is positive. The con-

tributions of D1
M and D2

M to ∂2 f eff
bulk

∂ ĉ2 and κeff
1 will reduce these

values significantly or even change their signs, i.e., moving the
initial condition out of the spinodal decomposition region and
reducing κeff

1 or even making it negative. In contrast, the sign
of κeff

2 is always positive, ensuring that unstable wave vectors
remain bounded. A general evolution of the dispersion equa-
tion ω(k) is shown in Fig. 2: for small values of γ , γ < γ1,
the linear instability can be classified as a stationary type II
instability [3], and the characteristic wavelength of patterning
diverges to infinity, as expected for macroscopic phase sepa-
ration. For intermediate γ , γ1 < γ < γ2, there exists a band
of unstable wave vectors (k1, k2) suggesting compositional
patterning with a characteristic wavelength near 2π/kc, where

kc is the wave vector maximizing ω(k). For larger values of
γ (γ ∼ γ2), the system undergoes a supercritical pitchfork
bifurcation and is reminiscent of a stationary type-I instability
in the analysis of the Swift-Hohenberg equation [3].

Starting from the linearized evolution equation [Eq. (21)],
expressions for the important boundary parameters marked
in Fig. 2 can be directly derived (the superscript “linear” is
added to distinguish these values from the ones pertaining to
the full steady-state diagram, as in Fig. 1). First, the boundary
between the MPS and CP regimes, γ linear

1 , is derived by dω
dk

changing sign at k = 0. The boundary between CP and SS,
γ linear

2 , is determined by dω
dk |k=kc = 0 and ω(kc) = 0. The onset

of patterning (γc, Rc) is obtained by setting γ linear
1 = γ linear

2 .
In the patterning regime, the boundaries of the range of wave
vectors with positive growth rates (k1, k2) are the two positive
real roots of Eq. (21) (see Appendix A for details). While the
above linear stability analysis provides analytical expressions
defining the compositional patterning regime, it necessary to
include nonlinear effects to determine the exact domain of
existence of compositional patterning as well as to investigate
defective patterns. We thus turn to numerical simulations of
the full order-3 ECH model in the next sections.

B. Simulation methods

The phase-field (PF) equation Eq. (15) lends itself to inte-
gration by finite-element method (FEM) based solvers since
it is only a function of the local composition and its spatial
derivatives. Equation (15) can be rewritten with dimensionless
units (here m is the dimension of the space):

∂c

∂ t̃
= ∇̃2μ̃eff , (22a)

μ̃eff =
(

1 − γ̃ R̃2

4m

)
(1 − 2c) + T̃ ln

c

1 − c
− κ̃∇̃2c

+ γ̃ R̃4

(2m)22!
∇̃2c + γ̃ R̃6

(2m)33!
∇̃4c, (22b)

where

t̃ = tM	

a0
2

, ∇̃ = a0∇, γ̃ = �a0
2

M	
= γ

a0
2

	
, R̃ = R

a0
,

T̃ = kBT

	
, κ̃ = κ

	a0
2
. (22c)

a0 is the grid spacing in PF simulations. The dimensionless
form of the effective chemical potential has four independent
parameters, γ̃ , R̃, T̃, and κ̃ , and thus helps to assess the effects
of model parameters on the evolution equation; note that (i)
T̃ is proportional to the usual reduced temperature T/Tc in
phase transition phenomena, and (ii) M is a function of T so γ̃

will be temperature-dependent as well. In this work, we focus
on the effect of forcing parameters γ and R. This choice was
guided by the fact that no qualitatively significant effects were
observed in the PF simulations when varying T̃ and κ̃ around
the values considered here. In particular, no new steady state
or new compositional patterning regime was detected.

In the present work, we use the FEM framework MOOSE
[49] with adaptive meshing and time stepping to solve the
PF Eq. (10); see the supplemental material [50] for more
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TABLE I. Materials parameters used in the order-n ECH model.

Atomic Nominal Gibbs energy Interaction Coefficient of
mobility composition of B of pure B/A parameter Temperature gradient energy

Symbol M c̄ GB = GA 	 T κ

Value 2.2841 × 10−26 0.5 −20 17 700 8.125 × 10−16

Unit m2mol/J/s kJ/mol kJ/mol K Jm2/mol

information about adaptive meshing and a detailed description
of weak forms and solver options in Appendix B. The atomic
mobility and the coefficient of gradient energy are taken from
Ref. [51] for the spinodal decomposition of Fe-Cr. The inter-
action parameter 	 is chosen so that the spinodal temperature
for the equiatomic alloy is Tc = 1022 K. The complete list of
materials parameters is compiled in Table I. Since the present
study focuses on the equiatomic composition, it is sufficient
to perform two-dimensional simulations as the most stable
steady states in the patterning regime are lamellar microstruc-
tures. We refer to the A-rich and B-rich phases as α and β,
respectively, Furthermore, for simplicity, we vary γ and R
but keep here the temperature fixed at 700 K (0.68Tc). At
that temperature, the equilibrium atomic fractions of B in α

and β phases are 0.0786 and 0.9214, respectively. Separate
simulations at other temperatures, from 0.5Tc to 0.75Tc, did
not reveal any qualitatively different evolutions. Lastly, since
we are not interested here in the effects of surfaces or other
boundaries, we use periodic boundary conditions.

C. Determination of steady states by minimization of Feff

We present in this section the results of phase-field simu-
lations of an irradiated A50B50 binary alloy using an order-3
ECH model. We focus on the patterning regime and pattern
morphology near (γc, Rc), the onset of patterning since, as we
will show in Sec. IV, the order-3 ECH model becomes inac-
curate away from this point. We thus choose R = 1.1Rc and

we use a γ value between γ linear
1 and γ linear

2 . The simulation
domain is 30 nm × 30 nm. The initial conditions (ICs) of the
simulations are either a solid solution or a phase-separated bi-
layer structure in order to sample broadly possible steady-state
microstructures. For IC = solid solution, the nominal concen-
tration of B is 0.5 everywhere in the domain, but local random
fluctuations (with amplitude ≈ 0.05) are introduced to trigger
phase decomposition. For IC = phase separation, two stripes
of α and β phases are separated by a straight interface of width
0.5 nm. Under irradiation, the solid solution decomposes and
forms a defective lamellar structure with dislocation-like de-
fects [see Fig. 3(a)], while for the phase-separated system the
solid solution decomposes through a series of instabilities into
thinner layers, also forming a defective microstructure, in this
case with a transverse long-wavelength (zigzag) instability;
see Fig. 3(b).

As observed in patterning systems by both experiments
[40,52,53] and simulations [54,55], final states are often found
to be sensitive to the initial conditions and the size of the sim-
ulation cell. This is illustrated by Figs. 4(a) and 4(b), where
a single bilayer with a large initial composition difference
between the two layers can evolve into a perfect layered struc-
ture, while increasing the number of initial bilayers from 1 to
2 and/or modifying the composition contrast between initial
layers can result in defective layered structures, here with
“grain boundaries.” Starting from solid solutions, changing
the random seed for the initial composition fluctuations also
produces different defective layered structures; see Figs. 4(c)

FIG. 3. Time evolution of the concentration field of an A50B50 alloy using the order-3 ECH model. α and β phases are regions in red
and blue, respectively. (a) IC = solid solution with small fluctuation. Snapshots are taken at a fraction of total time t indicated at the top. A
topological defect analogous to “dislocation” is encircled. (b) IC = bilayer. “Zigzag” instability marked by dashed lines.
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FIG. 4. Selected initial and final states with the order-3 ECH model. The final state shown in (a) is a defect-free lamellar structure
with alternating phases characterized by a fixed wavelength λ. Compositional profile of B along the dashed line is shown next to the final
state. (b) IC = two bilayers. A topological defect analogous to “grain boundary” separating two domains of different orientations is marked.
(c),(d) IC = solid solution. “Disclinations” are encircled in the final state. (e) Same IC as (a) but in a larger domain.

and 4(d). In addition, changing the dimensions of the simula-
tion cell can also affect the final state [see Fig. 4(e)], which
has the same IC as in Fig. 4(a) but a larger simulation cell
dimension that leads to a zigzag instability. The exact details
of the final state are, of course, also affected by the numerical
tolerance used in the simulations to define convergence (see
Appendix B). The diversity of layered morphologies depicted
above thus points to the fact that there exist many metastable
structures in the patterning regime and that the system can be
trapped in any of those structures since the evolution equation
used here is deterministic.

To determine the true steady state under specific irradi-
ation conditions, we compute the density of effective free
energy Feff/A [using Eq. (19), A is the area of simulation
domain]. The minimum in the effective free-energy density
is found to correspond to a system with periodically aligned
straight stripes, which, as shown in Fig. 4(a), are charac-
terized by a uniform wavelength. We set this state as the
reference state f ref

eff and report relative free-energy densities

f CP
eff = Feff/A − f ref

eff for other defective metastable states. The
values of f CP

eff of metastable states shown in Figs. 3 and 4 are
listed in Table II. The effective free-energy penalty is observed
to increase as more defects/sources of inhomogeneity are
present. For example, in Fig. 4(c) there is a closed circle of
β phase on the upper right corner, which results in a small
increase of f CP

eff compared to Fig. 4(d). A grain boundary in
Fig. 4(b) causes the largest f CP

eff whereas zigzag instabilities in
Figs. 3(b) and 4(e) introduce only a small energy penalty.

It is also informative to analyze the compositional profiles
in these layered structures. In all cases, one finds profiles that
are diffuse with no plateau regions in the middle of the layers;
see, for example, the compositional profile of B in Fig. 4(a).
In fact, sampling over a wide range of γ in the CP regime
indicates that all compositional profiles can be well fitted by
a sinusoidal function, which is characteristic of the so-called
weak segregation regime. This is not surprising since we have
chosen an R value close to Rc, R = 1.1Rc. Additional simu-
lations for larger values of R, e.g., R = 1.5Rc and R = 2Rc,

TABLE II. Relative effective free energy density f CP
eff of defective final states in Figs. 3 and 4 compared to the perfect lamellar structure in

Fig. 4(a), which is set to be the reference state.

IC = MPS IC = SS

Type of ICs Fig. 4(a) Fig. 4(b) Fig. 3(b) Fig. 4(e) Fig. 4(c) Fig. 4(d)

f CP
eff (J/nm2/mol) 0 0.69 ± 0.006 0.23 ± 0.004 0.10 ± 0.002 0.44 ± 0.001 0.27 ± 0.004
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however, indicate that the order-3 ECH model only generates
patterns belonging to the weak segregation regime. This point
will be considered in more detail in Sec. V.

D. Effective interfacial energy

While effective free energies and chemical potentials were
introduced in a straightforward manner in Sec. III A, the
existence of a patterning regime calls for a different approach
when defining an effective interfacial energy. Let us consider
first the case of systems in which macroscopic phases co-
exist, starting with systems at thermodynamic equilibrium.
The standard thermodynamics approach defines the interfacial
energy as an excess quantity [45,56] since the energy penalty
introduced by the presence of one isolated interface vanishes
in the thermodynamic limit. In this classical analysis, A is
the interfacial area, σ is the interfacial free energy (unit is
energy per unit area), and σ = ( ∂Gexc

∂A )T,P,N , where Gexc is the
Gibbs free-energy difference between an infinite physical sys-
tem with a planar interface and that of a hypothetical system
comprised of two semi-infinite phases with compositions set
by the bulk phase diagram. In a two-phase binary alloy AxB1−x

described within a Cahn-Hilliard model, the interfacial free
energy takes the following expression [45]:∫

S
σdA =

∫
V

[
f (c) + κ

2
|∇c|2 − cμe

B − (1 − c)μe
A

]
dV.

(23a)
μe

A and μe
B are the equilibrium chemical potential of A

and B species. Considering now a system with a constant
cross-section A and variable length L, containing one planar
interface parallel to A, the above equation can be rewritten as

σA = AL × 1

V

∫
V

[
f (c) + κ

2
|∇c|2 − cμe

B − (1 − c)μe
A

]
dV.

(23b)
We then introduce an excess free-energy density f exc as

f exc = 1

V

∫
V

[
f (c) + κ

2
|∇c|2 − cμe

B − (1 − c)μe
A

]
dV

= 1

V

∫
V

κ|∇c|2dV, (23c)

where the last equality derives from the stationarity of the
interface [45]. Combining Eqs. (23b) and (23c), one obtains

f exc = 1

L
σ. (23d)

The interfacial energy can thus be simply determined from
PF simulations by calculating f exc for systems of increasing
lengths L and using the expression

σ = lim
L→∞

L f exc. (23e)

With the parameters used in the present PF model, one
finds that at T = 700 K, σVm = 577 J nm/mol, where Vm is
the molar volume for 3D simulations, or the molar area for
2D simulations.

We can extend the above approach to the order-3 ECH
model. Following an analysis of the sharp interface limit of an
extended Cahn-Hilliard equation [57–59] (see also Appendix

C), the effective excess free-energy density f exc
eff and the effec-

tive interfacial energy σeff are now given by

f exc
eff = 1

V

∫
V

(
κeff

1 |∇c|2 + 2κeff
2

∣∣∇2c
∣∣2)

dV, (24a)

σeff = lim
L→∞

L f exc
eff . (24b)

Equations (23) and (24) have been used to calculate the
effective interfacial energy in order-1, -2, and -3 ECH models,
using the compositional profiles obtained from PF simulations
of microstructures with planar interfaces, concentrating first
on values of γ and R for which κeff

1 remains positive. The
patterning case will be studied in the last part of this section.
Figures 5(a)–5(c) display σeff as a function of γ for the above
three ECH models, normalizing σeff by the thermal equilib-
rium value σth at the same temperature, and normalizing γ by
γ linear

1 for the R value used here. As we can see from the plots,
σeff/σth decreases for all three cases as γ increases. In the
order-1 model, phase coexistence under irradiation can be de-
scribed by an effective interaction term 	eff = 	 − γ R2/12,
see Eq. (16), and σeff/σth → 0 as γ /γ linear

1 → 1 since the lat-
ter limit imposes that T/T eff

c → 1; furthermore, the reduction
in σeff/σth as T/T eff

c increases is the one expected for a regular
solution model; see, for instance, Fig. 3 in Ref. [45]. It is also
of interest to extend this interfacial energy analysis in the MPS
regime to the order-2 model, even though that model does not
provide a physically correct behavior in the patterning regime.
In the order-2 model, phase coexistence under irradiation
involves an effective interaction term 	eff and an effective gra-
dient energy coefficient, κeff

1 , see Eq. (17), which is reduced as
γ increases. As a result, the interfacial energy decreases faster
than in the order-1 model, and σeff/σth → 0 when κeff

1 → 0 as
seen from Eq. (17). In the order-3 model [Fig. 5(c)], the reduc-
tion rate of σeff/σth is intermediate between the previous two
cases because of a positive compensation from 2κeff

2 |∇2c|2.
Notice that the PF simulations yielded compositional pattern-
ing for γ < γ linear

1 , and the transition to patterning takes place
at a small but nonzero positive interfacial energy (see the
inset). This is expected as the transition from MPS to CP is a
first-order transition, but weakly first-order here as the system
is very close to the critical point (γc, Rc). The interfacial
energy then gradually decreases to negative values, before
increasing again to zero when the system enters the solid solu-
tion regime. The validity of σeff given by Eq. (24) is, however,
problematic in the patterning regime, as discussed next.

In contrast to systems at thermodynamic equilibrium where
macroscopic phases coexist, the interfacial area is an extensive
quantity in the CP regime since this area scales with the
volume of the system, and therefore one cannot define the
interfacial free energy as an excess quantity. Furthermore, that
approach may be flawed due to the absence of the well-defined
bulk, or far-field, concentration values needed to describe the
hypothetical system with a dividing surface used as a refer-
ence [60]. In the present work, for instance, all compositional
profiles generated by the order-3 ECH model in the patterning
regime have a sinewave-like shape, see Fig. 4(a), and it is
found that the compositions at the minima and maxima are not
independent from the period of the layered microstructures,
so these extrema values cannot serve as proxies for far-field
solutions.
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FIG. 5. The relationship between σeff/σth and γ / γ linear
1 in order-1, -2, and -3 ECH models. Random mixing decreases interfacial energy

in all three cases. (a) Results of the order-1 model. σeff approaches zero at the effective critical temperature T eff
c . (b) The order-2 model. σeff

approaches zero when κeff
1 becomes zero. (c) The order-3 model. Steady state enters the CP regime when σeff becomes a small positive value;

see the inset for a magnified view of the transition region.

A modified approach is thus proposed, where we consider
the dependence of the effective free-energy density with the
period of layered structures. Specifically, we employ small
simulation cells of constant cross section A and of variable
length λ, which is chosen to be close to the periods of layered
structures observed in large-cell simulations for the consid-
ered values of γ and R; see, for instance, Fig. 4(a). These small
simulation cells were initialized with one straight bilayer and
evolved to reach steady state. A small cross section was
used so as to prevent any interface instability of the straight
interface, and λ was varied only around an estimated opti-
mum period so that no additional bilayer would nucleate, i.e.,
to suppress an Eckhaus instability. The effective free-energy
density was measured at steady state by normalizing the total
effective free energy Feff defined by Eq. (19) by the area (or
volume in 3D) of the simulation cells, i.e., Feff/A. The rela-
tive effective free-energy density f CP

eff , defined previously in
Sec. III C, was observed to display a near parabolic depen-
dence with 1/λ, see for instance Fig. 6, reaching a minimum at
1/λc. We propose to define the effective interfacial free energy
in the CP regime as

σ CP
eff = ∂ f CP

eff

∂ (1/λ)
. (25)

While Eq. (25) bears some similarity with the definition
used in the MPS regime, see Eqs. (23d) and (23e), we stress
that f CP

eff is not an excess quantity in the thermodynamic sense.

FIG. 6. Relative effective free-energy density f CP
eff vs 1/λ in WSR

of patterning with the order-3 ECH model. The true steady state of
CP has the lowest f CP

eff and null σeff .
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Furthermore, a consequence of this definition is that the most
stable periodic layered structure is the one for which σ CP

eff = 0.
When 1/λ is smaller (larger) than 1/λc, the effective interfa-
cial energy is negative (positive), capturing the fact that the
system can lower its total effective free energy by increasing
1/λ (decreasing 1/λ).

The near parabolic shape of the plot of f CP
eff versus 1/λ in

Fig. 6 can be rationalized by considering the fact that in the
weak segregation regime, steady-state compositional profiles
are near sine-wave functions. It is proposed that stretching
or compressing the patterned structure by ±dλ results in a
similar increase of the effective free-energy density, and thus
a symmetric plot for f CP

eff ( 1
λ

) near its minimum. This ratio-
nalization was tested by deriving an analytical expression of
f CP
eff ( 1

λ
) using a one-mode approximation, i.e., assuming that

the compositional profiles are sine waves of amplitude a and
wave vector k. One modification, however, had to be made
to the order-3 ECH model for deriving such an expression:
The regular solution free-energy density, f (c), had to be re-
placed by a Landau free energy as in previous analytical works
[32,35], since the logarithmic terms in the configurational
entropy in f (c) preclude the derivation of explicit analytical
expressions. As shown in Appendix D, one then obtains the
following expression for f CP

eff (k):

f CP
eff

a2
= κeff

2

4

(
k2 − k2

c

)2
, (26a)

k2
c = − κeff

1

2κeff
2

. (26b)

Clearly, between f CP
eff and k2 there exhibits a parabolic

relationship that scales with the square of amplitude. At kc,
the effective free-energy density reaches the minimum. As
expected, the effective free-energy expression in k-space for
the order-3 ECH model in the patterning regime, Eq. (26), is
identical to that expected for the corresponding one-mode SH
model [59].

IV. COMPOSITIONAL PATTERNING AWAY
FROM THE CRITICAL POINT

PF simulations are next employed to investigate the steady
states of patterning further away from the critical point
(γc, Rc). As we will show, this requires higher order-n ECH
models.

A. Convergence of the order-n ECH models
with increasingly higher order

We consider here the effect of the number of inhomo-
geneity terms on the steady-state phase diagram. It will be
shown that the further away from the critical point (γc, Rc), the
slower is the convergence. We first investigate the question of
convergence of the order-n ECH model using a linear stability
analysis, before employing PF simulations.

A stability phase diagram is first built in the R-γ space
through linear stability analysis of the full dispersion relation
[see the full model, see Eq. (3)] and the dispersion relation of
the order-n model [see Eq. (11)]. The γ linear

1 boundary and crit-
ical point are the same for both the full model and the order-n
model since they are determined by the same equation, so only

FIG. 7. (a) Boundary parameters of the order-n ECH model and
the full model (marked by solid lines) in a steady-state phase diagram
obtained by linear stability analysis. γ linear

1 is the same for all models,
but γ linear

2−order−n deviates a lot from γ linear
2−full model. (b) A zoom-in view of

the rectangular region marked in (a).

γ linear
2 needs to be determined. The analytical expression of

γ linear
2 of the full model is collected in Appendix A; for γ linear

2
of the order-n model, there is no simple analytical expression,
so we resort to numerical methods. The resulting phase dia-
gram is shown in Fig. 7(a). It is seen that the order-3 model
matches the full model only very close to the critical point.
When R becomes larger, higher-order models are required,
as illustrated with order-11 and order-17 models in Figs. 7(a)
and 7(b).

We then use PF simulations to study the effect of order-n
on steady-state microstructures in the patterning regime by
investigating the effective free-energy density, characteristic
wavelength λ, and concentration profile. We conclude that
convergence has been achieved when the above three mea-
sures remain essentially unchanged upon further increasing
n. Similar to what was reported in Sec. III D, we use a bi-
layer structure as the initial condition, and we systematically
change the width of the bilayer as a way to change the steady-
state wavelength λ. We compare different order-n models of
R = 1.65Rc for γ values covering the entire range of the CP
regime, but for simplicity we discuss below the simulation
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FIG. 8. The relationships between Feff/A and λ of order-
n(n = 11, 13, 15, 17, 19) ECH models, using operating point P2 in
Fig. 7(a). The red dashed line connects the set of minima of Feff/A
from these order-n models. The minimum of Feff/A and λc converge
to fixed values for n = 17.

results obtained for one representative point, corresponding
to a value of γP2; see point P2 in Fig. 7(a).

The relationships between effective free-energy density
Feff/A and λ from order-n(n = 11, 13, 15, 17, 19) ECH mod-
els are shown in Fig. 8. All curves are somewhat U-shaped,
indicating that Feff/A of each order-n model reaches a global
minimum at a different critical wavelength λc. While all these
models agree well with each other at both ends of the range of
λ values considered here (λ = 3.5 or 5.5 nm), these curves de-
viate significantly in the central region (3.5 < λ < 5.5 nm). As
n increases, both the minimum of Feff/A and λc shift to smaller
values until a saturation point is reached at λc = 4.43 nm.
From model order-15 to order-17, λc is reduced by 3.8%; from
4.6 to 4.43 nm, the minimum of Feff/A is reduced by 0.28%.
From order-17 to order-19, there is no change in λc and the
minimum of Feff/A is reduced by only 0.047%. We therefore
conclude that convergence for the minimum of Feff/A and λc

requires an order-17 model for R = 1.65Rc.
In addition, the steady-state microstructures of pattern-

ing in order-n models are examined, and the corresponding
line profiles of species B along one period of patterning
are compared in Fig. 9. All profiles belong to the strong
segregation regime (SSR) of patterning as there are plateau
regions within α and β phases. In agreement with the results
shown for the minimum of Feff/A and λc, the steady-state
compositional profiles evolve until order-17, and they remain
unchanged upon further addition of higher-order terms. This
can be rationalized by noting that in the strong segregation
regime, higher frequencies are required to accurately repro-
duce square-wave shaped profiles. Despite the fairly large
number of inhomogeneity terms in these high order-n ECH
models, FEM solvers are found to be very effective in solving
the corresponding weak form of the phase-field equations. For
instance, the computational time to reach steady state with the
order-19 model is only ≈3 times that of the order-3 model at
point P2.

FIG. 9. Line profiles of species B across one period of pattern-
ing in order-n(n = 11, 13, 15, 17, 19) ECH models, using operating
point P2 in Fig. 7(a). Insets are magnified views of the interior of each
phase, showing that convergence of the steady-state profiles occurs
at n = 17.

Based on the analysis and the results above, we build the
full dynamical phase diagram, which includes four possible
steady states, namely MPS, SSR of CP, WSR of CP, and
SS as γ is increased; see Fig. 10. The kinetic evolutions of
the system under various irradiation conditions are presented
in Fig. S1 of the supplemental material [50]. In contrast to
results on patterning near the critical point (γc, Rc) presented
in Sec. III, the main difference is the presence of a strong
segregation regime of patterning. The order-3 ECH model, or
equivalently kinetic models driven by a one-mode SH free-
energy functional, fails to produce this patterning regime. This
point will be considered further in Sec. V.

Another interesting observation is the evolution of interfa-
cial width as a function of γ and thus as the system transitions
through different steady states. We used the 10–90 % criterion

FIG. 10. Steady-state phase diagram of an irradiated A50B50

alloy. Five selected irradiation conditions at R = 1.65Rc are marked
by dots and connected to their steady-state microstructures. Color is
rescaled based on the solubility range in each steady state.
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FIG. 11. Interfacial width of steady-state microstructures (MPS
and CP) as a function of forcing parameter γ by an order-17 ECH
model at R = 1.65Rc. The ratio between interfacial width and do-
main size is plotted to the right. Note that unlike the discontinuous
transition from MPS to SSR, the change from SSR to WSR is a
gradual one, and thus this gradual change is represented here by a
dashed zone.

to determine the interfacial width, and we plotted its rela-
tionship with normalized γ in Fig. 11. We also measured the
steady-state domain size—the distance between the center of
neighboring α and β phases, and we plotted the ratio of inter-
facial width to the domain size as a function of γ in Fig. 11
as well. In the MPS regime, as γ increases, the interface be-
comes more diffuse but the ratio of interfacial width to domain
size remains zero because the domain size is infinite in this
regime. In SSR, larger γ leads to a substantial increase in both
the interfacial width and the ratio. Entering WSR, however,
the interfacial width starts to decrease as γ increases. And
since the compositional profile in WSR is approximately a
sine wave, the ratio of interfacial width to domain size should
stay very close to a constant, ∼0.5903 for a sine wave. Indeed,
the last three data points shown in Fig. 11 correspond to
values of 0.5889, 0.5924, and 0.5934, respectively. We thus
propose that the interfacial width over domain size ratio can
be used to distinguish experimentally the weak and the strong
segregation regimes. This point is further discussed in Sec. V.

B. Dependence of effective interfacial energy
with γ in patterning regime

We next extend the results presented in Sec. III D for the
effective interfacial energy in the patterning regime with the
order-3 ECH model. It is found that in the strong segregation
regime, the dependence of f CP

eff with 1/λ around 1/λc becomes
asymmetric, see Fig. 12, in contrast to the symmetric behavior
measured in the weak segregation regime (Fig. 6), as well as
derived analytically [Eqs. (26a) and (26b)]. Specifically, we
present in Fig. 12 results from an order-17 ECH model for
R = 1.65Rc, and four γ values at points P2, P3, P4, and P5;
see Fig. 12(a). Since P1 is in the WSR regime, the plot of
f CP
eff versus 1/λ is similar to that in Fig. 6 for the order-3

ECH model, so it is not discussed further. Decreasing γ to
P2, which brings the system into the SSR regime, the shape of

the plot has become asymmetric around 1/λc; see Fig. 12(b).
For 1/λ < 1/λc, the absolute value of the gradient is smaller
than for 1/λ > 1/λc, indicating that f CP

eff is less sensitive to
the change in λ. Upon further decreasing γ to points P3

and P4, which are well within the SSR regime, the plots
become even more asymmetric; see Figs. 12(c) and 12(d).
For point P5, which is in the MPS regime, the curve does not
display a U-shape; instead, the effective free-energy density
increases monotonically as 1/λ increases. These results can
be rationalized considering the following points: First in the
MPS regime, i.e., at P5, Eq. (24b) predicts that in the limit
of infinitely small 1/λ (or 1/L), the slope of effective free-
energy density versus 1/λ approaches σeff , and should thus be
positive, since f exc

eff is related to effective free-energy density
through

f exc
eff = 1

V

∫
V

[
f eff
bulk (c) + κeff

1 |∇c|2 + 2κeff
2 |∇2c|2

− cμeff
B − (1 − c)μeff

A

]
dV

= Feff/A − μeff
B . (27)

The slope measured at point P5, 24.3 J nm/mol, is indeed
in good agreement with the value measured from Eq. (24b),
22.5 J nm/mol. Second, in the SSR, since the compositional
profiles reach plateau values within each phase, see Fig. 9,
it is expected that, when interfaces are farther apart from
each other than the optimum distance λc/2, the corresponding
increase in effective free energy should be much smaller than
the increase brought about by overlapping interface profiles in
the case 1/λ > 1/λc, and therefore that the plot of f CP

eff versus
1/λ should no longer be symmetric.

V. DISCUSSION

In this work, we have calculated the evolution of the
concentration field c(r, t ) in a phase-separating binary alloy
subjected to irradiation where forced atomic replacements are
described by an athermal Gaussian mixing term. For most
irradiation collisions, the characteristic length of these forced
displacements, R, extends beyond that of thermal diffusion,
i.e., one nearest-neighbor atomic distance. This separation of
length scales makes it difficult to derive an exact explicit
expression of the effective potential governing the overall evo-
lution of this system with two competing dynamics. This issue
has usually been addressed by relying on approximations
involving linearization of the thermodynamic free-energy
density either in reciprocal space [32] or in real space [36].
In this work, we have proposed a different approach: Using an
expansion of the forced mixing kinetics, finite-range mixing
is expressed by a series of derivatives of c(r, t ) evaluated
at position r, instead of evaluations of c(r′, t ) at positions
r′ far from r. Truncating this expansion yields a series of
approximate mixing models; see Eq. (6). These differential
terms can then be directly incorporated into the Cahn-Hilliard
evolution equation used for the thermodynamics-controlled
dynamics, yielding a series of extended Cahn-Hilliard (ECH)
models [see Eq. (10)] referred to order-n ECH models. As
a result, for each of these order-n ECH models, exact ex-
pressions for the corresponding effective free energies were
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FIG. 12. (a) Steady-state phase diagram highlighting five operating points: P1 (WSR), P2 (SSR), P3 (SSR), P4 (very close to the border
of SSR and MPS), and P5 (MPS). Using the order-17 ECH model, plot of relative effective free-energy density f CP

eff vs 1/λ in the patterning
regime in (b) at P2, (c) at P3, and (d) at P4, respectively. (e) Effective free energy density as 1/λ for P5 in the MPS regime.

obtained; see Eq. (13). In contrast to past works, our approach
yields a unique explicit real-space expression of the effective
free energy for all three steady-state regimes. Steady-state
concentration profiles were then calculated using phase-field
simulations, see Figs. 4 and 9, and used to build steady-state
phase diagrams, see Figs. 7 and 10. It was found that an
order-3 model is sufficient to capture the onset of patterning,
where concentration profiles are close to sine waves, i.e.,
in the weak segregation regime. Higher-order models, how-
ever, were required to generate the strong segregation regime
expected deep into the patterning regime, as illustrated in
Fig. 9. We specifically discuss in this section two key points:
(i) the definition of an effective interfacial free energy in the
above driven alloy system, and (ii) the connection between the
present effective free energies with those obtained in previous
models of alloys under irradiation, and more broadly of sys-
tems undergoing patterning.

Defining an effective interfacial free energy for systems
that display a transition between steady states of macroscopic

phase separation and compositional patterning is problematic.
In the MPS steady state, i.e., at low forcing intensity γ , one
can extend the standard thermodynamic approach to calculate
the interfacial free energy by simply using the effective free
energy defined in Eq. (19). The resulting effective interfacial
energy σeff , defined through Eq. (24b), is found to decrease as
γ increases and to reach negative values for γ values nearly
equal to the one corresponding to the transition to CP; see
Fig. 5(c). The fact that the patterning regime can be associated
with a negative interfacial energy may not be too surprising
at first since an initially macroscopic system operating in that
regime will spontaneously create new interfaces until reaching
the optimum lamellar structure. Negative interfacial energies
have been used or calculated in other systems self-organizing
into mesoscopic patterns, for instance in active matter [38,39],
although this topic remains controversial [61]. This definition
for the effective interfacial energy, however, cannot be used
in the present patterning regime. First, the interfacial area
is no longer an excess quantity. Instead, in the patterning
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regime, the interfacial area scales with the volume, i.e., it is
now an extensive quantity. Second, the steady-state compo-
sitional profile does not admit constant “far-field” solutions
as the interface width and phase coexistence length scale are
no longer decoupled. For the nearly sinewave concentration
profiles found in the weak segregation regime, for instance,
these two scales are identical, up to a factor 2. In contrast, the
existence of far-field solutions that are constant over distances
much larger than that of the interface width is an essential
requirement for the derivation of interfacial free energy from
phase field models using a sharp interface limit; see, for in-
stance, Refs. [57,62] and Appendix C.

We thus introduced in this work an alternative definition
of the effective interfacial energy in the CP regime, σ CP

eff .
Since the patterning period λ is an internal degree of free-
dom of the system, an effective interfacial energy should be
related to the dependence of the effective free-energy den-
sity with respect to that period. Specifically, we define σ CP

eff
as the partial derivative of the effective free-energy density
with respect to 1/λ, see Eq. (25), so that σ CP

eff is properly
dimensioned, i.e., in energy units per (L)(d−1), where L is a
system length and d is the system spatial dimension. We find
that the effective free-energy density of a steady-state lamel-
lar phase varies continuously with its period λ, see Fig. 6,
thus ensuring that this partial derivative is well-defined for
the systems of interest here. An important consequence of
this definition is that σ CP

eff = 0 for the most stable lamellar
steady state. This approach is in fact consistent with other
approaches used to study related systems. For example, we
already noted in Sec. III that the order-3 ECH free energy
is very similar to the functional form used in some phase-
field crystal (PFC) models [63,64]. Atoms in PFC simulations
correspond to spherical precipitates in our work, and equi-
librium PFC states with crystalline order correspond to a
patterning regime with periodic structures. Figure 6 is thus
the counterpart of a plot of the system energy per atom as
a function of inverse lattice parameter in PFC. This sug-
gests that the curvature ∂2 f CP

eff /∂ (1/λ)2 evaluated at σ CP
eff = 0,

defining an effective “interfacial modulus,” could be used to
characterize the compliance of the lamellar phase in response
to changing its wavelength. Another correspondence can be
made with the concept of defactant introduced by Kirchheim
[65,66] and used in particular to rationalize the stabilization of
nanocrystalline materials to a finite grain size by doping grain
boundaries with suitable solute atoms. Although there is no
direct model correspondence here, in part because including
grains of distinct crystallographic orientations in phase-field
modeling requires the addition of nonconserved order param-
eters, Kirchheim reaches a similar conclusion, i.e., that the
effective grain boundary energy should be zero for the most
stable nanocrystalline state.

We next turn to the effective free-energy potentials derived
from order-n models and to their comparisons with poten-
tials obtained in previous publications on systems undergoing
patterning, in particular alloys under irradiation. As noted
above, in the compositional patterning regime, our order-3
effective free energy, see Eq. (19), is equivalent to the one-
mode SH potential [3,59] since κeff

1 < 0 in that regime [note
that Eq. (19) differs slightly from the standard one-mode SH
free energy because of the entropic terms in f (c)]. Such an

effective potential was recently obtained by Simeone et al.
[36] for alloys under irradiation with an exponential-decay
forced mixing, by performing a second-order expansion of
the k-space response function around the dominant patterning
wave vector (see Ref. [36] for details). Our order-3 effective
free energy is, however, more general since it encompasses
both the traditional extended CH model in the MPS regime,
where the γ values are low enough that κeff

1 > 0, and an SH
free energy once the system enters the patterning regime, i.e.,
at higher γ values. It is intriguing to note that a potential
analogous to the order-3 effective free energy was used to
model shape instability in a static but frustrated system, where
phase separation competes with dipole-dipole repulsion. One
limitation of those potentials for alloys under irradiation is
that they can only generate patterns that belong to the weak
segregation regime. Higher-order ECH models overcome this
limitation by including higher-order derivatives of the concen-
tration field c(r, t ). This is rationalized by considering that
higher-order compositional inhomogeneity terms are able to
capture higher-order harmonics, which are required to gen-
erate the square-wave-like profiles of the strong segregation
regime. While we are not aware of any systematic parallel
with other effective potentials for patterning under irradiation,
it is interesting to note that our order-5 model is very similar to
the two-mode SH potential, as detailed in Appendix D: both
potentials include terms up to |∇4c|2, and in both cases the
signs of the coefficients of |∇nc|2 alternate from negative to
positive for n = 1, 2, 3, 4 (see Appendix D for details). Such
two-mode SH potentials have been employed recently for
PFC models, in part to provide more flexibility and accuracy
in generating crystalline phases with face-centered-cubic and
close-packed-hexagonal lattices [67,68]. Extending further
this comparison between the order-5 model and the two-mode
SH potential, we suggest that our order-n effective potentials
could be alternatively defined as multimodal SH potentials
with (n−1)/2 patterning modes.

Next, the present work suggests that, when investigating
experimentally compositional patterning, it would be useful
to determine whether the system is in a weak segregation or
a strong segregation regime. This would also help to deter-
mine whether experimental ballistic relocation distances can
be large enough to stabilize the strong segregation regime.
Existing data obtained from atom probe tomography point
to fairly diffuse interfaces, typically ≈1–2 nm wide, in the
compositional patterning regime for Fe-Cr [20–23], Cu-Fe
[69], and Cu-V [70]. These observations alone are, however,
not sufficient to conclude that these alloys were in the WSR,
since diffuse interfaces can be found in the SSR; see Fig. 11.
A conclusive test, however, is to determine the ratio of the
interfacial width to the precipitate radius at steady state as a
function of the forcing intensity, as shown in Fig. 11. This
sequence of steady states could, for instance, be obtained
by decreasing the irradiation temperature. In the WSR, this
ratio is expected to remain a constant, ∼0.5903 for a sine
wave, while in the SSR this ratio decreases continuously upon
approaching the γ1 boundary, where the ratio becomes zero in
MPS regime.

Lastly, we point to potential extensions of the present
work. In light of the recent steady-state phase diagram ob-
tained by Luneville et al. [37], it would be interesting to use
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order-n ECH models to study nonequiatomic compositions
and contrast the evolution of precipitate shapes in the WSR
and SSR regimes. Secondly, since deterministic evolution
equations were used in this work, spatial and temporal cor-
relation events in mixing events were not considered. These
correlations could, however, be introduced by treating forced
mixing events as a stochastic source term, similarly to what
Dubey and El-Azab did for capturing point defect production
by displacement cascades [71]. In fact, another significant ex-
tension would be to explicitly include the point defects created
by irradiation, as well as the microstructural defects that serve
as sinks for those point defects, e.g., grain boundaries. This
extension would make it possible to include in PF simulations
radiation-induced segregation and precipitation driven by the
kinetic coupling of chemical and defect fluxes to sinks [72].
This is of interest because systems driven by nonzero net
fluxes can undergo nonequilibrium phase transitions distinct
from those with zero net fluxes [73,74].

VI. CONCLUSION

In this paper, we studied macroscopic phase separation
(MPS) and compositional patterning (CP) in a binary alloy
subjected to irradiation where finite-range mixing is modeled
using a Gaussian distribution. Using an expansion and trun-
cation of this Gaussian distribution to order n, we introduced
a series of approximate models and were able to define exact
effective potentials for each order-n model. This is in con-
trast to past approaches that retained an exact expression for
their mixing function, but they could only obtain approximate
explicit expressions for the effective potential governing the
overall evolution of the alloy under irradiation. Interestingly,
our lowest-order effective free energy, the order-3 one, yields
a one-mode Swift-Hohenberg functional in the CP regime, in
agreement with recent results by Simeone et al. [31] after lin-
earization of the thermodynamic free-energy density. As the
irradiation forcing intensity is reduced, the coefficient of the
gradient square inhomogeneity term in this order-3 potential
changes sign, from negative to positive at the transition from
CP to MPS, and the effective free energy becomes an extended
Cahn-Hilliard functional. The order-3 effective potential thus
provides a unified description of the effective free energy
for the system across the MPS and CP regimes. Phase-field
simulations for equiatomic compositions in 2D systems yield
regular lamellar phases at steady state in the CP regime, as
expected. Simulations using the order-3 potential, however,
generate only sinewave-like concentration profiles, which are
characteristic of the weak segregation regime. Furthermore,
analysis of the convergence of these profiles as the order n
increases shows that the order-3 potential is only valid near the
onset of patterning, specifically near the critical point (γc, Rc)
of the steady-state phase diagram; see Fig. 10. Deeper into
the patterning, higher-order models are required, and near
the MPS-CP boundary, they produce square-wave-like pro-
files, characteristic of the strong segregation regime. Drawing
from the two-mode SH functionals developed for phase-field
crystal models, we showed that our order-n functionals are
analogous to multimodal SH functionals. A second key result
from this work concerns effective interfacial energies. Defin-
ing effective interfacial energies for systems in the CP steady

state requires a novel approach: In that regime, the interfacial
area is no longer an excess quantity as it becomes propor-
tional to the system’s volume, i.e., an extensive quantity, thus
precluding the use of the traditional approach employed for
systems where macroscopic phases coexist at thermodynamic
equilibrium. An alternative approach was introduced, defining
the effective interfacial energy in the CP regime as the partial
derivative of the effective free-energy density with respect to
the inverse of the pattern period. Using this approach, the
most stable lamellar steady state is one for which the effective
interfacial energy is zero. It will be interesting to extend the
present work to nonequiatomic compositions and 3D systems,
in order to further assess the influence of the order n on
steady-state microstructures and precipitate composition.
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APPENDIX A: BOUNDARY PARAMETERS BY LINEAR
STABILITY ANALYSIS

Derivations of important boundary parameters of steady-
state regimes in the dynamical phase diagram are presented
in this appendix. We use Eq. (21) in Sec. III A to derive
boundary parameters for the order-3 ECH model: γ linear

1 , the
boundary between MPS and CP regime, is corresponding to
dω
dk changing sign at k = 0, so

γ linear
1 = −6 f

′′

R2
.

γ linear
2 , the boundary between CP and SS, is determined by

dω
dk |k=kc = 0 and ω(kc) = 0,

γ linear
2 =

9κR4 + f
′′
R6 −

√
(9κR4 + f ′′R6)2 + 135κ2R8

− 5
24 R8

.

The onset of patterning (γc, Rc) is obtained by setting
γ linear

1 = γ linear
2 , so we have

γc = ( f
′′
)
2

2κ
, Rc = 2

√
3κ

− f ′′ .

In the patterning regime, the boundaries of the range of
wave vectors with positive growth rates (k1, k2) are the two
positive real roots of Eq. (21),

k1 =

√√√√−κeff
1 −

√(
κeff

1

)2 − 4κeff
2

∂2 f eff
bulk

∂c2

2κeff
2

,

k2 =

√√√√−κeff
1 +

√(
κeff

1

)2 − 4κeff
2

∂2 f eff
bulk

∂c2

2κeff
2

.

For the patterning regime away from the critical point, in
Sec. IV A, Eq. (3) is used to derive γ linear

2 of the full model:

γ linear
2−full model = 16κ2 + ( f ′′R2 )2

9
4
9κR4

.
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APPENDIX B: NUMERICAL METHODS

Numerical simulations of phase-field equations are ob-
tained via an open source, massive parallel finite-element
method (FEM) framework, MOOSE. The FEM scheme is
fully coupled and fully implicit featured with adaptive mesh-
ing and timing. For FEM discretization, the residual equation
of the partial differential equation and its variational Galerkin
weak form are constructed. ψm is used as the test function
for the weighted integral residual, and divergence theorem
is applied to lower the order of the derivatives in the usual
manner. Since in Eq. (10) there are many higher-order gra-
dient terms, to avoid the use of computationally expensive
higher-order basis functions for both trial and test functions,
we introduce a number of intermediate variables instead to
systematically represent these higher-order gradient terms.
This operation can significantly improve the efficiency of
solving convergence, but it does not impact the accuracy of
solution. Residual equations in a split weak form are (i stands
for the species of the system)

Rμi =
(

∂ci

∂t
, ψm

)
+ (Mi∇μi,∇ψm) − 〈Mi∇μi · −→n,ψm〉,

Rci =
((

∂ fbulk

∂ci
− μi

)
, ψm

)
+ (∇ci,∇(κiψm))

−〈∇ci · −→n, κiψm〉.
The (*,*) operator represents a volume integral with an inner
product, and the 〈∗, ∗〉 operator represents a surface integral
with an inner product. ci is the conserved variable and μi is
the chemical potential. For the periodic boundary condition,
boundary integral terms are neglected, so we omit the surface
integrals,

Rμi =
(

∂ci

∂t
, ψm

)
+ (Mi∇μi,∇ψm),

Rci =
((

∂ fbulk

∂ci
− μi

)
, ψm

)
+

((
κi − D2

Mi

)
∇ci,∇ψm

)
+

(
D1

Mi
ci − D1

2Mi
, ψm

)
− (∇α1st

i ,∇ψm
)
,

Rα1st
i

= (
α1st

i , ψm
) +

(
D3

Mi
∇ci,∇ψm

)
+ (∇α2nd

i ,∇ψm
)
,

Rα2nd
i

= (
α2nd

i , ψm
) +

(
D4

Mi
∇ci,∇ψm

)
+ (∇α3rd

i ,∇ψm
)
,

. . .

R
α

(n−3)th
i

= (
α

(n−3)th
i , ψm

) +
(

Dn−1

Mi
∇ci,∇ψm

)
+ (∇α

(n−2)th
i ,∇ψm

)
,

R
α

(n−2)th
i

= (
α

(n−2)th
i , ψm

) +
(

Dn

Mi
∇ci,∇ψm

)
,

μi = ∂ f (ci )

∂ci
− κ∇2ci + D1

2Mi
(2ci − 1) + D2

2Mi
∇2ci + ∇2α1st

i ,

α
(n−3)th
i = Dn−1

Mi
∇2ci + ∇2α

(n−2)th
i ,

α
(n−2)th
i = Dn

Mi
∇2ci.

α1st
i to α

(n−2)th
i are intermediate variables to split the higher-

order equations. First-order 2D Lagrange shape functions are
used for all variables, and volume integrals are discretized
by setting the reference element type as four-node quadri-
lateral in 2D (QUAD4). The interfacial thickness (2ξ ) is
resolved by more than 10 grid points (much finer than the
usual 2ξ = 6�x criterion), for a good balance between com-
putational efficiency and numerical accuracy. The method for
time integration is backward Euler. The solve type for the
nonlinear system is Newton’s method. The method carried
out to manipulate the preconditioning matrix is the addi-
tive Schwartz method (ASM), which is the only option that
works well with the split Cahn-Hilliard equations, and sub-
preconditioning is performed by using LU factorization. The
simulations are solved with a nonlinear relative tolerance of
10−8 and a nonlinear absolute tolerance of 10−9. Adaptive
mesh refinement and timing are implemented to accommodate
the large concentration variation across the interface and to re-
duce computational time. Parallelism by the message passing
interface (MPI) is applied to all simulations, and the average
degrees of freedom (DOFs) per core is targeted to be 20 000
for the best computational performance with various domain
sizes.

Note that the mixing coefficient Dn in Eq. (5) has a dif-
ferent form if the dimension of the problem changes. For
example, in two dimensions, the denominator becomes 4p p!,
and in one dimension it is 2p p!. We can express the forcing
parameters γ and R based on their relative distance from the
critical point, so that the steady-state phase diagram is not
affected by the dimension of the problem.

APPENDIX C: DERIVATION OF INTERFACIAL ENERGY
BY THE SHARP INTERFACE LIMIT OF THE PF MODEL

This appendix derives interfacial energy in an order-3 ECH
model from the sharp interface limit of PF models of one con-
served order parameter with notations used in Refs. [57,59].
Interested readers should to read the referenced papers for a
thorough understanding of the description of methods shown
below.

The free-energy functional of an order-3 ECH model is
expressed in the form

F =
∫

V

[
f (c) + κ1ε

2

2
|∇c|2 + κ2ε

4

2
|� c|2

]
dV,

where c is the fractional concentration of one component in a
binary system, f (c) is the bulk free energy, ε is a constant
that sets the scale of the interfacial energy, and κ1 and κ2

are coefficients of gradient and Laplacian terms. The outer
expansions of field variables c, chemical potential μ, and
diffusion flux J follow the treatment in Ref. [57], except no
subscripts are needed since there are only two components in
this system. A curvilinear coordinate (r,s) is used to describe
the physical interface. In the inner region, the derivatives
of all fields with respect to r (interface normal) are much
larger than the derivatives with respect to s (interface tangent)
when curvature vanishes, so a stretched variable z = r/ε is
introduced. The spatial and time derivatives are expressed in
their transformed form accordingly. One can then express the
solutions and fields of the inner and outer regions by their
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asymptotic series, and a tilde is used to denote the inner
expansions.

In the coarsening regime, when the driving force or the
interface velocity is small, the steady-state diffusion field is
allowed to form in front of the interface. The time derivative
operator ∂t can be replaced by a slow timescale, ∂t1, so the
outer equation is

ε∂t1c = −∇ · J, x in the outer region.

For the leading order O(1),

0 = −∇ · J0.

The leading-order terms of μ0 and c0 are close to equilib-
rium, so μ0 = μ0

A − μ0
B = 0 and c0 = c0

eq for x in the outer
region of the matrix and precipitate phases. For the next-to-
the-leading order, O(ε), we have

ε∂t1c0 = −ε∇ · J1,

where J1 = M0∇μ1 + M1∇μ0 = M0∇μ1 since μ0 is 0.
Therefore, the first-order terms in the bulk phases are in steady
state.

In the inner region, we expand the fields with t replaced by
t1 and we use κ as the mean curvature, so the Laplacian and
bi-Laplacian operators in curvilinear coordinates are

∇·∇ = 1

ε2
∂2

z + 1

ε
κ∂z + ∇2

s ,

∇4 = 1

ε4
∂4

z + 2

ε3
κ∂3

z − 1

ε2
κ2∂2

z + 1

ε
κ3∂z + ∇4

s ,

and

μ̃0 = f,c̃(c̃0) − κ1∂
2
z c̃0 + κ2∂

4
z c̃0,

μ̃1 = f,c̃c̃(c̃0)c̃1 − κ1∂
2
z c̃1 − κ1κ∂zc̃0 + κ2∂

4
z c̃1 + 2κ2κ∂3

z c̃0.

The inner equations can be written as

ε3∂t1c̃ − ε2∂t1r∂zc̃ = ∂z(M̃∂zμ̃) + εM̃κ∂zμ̃ + ε2∇s · (M̃∇sμ̃).

For the leading order O(1), we have ∂z(M̃∂zμ̃) = 0, which
yields μ̃0 = 0, so the same steady-state conditions are satis-
fied in the front as they are in the outer expansion, and μ0 = 0
applies everywhere in the domain. For the next-to-leading
order O(ε), recall that μ0 = 0, so we have ∂z(M̃0∂zμ̃1) = 0.
Clearly, μ1 is independent of z, which is the interface nor-
mal direction, so we have μ̃1 = A(s, t ). We can conclude, by
matching the outer and inner expansions at O(1)and O(ε), that
(i) μ0 = 0 everywhere in the domain (both inner and outer
regions) and (ii) μ̃1 = A(s, t ).

Knowing the relation between c̃0 and c0, and that c̃0 is the
equilibrium concentration at the planar interface so its first-,
second-, and higher-order derivatives at infinity have to be
zero, we apply the same projection method to μ̃1 to show∫ +∞

−∞
μ̃1∂zc̃0dz

=
∫ +∞

−∞
f,c̃c̃

(
c̃0

)
c̃1∂zc̃0dz −

∫ +∞

−∞
κ1∂

2
z c̃1∂zc̃0dz

−
∫ +∞

−∞
κ1κ

(
∂zc̃0

)2
dz +

∫ +∞

−∞
κ2∂

4
z c̃1∂zc̃0dz

+
∫ +∞

−∞
2κ2κ∂3

z c̃0∂zc̃0dz.

The last term can be replaced by

∫ +∞

−∞
2κ2κ∂3

z c̃0∂zc̃0dz

= 2κ2κ
(
∂2

z c̃0∂zc̃0
) |+∞

−∞ −
∫ +∞

−∞
2κ2κ

(
∂2

z c̃0
)2

dz

= −
∫ +∞

−∞
2κ2κ

(
∂2

z c̃0
)2

dz.

The summation of the other three κ-independent terms on
the right-hand side is zero when all orders of concentration
gradient terms at infinity are assumed to be zero,∫ +∞

−∞
f,c̃c̃(c̃0)c̃1∂zc̃0dz

=
∫ +∞

−∞

∂

∂z
[ f,c̃(c̃0)]c̃1dz

= f,c̃(c̃0)c̃1
∣∣+∞
−∞ −

∫ +∞

−∞
f,c̃(c̃0)∂zc̃1dz

= −
∫ +∞

−∞
f,c̃(c̃0)∂zc̃1dz, (C1)

−
∫ +∞

−∞
κ1∂

2
z c̃1∂zc̃0dz

= −
∫ +∞

−∞
κ1∂zc̃0

∂

∂z
(∂zc̃1)dz

= −κ1∂zc̃0∂zc̃1 |+∞
−∞ +

∫ +∞

−∞
κ1∂

2
z c̃0∂zc̃1dz

=
∫ +∞

−∞
κ1∂

2
z c̃0∂zc̃1dz, (C2)∫ +∞

−∞
κ2∂

4
z c̃1∂zc̃0dz

=
∫ +∞

−∞
κ2∂zc̃0

∂

∂z

(
∂3

z c̃1
)
dz

= κ2∂zc̃0∂3
z c̃1 |+∞

−∞ −
∫ +∞

−∞
κ2∂

3
z c̃1∂2

z c̃0dz

= −κ2∂
2
z c̃0∂2

z c̃1 |+∞
−∞ +

∫ +∞

−∞
κ2∂

2
z c̃1∂3

z c̃0dz

= κ2∂
3
z c̃0∂zc̃1 |+∞

−∞ −
∫ +∞

−∞
κ2∂zc̃1∂4

z c̃0dz

= −
∫ +∞

−∞
κ2∂zc̃1∂4

z c̃0dz. (C3)
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Eq. (C1) + Eq. (C2) + Eq.(C3)

=
∫ +∞

−∞

[− f,c̃(c̃0) + κ1∂
2
z c̃0 − κ2∂

4
z c̃0

]
∂zc̃1dz

=
∫ +∞

−∞
−μ̃0∂zc̃1dz = 0.

Therefore,∫ +∞

−∞
μ̃1∂zc̃0dz = μ̃1[c̃0(+∞) − c̃0(−∞)] = −σκ,

σ =
∫ +∞

−∞

[
κ1(∂zc̃0)2 + 2κ2

(
∂2

z c̃0
)2]

dz.

In the order-3 ECH model, for straight interfaces with
concentration variation along, for example, only the z
direction, the interfacial energy σ can be expressed as∫

z(κeff
1 |∇c|2 + 2κeff

2 |∇2c|2)dz. This corresponds to Eq. (24)
in the main text.

APPENDIX D: FREE-ENERGY FUNCTIONAL IN
ORDER-3 (-5) MODELS AND ONE- (TWO-)

MODE SWIFT-HOHENBERG MODELS

This Appendix describes similarities and differences be-
tween the order-3(-5) models and the one- (two-) mode
Swift-Hohenberg (SH) models.

1. Comparison between the order-3 model
and the one-mode SH model

The free-energy functional of the one-mode SH model is
given by [64]

F =
∫

V

{
φ

2

[
α + λ(q0

2 + ∇2)
2]

φ + g

4
φ4

}
dV,

where α, λ, and g are constants, q0 is the magnitude of the
critical wave vector, and φ is the field variable related to
the density field of the system. This free-energy functional
constitutes the one-mode SH equation, and it results in the
minimization of energy by the formation of periodic structures
with a critical wave vector. Its dimensionless form is

F =
∫

V

[
− (ε − 1)ψ2

2
+ ψ4

4
− |∇ψ |2 + 1

2

∣∣∇2ψ
∣∣2

]
dV.

Here ε is a reduced parameter and is equal to − α
λq0

4 , while

the field variable is ψ = φ
√

g
λq0

4 . For the order-3 model, in

order to compare with the one-mode SH model, a Landau
polynomial is used as the bulk free energy instead of the reg-
ular solution model. Therefore, the total effective free energy
of the order-3 model is

Feff =
∫

V

[
−Ac2 + Bc4 − D1

2M
c(1 − c) + κ1eff

2
|∇c|2

+ κ2eff

2
|∇2c|2

]
dV.

We now use a one-mode approximation as the composi-
tional profile to derive the analytical expression of free energy
as a function of wave vector k in patterning regimes of the two
models. In the patterning regime, we assume a 1D parametric
function c = c̄ + a sin(kx) as the local composition of B, a is
the amplitude, and c̄ is the nominal composition of the system.
We then derive the effective free energy per unit length feff (k)
and the minimum of feff (kc) at kc. The difference between
these two terms, in the one-mode SH model (k2

c = 1), is

� f (k) = f (k) − f (kc) = a2

4
(k2 − 1)2.

In the order-3 model,

� feff (k) = feff (k) − feff (kc) = κeff
2 a2

4

(
k2 − k2

c

)2
,

k2
c = − κeff

1

2κeff
2

.

Assuming amplitude a is independent of the wave vector
and remains a constant, they both show a parabolic relation
between free-energy density and k2. This expression corre-
sponds to Eq. (26) in the main text.

2. Comparison between the order-5 model
and the two-mode SH model

To improve the accuracy of solid-liquid interface proper-
ties obtained from quantitative PFC models, a two-mode SH
model was proposed, including a second critical wave vector
in addition to the primary one [75],

F =
∫

V

{
φ

2

{
α + λ(q0

2 + ∇2)
2
[(q1

2 + ∇2)
2 + r1]

}
φ + g

4
φ4

}
dV,

where q1 is the wave vector of the second-mode, and r1 is a constant. By varying r1, the relative amplitude between the primary
and secondary modes can be adjusted. The dimensionless two-mode SH model has a free-energy potential of the form

F =
∫

V

[
Aψ2

2
+ ψ4

2
− B|∇ψ |2 + C

2
|∇2ψ |2 − D

2
|∇3ψ |2 + 1

2
|∇4ψ |2

]
dV, (D1)

where A = −ε + R1 + Q1
4, B = R1 + Q1

2 + Q1
4, C = 1 + R1 + 4Q1

2 + Q1
4, D = 2 + 2Q1

2, ε = − α
λq0

8 , R1 = r1
q0

8 , and Q1 =
q1

q0
. R1 and Q1 give the freedom to change the relative amplitude and wave vector of the primary and secondary modes. For the

order-5 model, the effective potential is [see Eq. (13)]

Feff =
∫

V

[
f eff
bulk (c) + κeff

1

2
|∇c|2 + κeff

2

2
|∇2c|2 − D4

2M
|∇3c|2 + D5

2M
|∇4c|2

]
dV. (D2)
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Comparing Eqs. (D1) and (D2), it is noted that all coefficients of the compositional derivative terms in the two-mode SH
model and the order-5 model have the same signs (recall that κeff

1 < 0 in the patterning regime). A direct mapping of our order-5
model onto the two-mode SH model is, however, not possible. In the two-mode SH model, coefficients are dependent on the
relative amplitude and wavelength of the secondary and the primary modes, and such a constraint is not applied to the order-5
model. Furthermore, this later model uses more independent parameters than the two-mode SH model.
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