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Ab initio anharmonic thermodynamic properties of cubic CaSiO3 perovskite
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We present an ab initio study of the thermodynamic properties of cubic CaSiO3 perovskite (CaPv) over the
pressure and temperature range of the Earth’s lower mantle. We compute the anharmonic phonon dispersions
throughout the Brillouin zone by utilizing the phonon quasiparticle approach, which characterizes the intrinsic
temperature dependence of phonon frequencies and, in principle, captures full anharmonicity. Such temperature-
dependent phonon dispersions are used to calculate ab initio free energy in the thermodynamic limit (N → ∞)
within the framework of the phonon gas model. Accurate free energy calculations enable us to investigate cubic
CaPv’s thermodynamic properties, e.g., thermal expansivity, Grüneisen parameter, bulk modulus, heat capacity
and thermal equation of state, where anharmonic effects are demonstrated. The present methodology provides
an important theoretical approach for exploring phase boundaries, thermodynamic, and thermoelastic properties
of strongly anharmonic materials at high pressures and temperatures.
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I. INTRODUCTION

CaSiO3 perovskite (CaPv) is believed to be the third most
abundant mineral in the Earth’s lower mantle (LM), which
constitutes 7 vol % of a pyrolitic LM [1,2]. As opposed to
MgSiO3 perovskite (MgPv) and MgO periclase (Pc), the first
and second most abundant phases of the LM, of which ther-
modynamic [3,4] and thermoelastic [5,6] properties have been
systematically investigated at high pressures (P) and high
temperatures (T), CaPv’s thermal properties have not been
well characterized [7–10], mainly because of its strong an-
harmonicity. At low temperatures, e.g., T < 500 K [11,12],
CaPv adopts a variety of tetragonal or orthorhombic phases
[13]. At high temperatures, CaPv is dynamically stabilized
by anharmonic interactions, and a cubic structure develops
[11,12,14,15]. Although the exact P-T conditions under which
the phase transition to cubic CaPv happens are still under
debate [14,16], it is widely believed that under the LM con-
ditions, 23 < P < 135 GPa and 2000 < T < 4000 K [5,17],
the cubic phase with Pm3̄m space group is adopted [11,12].

Measurements of cubic CaPv’s thermodynamic and ther-
moelastic properties are challenging because experiments are
required to be performed at high P-T and cubic CaPv is un-
quenchable to ambient conditions [11]. Noguchi et al. [15]
and Sun et al. [18] measured P-V-T data of cubic CaPv up
to 150 GPa and 2600 K [18], but the compression curves
under high P-T conditions have relatively large uncertainties.
Recently, Gréaux et al. [19] and Thomson et al. [12] measured
compressional wave (vp) and shear wave (vs) velocities of
cubic CaPv up to 23 GPa and 1700 K [19], whereas their
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reported thermoelastic parameters under LM conditions are
based on extrapolations. Ab initio studies of cubic CaPv’s
thermodynamic and thermoelastic properties also encounter
difficulties. The quasiharmonic approximation (QHA), which
has been successfully applied to MgPv and Pc [3–6], is invalid
for cubic CaPv because of the presence of unstable phonon
normal modes with imaginary frequencies at all pressures us-
ing harmonic phonon calculations [7,11]. Kawai and Tsuchiya
[20,21] conducted ab initio molecular dynamics (MD) simula-
tions to study the thermodynamic and thermoelastic properties
of cubic CaPv. However, whether the thermodynamic prop-
erties [20] are fully converged is questionable due to the
finite-size effect inherent in the MD approach [11]. Recently,
Prentice et al. [22] applied the self-consistent vibrational field
(VSCF) method to investigate the anharmonic vibrational
properties of CaPv, and the cubic phase was confirmed at LM
conditions. A more in-depth and systematic investigation of
cubic CaPv’s thermal properties is required for a complete
understanding of the dynamic state of the deep Earth.

In this study, we report the anharmonic thermodynamic
properties of cubic CaPv at LM conditions by using the well-
established phonon quasiparticle approach [23]. The phonon
quasiparticle approach is a hybrid approach combining
ab initio lattice dynamics and MD simulations, which fully ac-
counts for anharmonic effects. In other words, it treats phonon
anharmonicity to all orders in principle. It has been success-
fully applied to strongly [11,24] and weakly [23] anharmonic
systems, metallic [24] and nonmetallic [11,23] anharmonic
systems, and used to compute anharmonic phonon dispersions
[11,23–25], anharmonic free energies [11,23], a premelt-
ing phase transition [24], and lattice thermal conductivities
[26,27]. Here the phonon quasiparticles of cubic CaPv are
extracted from mode-projected velocity autocorrelation func-
tion (VAF) obtained by ab initio MD simulations. Next, the
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phonon quasiparticle frequencies, known as renormalized fre-
quencies, are Fourier interpolated over the Brillouin zone
(BZ). Then the thermodynamic properties in the thermody-
namic limit (N → ∞) are obtained within the framework of
the phonon gas model (PGM) [28,29].

The PGM always serves as a paradigm in calculating the
thermodynamic properties of crystalline materials, which uses
the phonon spectrum to compute vibrational entropy, free
energy, and, thus, thermodynamic quantities. For weakly an-
harmonic systems, a commonly used simplification of the
PGM is the QHA, which neglects the intrinsic temperature
dependence of phonon frequencies and treats phonon frequen-
cies as explicitly volume dependent only. The QHA works
well for materials of this class because it accounts for the
extrinsic temperature dependence of the phonon frequen-
cies caused by volume change. The QHA fails in strongly
anharmonic systems, whereas the PGM in general still ap-
plies as long as the phonon quasiparticles are well defined,
i.e., with well-defined frequencies and lifetimes [30]. The
ab initio MD-based direct free energy method, e.g., ther-
modynamic integration (TI) [31], is another widely used
method in dealing with strong anharmonicity. However, to ap-
proach the thermodynamic limit, conducting TI using ab initio
MD with a sufficiently large supercell is beyond the current
computational capability. The VSCF method can investigate
the vibrational free energy of strongly anharmonic crystals
without conducting ab initio MD. Nevertheless, vibrational
calculations with a dense q mesh can still be expensive [22].
The advantage of the present PGM approach is that it uses the
phonon quasiparticle spectrum obtained on a sufficiently large
q mesh to compute well converged thermodynamic quantities
[11,23]. Furthermore, here we correct the total energy error
originating in the density functional theory (DFT) calculations
[32,33] by making reference to previously reported experi-
mental P-V-T data [15,19] of cubic CaPv.

II. METHOD

In the present approach, a phonon quasiparticle of normal
mode (q, s) is numerically defined by the VAF [11,23],

〈Vqs(0) · Vqs(t )〉 = lim
τ→∞

1

τ

∫ τ

0
V ∗

qs(t
′)Vqs(t

′ + t )dt ′, (1)

where Vqs(t ) = ∑N
i=1 V (t ) · eiq·ri · êqs is the (q, s)-mode-

projected velocity. q is the phonon wave vector, and s labels
the 3n phonon branches of an n-atom primitive cell. V (t ) =
V (

√
M1v1(t), . . . ,

√
MN vN (t)) is the mass-weighted velocity

with 3N components, where vi(t )(i = 1, . . . , N ) is the atomic
velocity produced by ab initio MD simulations of an N-atom
supercell, and Mi is the atomic mass of the ith atom in the
supercell. êqs is the harmonic phonon polarization vector of
mode (q, s), which is calculated by the density functional
perturbation theory (DFPT) [34]. For a well-defined phonon
quasiparticle, its power spectrum,

Gqs(ω) =
∣∣∣∣
∫ ∞

0
〈Vqs(0) · Vqs(t )〉eiωt dt

∣∣∣∣
2

, (2)

should have a Lorentzian-type line shape with a peak at ω̃qs

and a phonon linewidth of 1/(2τqs) [23,30], ω̃qs being the

(q, s) mode renormalized frequency and τqs being the lifetime.
Phonon lifetimes can be used to investigate the lattice thermal
conductivity [26,27]. Here we rely on the renormalized fre-
quencies to compute anharmonic thermodynamic properties.

As reported by the previous studies, the effective harmonic
dynamical matrix can be constructed as [11,23,24]

D̃(q) = [êq]�q[êq]†, (3)

where the diagonal matrix �q = diag[ω̃2
q1, ω̃

2
q2, . . . , ω̃

2
q3N ]

contains ω̃2
qs in the diagonal, and [êq] = [êq1, êq2, . . . , êq3N ]

is the matrix of harmonic eigenvectors. The effective har-
monic force constant matrix, �̃(r), can be obtained from the
Fourier transform of D̃(q), where the anharmonic interaction
is effectively captured. Therefore, ω̃q′s at any wave vector q′
in the BZ can be obtained by diagonalizing

D̃(q′) =
∑

r

�̃(r) · e−iq′·r, (4)

from which the anharmonic phonon dispersion and vibrational
density of states (VDOS) at finite temperatures are computed.

Here, ab initio MD simulations were carried out in the NVT
ensemble using the DFT-based Vienna ab initio simulation
package (VASP) [35] employing the local density approxima-
tion (LDA) and the projected-augmented wave method (PAW)
[36]. Cubic CaPv was simulated with a 2 × 2 × 2 (40 atoms)
supercell with adopting a shifted 2 × 2 × 2 k-mesh and a
kinetic energy cutoff of 550 eV. Our previous study has shown
that 2 × 2 × 2 supercell of CaPv is sufficient to converge an-
harmonic interaction and anharmonic phonon dispersion [11],
since anharmonic contributions of interatomic forces have
shorter ranges than the harmonic ones. MD simulations were
conducted on a series of volumes (V), 44.39, 40.26, 36.77,
34.34, and 32.49 Å3/primitive cell, corresponding to densities
(ρ), 4.35, 4.79, 5.25, 5.62, and 5.94 g/cm3, respectively. The
temperature ranging from 1500 to 4000 K was controlled by
Nosé thermostat [37]. Each simulation ran for over 60 ps with
a time step of 1 fs. Harmonic phonon normal modes were
calculated using DFPT [34] implemented in the VASP package.
Throughout the V, T range investigated, phonon quasiparti-
cles were well defined, and the cubic phase of CaPv was
confirmed.

III. RESULTS AND DISCUSSION

The renormalized phonon frequencies ω̃qs are first ex-
tracted from phonon quasiparticles sampled by the MD
simulations. In order to converge thermodynamic properties,
it is desirable to obtain ω̃qs on a much denser q mesh to
approximate the thermodynamic limit. Equation (4) enables
us to obtain ω̃qs at any q point throughout the BZ, hence
the anharmonic phonon dispersion and VDOS [11,23–25].
The obtained temperature-dependent phonon dispersions of
cubic CaPv at ρ = 5.25 g/cm3 are showcased in Fig. 1(a),
where the intrinsic temperature dependence of ω̃qs in the BZ is
clearly exhibited. The corresponding temperature-dependent
VDOS obtained on a 20 × 20 × 20 q mesh approximating the
thermodynamic limit are shown in Fig. 1(b). Except for the
acoustic branches centered at wave vector R( 1

2 , 1
2 , 1

2 ), which
only accounts for a small portion of the phonon dispersion,
frequencies of most phonon modes are weakly temperature
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FIG. 1. Anharmonic (a) phonon dispersions and (b) vibrational
density of states (VDOS) at a series of temperatures at constant
density.

dependent. This is counterintuitive since CaPv is strongly
anharmonic. The acoustic modes at R correspond to the soft
modes with imaginary frequencies from harmonic phonon
calculations. The coupling of the cubic phase stability with
the phonon concept’s validity has been carefully checked
in our previous study [11]. Once the cubic phase is stabi-
lized, and the phonon picture is valid, the frequencies of
most of the other phonon modes are not strongly temperature
dependent in the temperature range studied (1500 < T <

4000 K). ω̃qs of most phonon branches show nonmonotonic
temperature dependence, while only optical modes with ω̃qs

above ∼800 cm–1 display discernible frequency shift down
with increasing temperature. Nevertheless, such temperature
dependence is comparable to that of MgPv, which is weakly
anharmonic [23,26], at the same P-T conditions [27]. The
anharmonic phonon dispersions are further used to compute
vibrational entropy (S) and free energy (F) within the frame-
work of the PGM [28,29].

When using the temperature-dependent phonon disper-
sions to compute thermodynamic properties, the QHA free
energy formula is no longer valid. Nevertheless, the entropy
formula [11,23,24,30],

S(T ) = kB

∑
qs

[(nqs + 1) ln (nqs + 1) − nqslnnqs], (5)

where nqs = [exp(h̄ω̃qs(T )/kBT ) − 1]−1, is still applicable.
ω̃qs(T ) at arbitrary temperatures were obtained by fitting a
second-order polynomial in T to ω̃qs [23,24] calculated at

FIG. 2. (a) Vibrational entropy (S) vs T at a series of densities.
(b) Helmholtz free energy (F) vs V at a series of temperatures before
(dashed curves) and after (solid curves) DFT energy correction.

several temperatures and constant volume. The obtained S(T )
at different densities are shown in Fig. 2(a). The Helmholtz
free energy can be obtained by [24]

F (V, T ) = E (V, T0) − T0S(V, T0) −
∫ T

T0

S(T ′)dT ′, (6)

where the reference temperature T0 = 1500 K, and E (V, T0)
is the time-averaged internal energy obtained from the MD
simulation at T0. The obtained F (V ) at different temperatures
are shown as dashed curves in Fig. 2(b). The present PGM
approach relying on renormalized phonon frequencies to com-
pute vibrational entropy, free energy, and thermodynamic
quantities overcomes the deficiencies of QHA in dealing with
strongly anharmonic materials in two aspects. First, the intrin-
sic anharmonic effects arise from phonon-phonon interaction,
and the phonon frequency is explicitly temperature dependent
instead of implicitly dependent on volume only. Second, the
crystal structure is stabilized by anharmonic interactions only
at high temperatures while being dynamically unstable at
low temperatures. Our previous studies have shown that the
present PGM approach gives consistent anharmonic entropy
with that provided by TI using the same supercell [11,23].
Besides, by Fourier interpolating the renormalized phonon
frequencies over the BZ, the PGM also overcomes the finite-
size effect inherent in TI [11,23], the simulation cell size of
which is limited by the computational capability of ab initio
MD. The difference between well converged free energy in
the thermodynamic limit and the one obtained from a finite
size supercell is significant for determining phase boundaries
[23,24].

Cubic CaPv’s isothermal equations of state (EOS) are
computed by fitting the F (V, T ) to a third-order finite strain
expansion at each temperature. For practical applications of
these results to Earth’s interior modeling, errors in the total
energy originating in the exchange-correlation functional
used, the LDA, and possibly also in the PAWs adopted are
undesirable. Here we introduce an additional correction to
F (V, T ) to bring the calculated EOS into full agreement with
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experimentally measured high-temperature EOSs
[12,15,18,19]. Anharmonicity, in principle, is adequately
addressed by the quasiparticle approach. To obtain theoretical
isothermal compression curves in good agreement with
experiments, it is desirable to provide proper constraints
at both low and high pressures. Here we adopted Gréaux
et al.’s [19] and Noguchi et al.’s [15] experimental P-V-T
data for cubic CaPv to impose such constraints at low
and high pressures, respectively. As for other recently
reported experimental results, Thomson et al. [12] conducted
measurements up to ∼16 GPa and therefore provides the same
constraint of the compression curve as that by Gréaux et al.
[19] at low pressures. Sun et al.’s [18] and Noguchi et al.’s
[15] measurements have relatively significant uncertainties
in pressure. Noguchi et al. [15] performed both laser heating
and external heating diamond-anvil-cell (DAC) experiments,
and their data are consistent with Gréaux et al.’s [19] data
obtained in multianvil. The experimental data by Sun et al.
[18] were obtained using a laser-heated DAC, while multianvil
and resistance-heated DAC should have better temperature
control. Therefore, Sun et al.’s [18] measurements were
not used in the energy correction procedure. The reference
temperature Tref chosen to make the correction was 1600 K
since experimental P-V data is available near this temperature.
Noguchi et al.’s measurements were conducted at ∼1600 K
[15] and Gréaux et al.’s measurements at ∼1500 and ∼1700 K
[19]. The calculated compression curve was corrected
by adopting the generalized Kunc-Syassen scheme (KSr)
[32,33],

�V (P) = V exp
0

V DFT
0

V

(
KDFT

0

Kexp
0

P, K ′
exp

)
− VDFT(P), (7)

where V exp
0 , Kexp

0 , and K ′
exp are parameters obtained from

measurements at Tref , while V DFT
0 , KDFT

0 , and K ′
DFT are pa-

rameters obtained from F (V, T ) at the same Tref . V0, K0, and
K ′ are isothermal EOS parameters, i.e., equilibrium volume,
bulk modulus, and pressure derivative of the bulk modulus,
respectively, obtained at Tref . �V (P) can then be easily in-
verted to give �P(V ). In this way, the correction to F (V, T )
at Tref can be obtained as �F (V ) = ∫

�P(V )dV [33]. Note
that the choice of the integral lower bound is not unique
and can shift the energy value. However, this energy shift
does not change any thermodynamic quantities since they are
obtained by taking free energy derivatives. Only how energy
varies as a function of temperature and volume matters in
this study. Once the F (V ) was corrected at Tref , the same
correction �F (V ) was then applied to other temperatures,
i.e., 1500 K < T < 4000 K. The corrected F (V ) at different
temperatures are shown as solid curves in Fig. 2(b). Note
that the temperature-independent energy correction is made
only to the DFT energy, while the temperature-dependent
vibrational energies, including anharmonicity, should be ad-
equately addressed by the phonon quasiparticle approach
combined with the PGM. In this study, thermodynamic quan-
tities obtained before (dashed curves) and after (solid curves)
adding the correction term are both given. By fitting the cor-
rected F (V, T ) to a third-order finite strain expansion at each
temperature, the resulting pressure-volume EOS isotherms
are shown as solid curves in Fig. 3, along with uncorrected

FIG. 3. Isothermal third-order finite strain EOS at a series of
temperatures before (dashed curves) and after (solid curves) DFT en-
ergy correction, compared with experimental measurements [15,19].
Error bars show the experimental uncertainties.

ones shown as dashed curves. The corrected EOS are in
good agreement with measured data within experimental un-
certainties. At T0 = 1500 K, the EOS parameters obtained
are V0 = 46.39 Å3/primitive cell, KT 0 = 264 GPa, and K ′

T 0 =
3.1, where V0 is the equilibrium volume, KT 0 is the isothermal
bulk modulus at V0, and K ′

T 0 is the pressure derivative of the
isothermal bulk modulus at V0, respectively.

With V (P, T ) and P(V, T ) obtained, cubic CaPv’s thermal
expansivity (α) and isothermal bulk modulus (KT ) are readily
calculated as

α = 1

V

(
∂V

∂T

)
P

, (8)

and

KT = −V

(
∂P

∂V

)
T

. (9)

The obtained α(T ) and KT (T ) at a series of LM pressures
are displayed in Figs. 4(a) and 4(b), respectively. Compared
with α of MgPv [3] and Pc [4] obtained using the QHA, the in-
clusion of intrinsic anharmonic effects for cubic CaPv gives a
slow and approximately linear temperature dependence of α at
low pressures [4]. With increasing pressure, α decreases, and
the effects of temperature become less and less pronounced,
resulting essentially in temperature-independent α at constant
pressure. The α by Kawai and Tsuchiya 2014 [20] is also
shown for comparison. Compared with our results before EOS
correction, their α has a rather rapid temperature dependence
and is larger than ours at low pressures and high temperatures.
The overestimation of α, especially at low pressures and high
temperatures, is an indication of the inadequacy of the QHA
[4,38]. Hence it is likely also a hint of not fully accounting for
anharmonic effects in the work by Kawai and Tsuchiya 2014
[20]. Apart from the anharmonic effects, the EOS correction
also contributes to the discrepancy in α between the present
study and that of Kawai and Tsuchiya in 2014 [20].

The thermodynamic Grüneisen parameter (γ ) is a very
important quantity often used to quantify the relationship
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FIG. 4. (a) Thermal expansivity (α) and (b) isothermal bulk mod-
ulus (KT ) vs T at a series of pressures before (dashed curves) and after
(solid curves) DFT energy correction. Dash-dotted curves are results
from a previous study [20].

between thermal and elastic properties. It is defined as

γ = V αKT

CV
, (10)

where CV is the isochoric heat capacity. It is also a useful
indicator of the importance of anharmonicity, increasing with
the latter [4]. The calculated γ (T ) at a series of pressures are
shown in Fig. 5. Similar to α, cubic CaPv’s γ is nearly inde-
pendent of temperature at all LM pressures. In some cases,
γ of CaPv slowly decreases with temperature, as opposed
to the monotonically increasing behavior reported by Kawai
and Tsuchiya 2014 [20], and those of MgPv [3] and Pc [4]
obtained by QHA. Unlike α, the discrepancy in γ between
our study and Kawai and Tsuchiya’s [20] originates mainly in
whether anharmonicity is being fully accounted for. The EOS
correction plays a minor role. The volume dependence of γ is
often expressed by a parameter, q = (∂ ln γ /∂ ln V )T . At P =
20 GPa and T = 1500 K, we find q = 0.80. At 20 GPa and
with increasing temperature, q decreases to 0.38 at 4000 K.
At 1500 K, with increasing pressure, q decreases to −0.16 at
140 GPa.

FIG. 5. Thermodynamic Grüneisen parameter (γ ) vs T at a series
of pressures before (dashed curves) and after (solid curves) DFT
energy correction. Dash-dotted curves are results from a previous
study [20].

CV of cubic CaPv is calculated from temperature-
dependent anharmonic phonon dispersions by

CV = T

(
∂S

∂T

)
V

(11)

within the PGM. Figure 6(a) compares the CV calculated
this way accounting for full anharmonicity, with that derived
from temperature-independent anharmonic phonon dispersion
obtained only at the reference temperature T0 = 1500 K. With
increasing temperature, the latter CV converges to the Dulong-
Petit classical limit 3nkB, which is also the high-temperature
limit within the Debye model [39] for harmonic crystal
with temperature-independent phonon frequencies, while the
CV obtained with temperature-dependent phonon spectra ac-
counting for full anharmonicity can be higher than such
classical limit at high temperatures [40,41] [see the solid black
curve in Fig. 6(a)]. The anharmonic contribution to CaPv’s
CV at constant volume increases nearly linearly with tempera-
ture [40]. Hence, CV is another important and straightforward
indicator of anharmonic effects inherent in the phonon fre-
quencies. The isobaric heat capacity (CP) is given by

CP = CV (1 + γαT ), (12)

the temperature and pressure dependence of which are sum-
marized in Fig. 6(b). CP is valuable for experimentally
determining CaPv’s lattice thermal conductivity, κ = DρCP,
where D is the measured thermal diffusivity.

The adiabatic bulk modulus (KS) is related to the isother-
mal one (KT ) by

KS = KT (1 + γαT ). (13)

The obtained KS (T ) at different pressures are displayed
in Fig. 7(a), compared with a previous study by Kawai and
Tsuchiya [20]. At all pressures, KS is nearly temperature inde-
pendent and slightly decreases with temperature. The KS (P)
along several isotherms are shown in Fig. 7(b), compared
with previous studies by Kawai and Tsuchiya [21] and Thom-
son et al. [12]. Thomson et al. conducted measurements for
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FIG. 6. (a) Isochoric heat capacity (CV ) vs T at constant den-
sity. Solid black curve was calculated from temperature-dependent
anharmonic VDOS, and solid blue curve was calculated from
temperature-independent anharmonic VDOS obtained only at the
reference temperature T0 = 1500 K. Red dashed line labels the clas-
sical limit 3nkB. (b) Isobaric heat capacity (CP) vs T at a series of
pressures before (dashed curves) and after (solid curves) DFT energy
correction. Dash-dotted curves are results from a previous study [20].

cubic CaPv’s vp and vs in a narrow pressure range, i.e., up
to ∼16 GPa, and extrapolated its thermoelastic properties
to LM conditions using literature P-V-T data [12]. The dif-
ferent experimental literature data used in the present study
[15,19] and in Thomson et al. [12,15,18,42,43] results in a
discrepancy in the pressure dependence of KS . Besides, the
present study makes a DFT energy correction with reference
to the literature data at Tref = 1600 K, while anharmonicity is
adequately addressed by the phonon quasiparticle approach
at higher temperatures. Note that Kawai and Tsuchiya [20]
obtained KS in the thermodynamic way via Eq. (13), while
Kawai and Tsuchiya [21] obtained KS by calculating the ther-
moelastic parameters, which slightly differs from the former.
The discrepancy in KS between our study and Kawai and
Tsuchiya’s [20] results from the lack of EOS correction us-
ing experimental P-V-T data by them and the accumulated
differences in α and γ accounting for anharmonicity. As for
Kawai and Tsuchiya (2015), our calculated KS before EOS
correction agrees with their results relatively well, meaning

FIG. 7. (a) Adiabatic bulk modulus (KS) vs T at a series of pres-
sures before (dashed curves) and after (solid curves) DFT energy
correction. (b) KS vs P along several isotherms. Dash-dotted and
dash-dot-dotted curves are results from previous studies [12,20,21].

the anharmonic effects on KS are properly addressed by Kawai
and Tsuchiya [21]. The discrepancy between our corrected
results and theirs originates in our EOS correction process.

The Mie-Grüneisen EOS [44,45] is a commonly used
relation to determine the high-temperature pressure in shock-
compressed solids. It can be described as

P(V, T ) = P0(V ) + Pth(V, T ), (14)

where P0 is the pressure at the reference temperature T0, and
Pth is the thermal pressure. In principle, P0 is well described
by the third-order Birch-Murnaghan EOS,

P0(V ) = 3

2
KT 0

[(
V

V0

)− 7
3

−
(

V

V0

)− 5
3

]

×
{

1 + 3

4
(K ′

T 0 − 4)

[(
V

V0

)− 2
3

− 1

]}
. (15)

Pth is expressed by the difference of thermal energy Eth be-
tween T and T0,

Pth(V, T ) = γmg(V )

V
[Eth(V, T ) − Eth(V, T0)], (16)
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TABLE I. Mie-Grüneisen EOS parameters of this study compared with previous studies [12,15,18,20,42,43].

This study Wang et al. Shim and Duffy Noguchi et al. Kawai and Tsuchiya Sun et al. Thomson et al.

T0 (K) 1500 300 300 700 1000 300 300
V0 (Å3) 46.39 45.58 45.58 46.5 46.17 45.4 45.57
KT 0 (GPa) 264 232 236 207 203.5 249 248
K ′

T 0 3.1 4.8 3.9 4 4.76 4 3.6
θ0 (K) 815 1100 1000 1300 1100 1000 771
γmg0 1.49 1.7 1.92 2.7 1.576 1.8 1.67
qmg 0.68 1.0 0.6 1.2 0.96 1.1 1.1

where γmg is the Mie-Grüneisen EOS Grüneisen parameter.
Eth is related to the Debye temperature θ ,

Eth(V, T ) = 9nRT

(
θ (V )

T

)−3 ∫ θ (V )
T

0

x3

ex − 1
dx, (17)

where n is the number of atoms per formula unit, and R is the
gas constant. γmg(V ) is expressed as

γmg(V ) = γmg0

(
V

V0

)qmg

, (18)

where qmg is a volume-independent parameter. θ (V ) is ex-
pressed as

θ (V ) = θ0 exp

(
−γmg − γmg0

qmg

)
, (19)

where γmg0 and θ0 are the Mie-Grüneisen EOS Grüneisen
parameter and Debye temperature at (V0, T0), respectively.

Here we chose T0 = 1500 K and adopted the obtained
isothermal EOS parameters, V0, KT 0, and K ′

T 0. Then we
fit the calculated P-V-T data at higher temperatures to the
Mie-Grüneisen EOS relation to obtain the remaining EOS
parameters θ0, γmg0, and qmg. We found γmg0 and qmg to be
insensitive to the variation of θ0, which is consistent with
previous reports [15,18]. Also, it is a common practice to fix
θ0 [18,20,42,43], and fit for γmg0 and qmg. Therefore, we first
evaluated θ0 from the Debye model [39,46],

θ = h

kB

(
3nNAρ

4πM

)1/3

vm, (20)

where h, NA, and M are the Plank constant, Avogadro number,
and molecular mass per formula unit. vm is the average wave
velocity integrated over several crystal directions [46],

vm =
[

1

3

(
1

v3
p

+ 2

v3
s

)]−1/3

. (21)

Here we adopted vp = 9.28 km/s and vs = 5.17 km/s of
cubic CaPv at 0 GPa and 1500 K from Gréaux et al. [19].
The resulting θ0 is 815 K. Finally, by fixing θ0 and allow-
ing γmg0 and qmg to vary, we obtained the fitting parameters
γmg0 = 1.49, and qmg = 0.68. The obtained Mie-Grüneisen
EOS parameters perfectly describe the calculated P-V-T data
shown in Fig. 3, which are summarized in Table I and com-
pared with several previous studies [12,15,18,20,42,43]. We
did not express the Mie-Grüneisen EOS at low reference
temperatures, e.g., 300 K, for two reasons. First, cubic CaPv
is unquenchable to ambient conditions and unstable at low

temperatures. Second, anharmonicity addressed by phonon
quasiparticles cannot be extrapolated to low temperatures at
which quasiparticles are not well-defined and the stable struc-
ture is different.

An interesting fact to note is that the thermodynamic
Grüneisen parameter γ , defined by Eq. (10) and displayed
in Fig. 5, differs from the Mie-Grüneisen EOS Grüneisen
parameter γmg. For example, at 1500 K and 30 GPa, our cal-
culated γ = 1.48, while γmg = 1.40. At 1500 K and 140 GPa,
γ = 1.24, while γmg = 1.20. The two quantities coincide with
each other [44,45] when satisfying three criteria. First, the
system is within the framework of QHA, so that γ can be
approximated by γ̄ [44,45],

γ̄ =
∑

i γiCV i

CV
, (22)

where CV i is the mode isochoric heat capacity, and γi =
−(∂ ln ωi/∂ ln V ) is the mode Grüneisen parameter. Mean-
while, γmg is associated with γi [44,45],

γmg =
∑

i γiEth i

Eth
, (23)

where Eth i is the mode thermal energy. Second, by assuming
all γi are equal to each other [45], γi is factored out of Eq. (22)
and (23), in which way γ = γ̄ = γmg. However, realistically,
γi are not equal. Therefore third, only at sufficiently high tem-
perature, e.g., all CV i are equal and all Eth i are equal, γmg is an
approximation to γ̄ [45]. Here for cubic CaPv, none of the cri-
teria is satisfied, resulting in a difference between γ and γmg.

IV. CONCLUSIONS

In summary, we have computed the temperature-dependent
anharmonic phonon dispersions of cubic CaPv throughout
the Earth’s lower mantle conditions using the phonon
quasiparticle approach. Anharmonic phonon dispersions with
stable phonons enabled us to evaluate the ab initio free energy
F (V, T ) in the thermodynamic limit (N → ∞) [11,23,24]
within the phonon gas model [28,29]. DFT energy errors were
corrected by carefully combing [32,33] calculated F (V, T )
and pressure, P(V, T ), with experimental P-V-T data [15,19].
The corrected F (V, T ) was used to investigate the cubic
CaPv’s thermal equation of state (EOS) and several thermo-
dynamic quantities of interest. The calculated thermal expan-
sivity and thermodynamic Grüneisen parameter show nearly
temperature-independent behavior, which is a sign of the
importance of anharmonic effects [4]. The intrinsic
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temperature dependence of phonon frequencies caused
by phonon-phonon interaction leads to a discernibly larger
isochoric heat capacity beyond the classical limit at high
temperatures [40,41]. The calculated P-V-T data are also fit to
the Mie-Grüneisen EOS. The obtained Mie-Grüneisen EOS
Grüneisen parameter differs [44,45] from the thermodynamic
Grüneisen parameter, which is, in part, also caused by
anharmonicity. The present approach for accurate free energy
calculations can be applied to investigate phase boundaries
[24] and thermodynamic and thermoelastic properties of
other strongly anharmonic systems at high pressures and
temperatures.
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