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We investigate the normal-mode spectrum of a trapped ion chain at the symmetry-breaking linear to zigzag
transition and at finite temperatures. For this purpose, we modulate the amplitude of the Doppler cooling laser to
excite and measure mode oscillations. The expected mode softening at the critical point, a signature of the
second-order transition, is not observed. Numerical simulations show that this is mainly due to the finite
temperature of the chain. Inspection of the trajectories suggest that the thermal shifts of the normal-mode
spectrum can be understood by the ions collectively jumping between the two ground-state configurations of
the symmetry-broken phase. We develop an effective analytical model, which allows us to reproduce the low-
frequency spectrum as a function of the temperature and close to the transition point. In this model, the frequency
shift of the soft mode is due to the anharmonic coupling with the high-frequency modes of the spectrum, acting
as an averaged effective thermal environment. Our study could prove important for implementing ground-state

laser cooling close to the critical point.
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I. INTRODUCTION

Ion Coulomb crystals are an unusual form of condensed
matter, where crystalline order emerges from the interplay
between Coulomb repulsion and the external trapping poten-
tial, while the temperature is controlled by means of lasers
[1]. These properties make them versatile and controllable
systems [1,2], which are among the most prominent platforms
for quantum computation [3—10] and for the simulation of the
equilibrium and out-of-equilibrium dynamics of many-body
systems [11-23].

Amongst others, the Kibble-Zurek mechanism [24-26]
and creation of topological defects have been demonstrated
[27-30]. Two widely discussed transitions are the linear to
zigzag [31-34] and the pinning to sliding (Aubry) transi-
tion [35-37]. These were shown to be second-order phase
transitions [33,38] that exhibit a soft mode with vanishing
frequency at a critical point. The system, however, is criti-
cal solely at zero temperature. Therefore, the observation of
critical behavior requires one to characterize and understand
finite temperature effects at the transition, such as the size
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of the crossover region due to temperature and how thermal
excitations modify the normal mode spectrum.

The frequency spectrum at zero temperature is well de-
scribed by the harmonic crystal approximation. Deviations
to this analytical solution and, in particular, finite frequen-
cies close to the critical point have been observed for the
soft mode of the Aubry-type transition in trapped ion chains,
at a temperature of around 1 mK [12]. Here, we focus on
the experimentally more accessible linear to zigzag tran-
sition and investigate the coupling of the soft mode to
the thermal phonon environment. We develop a theoretical
model that allows one to reproduce the presented spectro-
scopic measurements by means of a harmonic chain, whose
normal-mode spectrum at low frequencies results from the
temperature-dependent coupling with vibrational modes at
high frequencies. In this sense, the high-frequency modes can
be considered a thermal phonon environment. We discuss this
result in connection to earlier works [39,40] that described
finite temperature effects in terms of an effective shift of the
transition point. Our findings deepen the understanding of the
complex dynamics of ion Coulomb crystals. They could prove
important, for instance, for laser cooling the linear ion chain
to the ground state in the vicinity of the transition.

This paper is organized as follows: In Sec. II, we briefly
review the linear to zigzag transition. In Sec. III, we present
our experimental methods and results of vibrational mode
measurements, using resonant light force modulation. Sub-
sequently, in Sec. IV we compare our findings to molecular
dynamics simulations. In Sec. V, we discuss a simplified
analytical model which allows one to gain insight into the
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FIG. 1. (a) Experimental pictures of the linear chain (top) and of the zigzag configuration (bottom). The crystals are formed by 30 laser-
cooled Yb" ions in a linear Paul trap. The images were taken under an angle of 45° to the crystal plane and focused on the bottom row of
the zigzag crystal. The rightmost ion for the linear chain is out of view. (b) Normal modes as a function of the aspect ratio « and in the
vicinity of the linear to zigzag transition at o, &~ 12.0 for N = 30. The modes are evaluated in the theoretical limit 7 = 0. For & < «, the ions
form a zigzag structure, for « > o, a linear chain. The vanishing of the zigzag mode frequency at ¢, signals the phase transition (PT) point.
The notation (n, p) indicates the number of axial and transverse nodal points of the corresponding mode vector. (c) Normal-mode vector for
the breathing and the zigzag mode below [above] the phase transition with nodal points (3,N-3) [(1,0)] and (1,N-1) [(0,N-1)], respectively.
PT indicates the phase transition. The third direction y is not shown, as it has zero amplitudes for all ions in these modes. Here, the axial
trapping frequency is in the range of w, =~ 27 x (20 — 35) kHz. The transverse trapping frequency is chosen such that « varies in the interval

[11.0,12.5].

temperature dependence of the spectroscopic measurements.
In Sec. VI, the conclusions are drawn. The Appendices
provide supplementary material to the studies presented in
Secs. IV and V.

II. THE LINEAR-ZIGZAG TRANSITION

We consider N ions with charge e and mass m, which
are confined by a linear Paul trap. The trap potential is de-
scribed in ponderomotive approximation by three trapping
frequencies w;, w,, and wy. The total potential energy V is the
sum of the trap confinement and of the unscreened Coulomb
interaction between the ions,
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where r; = (x;,v;,z))7 denotes the position of the ion i
(i=1,...,N) and gy is the vacuum permittivity. For later
convenience, we introduce the vector u = (x1, X2, ..., Xy,
V1o V2s oo s IN> 215 229« - - 5 zv)T, which gives the configuration
of the crystal.

At sufficiently low temperature, the ions localize at the
equilibrium positions u(0) of the potential V, for which the

equations dV/du; = 0V hold. In this configuration, the dy-
namics of the chain is characterized by the matrix K’, with
elements

!

0%V
Y 8uiuj u(0) '

(@)

For stable equilibrium, K’ has finite and positive eigenvalues.
In the rest of this paper, we choose w, < w; < wy, focusing
particularly on the aspect ratio ¢ = w,/w, for which the ions
can either form a one-dimensional crystal along the z axis, the
linear chain, or form a two-dimensional crystal in the form of
a zigzag configuration on the x — z plane with two degenerate
ground states [41,42].

Figure 1(a) displays an experimental photo of a linear and
of a zigzag chain of 30 ions. The two structures are separated
by the critical value of the aspect ratio o, & 12. A numerical
estimate of the scaling of the transition point with the num-
ber of ions gives o (N) ~ 0.556N%915 | see Refs. [32,43,44],
which gives an approximate location of the transition point
[31]. The shift of the transition point due to quantum fluctua-
tions has been determined in Refs. [45,46].

The linear to zigzag instability is a continuous phase tran-
sition in the thermodynamic limit, corresponding to letting
N — o0 and to rescaling the trap frequencies with N to keep
the critical aspect ratio ¢, constant [33,47]. It is associated
with breaking of reflection symmetry about the z axis (for
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w, = wy, the broken symmetry is rotational and the tran-
sition is characterized by a Goldstone mode) [33]. As for
ferromagnetism in one dimension, these properties are strictly
valid in the limit of T = 0, while at finite temperature the tran-
sition becomes a crossover. Let us now make our statement
more precise. In our case, where laser cooling of the chain
can be modeled by an effective thermal reservoir [48], one
can use a canonical ensemble to model the properties at the
steady state. A phase transition, like the linear-zigzag struc-
tural instability, is then identified in the thermodynamic limit
by discontinuities in the derivatives of the free energy. The
linear-zigzag instability can be mapped to the Ising model for
ferromagnetism, where the phase transition is present only at
zero temperature and is a quantum phase transition [33,49,50].
At finite but low temperatures, when kp7T is smaller than
the gap between the ground and the first excited state of the
quantum model, the properties are universal [49]. At higher
temperatures, such as the ones we consider in this paper,
the transition becomes nonuniversal and abrupt changes and
power-law scaling characteristics of a phase transition are
replaced by a smooth behavior which we here denote by
crossover (and shall not be confused with the crossover due
to finite-size effects) [50].

To understand the effect of temperatures on the vibrational
spectrum across the linear to zigzag transition and in a finite
chain, we first discuss the normal-mode spectrum at 7 = 0.
The normal-mode spectrum is determined by assuming that
the ion displacements due to thermal noise are small in com-
parison to the equilibrium ion distances. The normal-mode
frequencies are related to the eigenvalues A; of the matrix
K’ by the relation w; = /A;/m (j =1,...,3N). The cor-
responding mode vectors are given by the columns of the
dynamical matrix A;; that diagonalizes K’ and the mode am-
plitudes are denoted as ®;. We use the notation (n, p) to
identify the mode vectors by the number of nodal points
(phase flips between ions) along the axial (n) and transverse
direction (p).! For example, the three lowest axial modes in
the linear chain are denoted by (0,0), (1,0), and (2,0), while
the lowest three transverse modes are (0, N-1), (0, N-2), (0,
N-3). The lowest normal mode frequencies for N = 30 are
displayed in Fig. 1(b) as a function of the aspect ratio « across
the linear to zigzag transition.

At the transition point, the frequency of one normal mode
vanishes. In the linear chain, this mode is the zigzag mode and
has a purely transverse oscillation with (0,N-1) nodal points,
see Fig. 1(c). In the thermodynamic limit, the zigzag mode of
the linear chain is the soft mode of the phase transition [33]. It
is interesting to analyze the property of the eigenmode at low-
est frequency as a function of the aspect ratio «. While in the
linear chain (@ > «,) it corresponds to the zigzag mode, in the
symmetry-broken (zigzag) phase at o < «,, the eigenmode
at lowest frequency gains an axial nodal point and becomes
the new breathing mode (1,N-1) of the zigzag configuration.
The axial breathing mode (1,0) of the linear chain, instead,

'This is not an unique identification. In fact, due to the finite
size some modes have the same number of nodal points. A unique
identification is achieved, for instance, by also specifying the mode
frequency.

gains two axial nodes, as well as a transverse zigzag pattern to
become the (3,N-3) mode.

In the following sections, we will denote the linear chain
by 1D phase and the zigzag crystal by 2D phase. We remark
that the term zigzag mode refers to the mode with (0, N-1)
nodal points in the 1D phase and (1, N-1) nodal points in the
symmetry-broken, 2D phase. Moreover, the breathing mode is
the mode with (1,0) nodal points in the 1D phase and (3, N-3)
nodal points in the 2D phase.

In the rest of this paper, we analyze how the normal mode
spectroscopy at the structural transition is modified at finite
temperatures.

III. MEASUREMENT OF VIBRATIONAL MODES

In this section, we describe our experimental method for
measuring vibrational mode frequencies that makes use of a
single laser beam with frequency near resonant to the Doppler
cooling transition. We then present and discuss our measure-
ments of the lowest axial modes near the linear to zigzag
transition. This method was originally introduced in Ref. [12].

A. Setup

To have a well-defined ordered structure, we trap N = 30
2Yb* jons in a linear Paul trap with high control of the
electrical fields [51,52]. The axial trapping frequency is in the
range of w, ~ 2w x (20 — 35)kHz. The transverse trapping
frequency is in the range of w, =~ 27w x (220 — 440) kHz,
depending on the chosen trapping ratio «. All ions are illumi-
nated by a linearly polarized laser with a central wavelength
of 369.5 nm addressing the 2S;/» <> Pj, transition in Yb"
and cooling the ions close to the Doppler cooling temperature
of Tp = 0.5 mK. As shown in Fig. 2, the laser beam forms
an angle of about & = 25° with the axial direction of the ion
crystal and an angle of about ¢ = 45° with the transverse
direction. We denote its wave vector as k;, which we use in
the subsequent text to identify the laser beam itself. The beam
has an elliptic shape with waists of approximately 2.6 mm in
the horizontal and 80 pm in the vertical direction, resulting in
an almost uniform illumination of a 400 um times 20 ©m ion
crystal in the z-x plane. Typical laser powers in the subsequent
measurements are P = 1 mW, corresponding to a saturation
of 51 &~ 1.75 at the beam center (saturation power of k; is
P s~ 570 uW).

We also employ a second laser beam at the same wave-
length and with the same angles to the crystal that is focused
to a beam waist of about 80 pm in both vertical and horizontal
directions, addressing a smaller region of the crystal. Its wave
vector is denoted by kj. The beam is amplitude modulated to
excite the crystal’s normal modes. The amplitude modulation
is added by applying a sine wave with frequency w, to the rf
amplitude of an acousto-optic modulator used as a fast shutter.
The modulation of the power is given by

P
P, = 7[1 + cos(w,t)],

where P, is the maximum power in the beam. The saturation
of k, at the beam center is then

52 = sp[l + cos(w,1)],
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FIG. 2. Resonant light force modulation. (a) Schematic laser beam setup. The ion crystal is almost uniformly illuminated by a cooling
beam k; (cyan). The laser beam illuminates the crystals axial extent (z) under an angle of 6 ~ 25° and the transverse extent (x) under an angle
of ¢ & 45°. An excitation beam k; (orange) is focused down to only a fraction of the crystal. It hits the crystal z axis under an angle g ~ 25°
and the x axis under the same angle ¢ as the cooling beam. The excitation beam is amplitude modulated, resulting in a sinusoidal force. The
beam sizes are not to scale. (b) Example crystal photos with excited normal modes. Images taken with an EMCCD camera when the modulation
frequency of the excitation laser is resonant with a normal mode. Exposure time: 100 ms; P,, &~ 20 uW. Top: Breathing mode/(1,0). Bottom:
(2,0). Red squares represent possible regions of interest to record fluorescence of single ions.

where
_ Py/2
P2,s '

S =

with saturation power P, ; ~ 38 uW of k;. The total satura-
tion of an ion at the center of the beams is then s = s + s5,,, +
Sm cos(w,t). The ion fluorescence is imaged via a lens system
of N/A = 0.2 and recorded by an electron-multiplying (EM)
CCD camera, which can resolve individual ions.

B. Method

We excite the crystal’s collective motion with the help of
the amplitude modulated cooling laser. Both cooling lasers k;
and Kk, are continuously incident on the ions during the mea-
surement and both exert a constant light force on the crystal,
that shifts the minimum of the trap potential. The amplitude
modulated laser adds an oscillating force F,, with excitation
frequency w,. This oscillating force is roughly linear, if s,
is smaller than s;. For multiple ions, the saturations s, and s,
will depend on the ion positions with respect to the laser beam
center. Specifically, the saturation power Ps(r;) will depend on
the position of the ith ion.

In principle, all normal modes can be excited by means
of this technique. In the measurements we present below, the
waist of laser k, was focused to only 80 pm. It illuminates
several ions at the same time, as illustrated in Fig. 2(a). This
prevented the excitation of modes with a higher number of
nodal points due to the small overlap of their mode vector with
the laser intensity profile, such as the zigzag mode in the 1D
phase, which has N-1 nodal points. We note that the excitation
of an arbitrarily chosen mode can be realized by implementing
single ion addressing.

On resonance, the amplitude of the driven mode increases
linearly with F,, for small oscillations around the equilibrium
positions. In combination with a constant linear damping y
due to laser cooling of k;, a steady state with a constant,
frequency-dependent mode amplitude ® ;(w,) can be reached

after several oscillations. To detect an excitation, we record
the ions fluorescence with an EMCCD over an exposure time
of typically 100 ms. This is long compared to the normal-
mode oscillation periods, which are on the order of the
center-of-mass oscillation period of about 40 us. Therefore,
light from all possible ion positions during the oscillations is
recorded, leading to an apparent increase of the ions’ size at
the resonance w, ~ w;. The imaged spatial extent of each ion
i is proportional to the amplitude of the driven normal mode
and the ion vector element of the corresponding mode vec-
tor A;;. The resonance frequency is found by identifying the
frequency at the maximum amplitude of the ion oscillation.
An experimental photo of the excited (1,0) mode and (2,0)
mode in the 1D phase is shown in Fig. 2(b), for which we
used P, ~ 20 uW (s,, = 0.53 for an ion at the beam center).
Similar to the ion amplitude, the velocity of the ions increases
on resonance, leading to a drop in fluorescence due to the
Doppler shift. For a single ion, this decrease in fluorescence
can be measured with a photomultiplier tube and enables one
to identify the motional resonance. The described method
is similar to what has been employed in dusty plasmas to
measure acoustic waves [53,54].

C. Experimental results

We measured several mode frequencies near the linear to
zigzag transition in two experiment series, with two different
modulation powers: P = 20 uW (A) and P& = 6 uW (B).

For measurement run (A), we determined the center fre-
quency w; of any resonance by scanning the excitation
frequency w, manually and searching for the maximum am-
plitude of the ions for the excited mode. The uncertainties
were estimated by finding a region in which the amplitude
of the excitation was still maximal. The width of this region
was taken as the error of the measurement, with typical values
of about 100 Hz to 300 Hz for each resonance. The power
of the excitation laser was set to P;1(1A) =20 uW, chosen such
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FIG. 3. Low-frequency spectrum as a function of the aspect ratio
«. The solid lines are the modes of the harmonic crystal at T = 0, the
symbols refer to the experimental measurements. Experimental data
from series (A) as empty symbols (blue circles, black diamonds, red
thin diamonds) with P = 20 uW and series (B) as filled symbols
(light blue squares) with P& = 6 uW. For (A), the error bars rep-
resent estimated uncertainties in measured frequencies. For (B), the
error bars represent fit uncertainties. The ions are laser cooled close
to the Doppler limit. From comparison to simulations in Sec. IV C,
we find 7' = 3.5 mK.

that a resonance of the three to four lowest modes could be
observed.

At first, the trapping ratio « is determined by measuring the
axial and transverse center-of-mass mode frequencies, i.e., the
trapping frequencies. This is followed by searching for the
low-lying modes with 1, 2, and 3 axial nodal points. In Fig. 3,
we show the measured vibrational-mode frequencies in com-
parison to the normal-mode frequencies expected from the
second-order approximation. Away from the phase transition,
the experimental results agree with the theoretical predic-
tions. However, close to the phase transition, the frequency
of the zigzag mode does not vanish. The measured frequency
of mode (1,N-1) (blue empty circles) increases when o ap-
proaches o, until it reaches the expected frequency of the
breathing mode of the 1D phase. The purely radial zigzag
mode in the 1D phase could not be excited by this mea-
surement, due to the missing overlap between the laser beam
profile and the normal-mode vector, see Sec. III B. While the
(2,0) mode frequency (black empty diamonds) was observed
over the complete phase transition, close to transition the
breathing mode in the 2D phase (red empty thin diamonds)
was not detected.

In measurement series (B), a single ions fluorescence was
recorded with a region of interest (ROI) on the EMCCD,
while sweeping the excitation frequency. Near resonance, a
decrease in fluorescence in the ROI is observed, because the
excited ion moves partially out of the ROI during exposure
and it gains a Doppler shift due to its increased velocity. We
fit the fluorescence drop to a Lorentzian line shape in order
to determine the resonance frequencies of the axial center of
mass and the normal mode with one axial nodal line.

To obtain a finer resolution in series (B), the maximum
power of the amplitude modulated laser was about P& =
6 uW, sufficient to excite the center of mass and breathing
mode. A smaller amplitude of the forced oscillation reduces
sampling of higher order terms of the Coulomb potential,
which leads to asymmetric line shapes and line broadening.
In Fig. 3, we show the results of these measurements as cyan
squares. The results agree qualitatively with the measurements
from series (A). We verify an increased vibrational mode
frequency of the zigzag mode in the 2D phase close to ..
In the range of o = 11.5 to 11.85, a quantitative difference
of the measured frequencies is observed, up to a difference of
approximately 0.2w;.

The quantitative difference between (A) and (B) is due to
the smaller power of the amplitude modulated laser used for
measurement run (B). A larger driving force increases the
mode amplitudes in the steady state and therefore enhances
nonlinear frequency shifts due to the Coulomb interaction.
Increased power leads to a higher observed frequency at
maximum excitation. Additionally, the line shape becomes
increasingly asymmetric with increased power. We refer the
interested reader to Appendix C, where we discuss the influ-
ence of P, on the frequency of the (1,N-1) mode, see Fig. 10.

IV. MOLECULAR DYNAMICS SIMULATIONS

As seen in the last section, close to the phase transition
the measured excitation frequencies significantly deviate from
the vibrational spectrum in the harmonic approximation. We
identify two possible sources for this deviation, either the
damping due to laser cooling or the interaction with higher
order terms in the expansion of the Coulomb potential could
be responsible. As the damping, y = 8.75 x 10°s~!, is or-
ders of magnitude smaller than the lowest axial frequencies,
approx. 1.6 x 10°s~!, its influence is negligible. Therefore,
the higher order terms are the most likely cause for the ob-
served deviations. In the experiment, there are two excitation
sources that lead to increased amplitudes: the thermal noise
from laser cooling and the sinusoidal driving force. To gain
deeper insight into the impact of the mode populations on
the measurable frequencies, we carry out molecular dynamics
simulations of the crystal under a stochastic force.

We simulate the dynamics of the ion crystal by numerically
solving the classical equations of motion of the ions in the
presence of damping and of the Langevin force describing
thermal noise [28]. This approach is complementary to the
Fokker-Planck equation for Doppler cooling of an ion crystal
[55]. The equation of motion for the ith degree of freedom
takes the form

.oV .
mii; + — +myu; = §(t), 3
31,{,‘
where y is a damping term from laser cooling and V is the

total potential energy, see Eq. (1), and &;(¢) is the stochastic
force, with moments

(i) =0, “
(&(0E;(") = 2Ds;;8(t —1'). &)
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Here, (...) indicates ensemble averaging. The diffusion coef-
ficient D of the second equation links the amplitude of the
stochastic force with temperature and damping coefficients
according to the fluctuation-dissipation theorem, D = my kgT
[56]. In the simulations, laser cooling is treated as isotropic
for all degrees of freedom. This is a simplification with re-
spect to the experiment. There, the damping between the
transverse and axial direction is slightly different due to the
projection of the cooling laser beams on the crystal axes, with
projections on x and y being cos(45°) ~ 0.71 and z being
cos(25°) ~ 0.91.

We first detail the simulation procedure and the spectral
analysis. The results of the molecular dynamics simulation are
then reported and discussed in Sec. IV C.

A. Simulation procedure

The ground-state configuration for each trapping ratio «
is found by simulating a crystal with N = 30 ions choos-
ing strong damping my =2.5 x 107 kg s7! (y =8.75 x
10° s~ and with T = 0. The resulting equilibrium positions
so obtained are the initial configuration for the simulation at fi-
nite temperature 7. The simulation is run with lower damping
my =2.5x 1072 kg s~! (y =8.75 x 10*s~"), comparable
to experimental conditions [28], and over a time of 100 us to
thermalize the system. The system is in a thermal state after
this, which we checked via the equipartition theorem.

This result is used as a starting point for the final simula-
tions, which run for 10 ms in total to achieve a fine resolution
in the Fourier frequencies. All simulations have an integration
time step of 19 ns, which is much smaller than the expected
period of the vibrational mode with the largest frequency,
which here is the transverse vibration of the center-of-mass
mode at about 3 us. Every 100th value is saved, resulting in
time resolution of the ions evolution of 1.9 us.

B. Spectral analysis

To extract the normal-mode spectrum of the ion crystal,
we carry out the Fourier transform (FT) of the trajectories of
the ions’ axial and transverse degrees of freedom. Due to the
simulation length and time resolution, the FT has a frequency
resolution of 100 Hz and a maximum observable frequency of
about 263 kHz, which covers the frequency range of interest.
For our analysis, the simulation procedure described above is
repeated five times, due to the stochastic nature of the thermal
noise, and the FT's are averaged over all simulations with iden-
tical parameters. Then the absolute value A(w), ; = |F (X, )
of the averaged FTs F is calculated, where i is the ion index
and x is either x or z. We are interested in collective motions
of the crystal, i.e., the normal modes, but we do not make any
assumptions on possible mode vectors. Therefore, the A(w, ;)
for all ions are added together to get a signal S(w),,

N
Sw)y =Y Alw)y.i. (6)

i=1

where the degrees of freedom along x and z are treated sep-
arately. An example of such a signal is shown in Fig. 4. The
width of the resonances depends on the damping y, which is

e
o
=)

o
-
ol

signal [pm]

0 50 100 150 200 250
frequency [kHz]

FIG. 4. Example of a FFT signal S;, Eq. (6). The signal is ex-
tracted from the trajectory of the z coordinates of five molecular
dynamics simulations at « = 11.7 and 7 = 0.1mK. The blue dots
show the FFT, the dotted red line is the running mean of the signal
over 30 points, the orange lines indicate automatically estimated
center and widths of the peaks. The inset shows a zoom up of the
first five peaks. See text for further details on the simulation.

here fixed to the value my = 2.5 x 107! kg s~! to compare
the data to our experiment.

We extract the resonances and the peaks’ widths from
S(w). Without prior knowledge of the complete model of the
peak functions, we estimate the positions based on a peak
search algorithm. It searches for local maxima that fulfill
certain conditions with respect to their width, absolute height,
and relative height to the closest base line. This method can-
not treat noisy signals well. Therefore, S is smoothed before
starting a peak search, using a running mean over n values
Sim(k) = > Sk+i/n. For T = 0.1 mK, an average over 20
points (= 2 kHz) and, for the other shown temperatures, an
average over 30 points (= 3 kHz) is used. The running mean
of the signal is plotted as a function of the respective run-
ning mean frequency fim(k) =Y, fiti/n. In Fig. 4, the
smoothed signal S, is shown as a red dotted line. The orange
line shows the peak positions and estimated half-maximum
widths which we identified. Not all peaks are captured by
the algorithm, especially for w > 27 x 130 kHz, due to the
choice of selection parameters, that favor the prominent peaks
at lower frequencies. However, the high-frequency peaks are
outside the frequency range that we are interested in. Due to
the noisy data, additional small peaks might be found close to
strong resonances, e.g., the axial center of mass mode. These
false positives have to be removed manually.

C. Numerical results

We evaluate the simulations for temperatures 7T =
[0.1,0.5,2.0,3.5]mK and for several trapping ratios c.
Figure 5 displays the estimated peak positions. The ex-
pected normal-mode frequencies at T = 0 are also shown for
comparison. We observe good agreement between the numer-
ical results and the harmonic spectrum at low temperatures.
For higher temperatures, deviations appear near the phase
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FIG. 5. Spectrum of the ion crystal vibrations as a function of « and for different simulation temperatures: (a) 0.1 mK, (b) 0.5 mK,
(c) 2.0 mK, (d) 3.5 mK. Lines represent the spectrum in the absence of thermal excitations: the color code is solid orange (dark blue) for zigzag
(breathing) mode and dotted black for other modes. The symbols are results obtained from a peak search in the sum of Fourier-transform
amplitudes of the axial (gray dots) and transverse (red diamond) trajectories. The error bars indicate the estimated FWHM of the peak. Light
blue squares are experimental results for measurement series (B). The gray dashed vertical line and the gray arrow mark the range of o at
which we observe one or more jumps between the ground states per zigzag mode oscillation period T,.

transition for the (1,0) and (0, N-1) modes that qualitatively
agree with the experimental measurement, meaning that the
expected increase in the breathing mode frequency, when tran-
sitioning from the 1D phase into the 2D phase, is not observed,
and that the zigzag mode frequency in the 2D phase seems
to increase, when « approaches o, from lower values. The
simulations for T = 3.5 mK match best to the measurement
series (B), which are shown in Fig. 5(d) for comparison. Here,
we point out, that the frequency of the zigzag mode remains
finite at . and increases with the temperature, which can be
seen in Figs. 5(b) to 5(d) in the radial points (red diamonds)
around @ ~ 12.0.

In the simulations, we do not observe a deviation of the
(2,0) mode from the harmonic approximation as we did in
the experiments. This is most likely due to the high excitation
power P used in series (A), as we described in Sec. IIIC.
The additional increase in mode amplitude leads to nonlinear
mode coupling on top of temperature effects.

The simulations reveal that in the 2D phase, thermal effects
give rise to collective jumps of the ions between the two
degenerate zigzag configurations. In Appendix B, we discuss
how these jumps are observed in the time evolution of the
central ion, see Fig. 8. We illustrate the mechanism as thermal
switching between the two minima of the Landau free energy
in the symmetry-broken phase [33], see Fig. 6(a). We can
estimate the corresponding switching rate kg by counting the
number of sign changes of the transverse coordinate of the
central ion Py , over the simulation length Ar:

ket = P;\;/z/At . @)

The inverse of this rate is the average dwelling time in
one crystal configuration 7, = k.. We identify two regimes
with the help of 7.. In the first regime t, > T, with T,
being the characteristic period of oscillations of the (1,N-1)
mode, which is the slowest oscillation contributing to the
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FIG. 6. (a) Schematic illustration of the Landau potential U in
the 1D (¢ > «,) and in the 2D symmetry-broken phase (o < «.).
The coordinate x indicates the transverse displacement of the cen-
tral ion from the chain axis. Thermal excitations can overcome the
barrier between the two degenerate zigzag configuration by inducing
collective jumps of the crystal configuration. (b) Average dwelling
time 7, = 1/kes, Eq. (7), in units of the zigzag mode period 7. In
the simulations, temperatures 7' are 0.1 mK (blue circles), 0.5 mK
(orange squares), 2.0 mK (green diamonds), 3.5 mK (red triangles).
The lines are a guide for the eye. For 7 = 0.1 mK and 0.5 mK, miss-
ing points indicate no switches were observed during the simulation
time. The dotted horizontal line indicates t, = T;.. Inset shows the
potential barrier Ep for different trapping ratios c.

movement between the two minima, see Fig. 6(a). Here the
two crystalline configurations are well defined in the 2D phase
and thermal noise gives rise to approximately instantaneous
jumps, whose net effect is to broaden the linewidth of the res-
onance lines. In the second regime, where 7, < T, the system
switches rapidly between the minima and is on average in the
1D phase. Here, nonlinearities of the system are dominant and
expected to modify the normal-mode spectrum. Figure 6(b)
displays 7, as a function of the aspect ratio and, for different
temperatures, the horizontal line indicates t, = T;,. We have
verified that frequency deviations from the harmonic solution
are observed when t, < T,,. This is visible, for instance, in
Fig. 5, where the vertical dashed lines indicate the the smallest
aspect ratios of the simulations at which t, < To..

To gain insight into these dynamics, we analytically esti-
mate the switching rate using an effective potential U that
describes the double well structure. In the thermodynamic
limit, U becomes the Landau free energy, see Sec. V. We
interpret the switching rate as the rate of thermal activation
[57] over the barrier separating the minima. To determine U,
we calculate the potential energy along the adiabatic path con-
necting the two equilibrium configurations [58]. Since the two

ground states stem from the breaking of the mirror symmetry,

we parameterize the path by the transverse crystal size,

g(w) = xn/2 — XNj241 s

where xy/, is the transverse position of the ion left of the
crystal center for even N. For the calculation, we minimize the
crystal energy using a Lagrange multiplier with a constraint
for the crystal transverse size g(u) = X. For this, we numeri-
cally solve the following equation using Newton’s method:

V(V )+ Ar(gm) - X)) =0,

where V is given by Eq. (1), the gradient is given by
{0/0uy, ..., 0/dusy, 3/01}T and A is the Lagrange multiplier.
Afterward, the total potential energy for this configuration
is taken as the energy U(X) of the potential at size X. As
expected, in the 2D phase it has the shape of a double well
with two minima, symmetric about X = 0. The energy barrier
Ep, separating the two ground states, is then given as the
difference between the potential energy at X = 0 and the
minimum potential energy:

Ep = U(0) — min(U(X)).

Sufficiently close to the transition the energy barrier increases
with | — a.|?, see inset in Fig. 6(b), in agreement with
the predictions of Ref. [33] and with the numerical simula-
tions of the linear to zigzag transition in clusters of metallic
beads [59].

The trajectory of the collective coordinate of the crystal
that jumps between the minima of the bistable potential results
from the interplay of driving, damping, and noise. Quantita-
tively accounting for the prefactors in the Kramer’s escape
formula [60] is beyond the scope of the current paper. Here,
we perform an estimate using transition-state theory [57],

krst A~ w,/(2m) exp[—Ep/(kgT)],

with w, = o/U"(Xpin)/m, where U” is the second derivative
with respect to X and Xy, is the transverse crystal size in
equilibrium. For « = 11.8 and T = 2.0 mK, the transition-
state theory predicts a rate about 16000s~!. Taking into
account that, in the simulations, the particles can also return
to each minima the escape rate in the simulation from one
minimum is about 14000s~'. In Appendix B, we compare
the rates extracted from the simulations with the predictions
of transition-state theory rates over a range of parameters. We
find agreement within a factor of 2.

The molecular dynamics simulation validate the thermal
fluctuations as the source of the observed frequency devia-
tions. Moreover, they supply a deeper insight into the exact
dynamics behind the nonlinear mechanism at hand, i.e., the
frequent crossing of the potential barrier between the two
degenerate ground states of the 2D phase.

V. EFFECTIVE MODEL FOR THE MODES DYNAMICS

In this section, we use a simplified model to determine the
temperature dependence of the mode spectrum close to the
linear to zigzag instability. For this purpose, we use a com-
plementary approach to the one based on dwelling times and
consider the normal-mode expansion around the linear chain
for aspect ratios at which the linear chain is mechanically un-
stable. We then evaluate the average effect of the higher modes
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FIG. 7. The zigzag and breathing mode frequencies as a function of the aspect ratio «. The parameters and legend are the same as Fig. 5.
Moreover, the dashed and dotted lines correspond to the predictions of the analytical model: @, (dark blue, dotted) and @; (orange, dashed).
The analytical solutions are shown until @; becomes imaginary or until less than one switch per zigzag mode oscillation period T, is observed,
i.e., for values of o below the range marked by the gray dashed vertical lines and the gray arrows.

on the lowest part of the spectrum using a timescale separation
ansatz and determine the resulting spectrum as a function of
the temperature. The resulting normal-mode spectrum agrees
with the numerical results close to the transition point, as we
discuss below and summarize in Fig. 7.

A. Normal modes at the instability

We first review the normal modes of the linear chain and
the equations for the structural instability in the absence of
damping and noise. Close to the linear to zigzag instability,
we expand the total potential energy V of Eq. (1) to fourth
order around the equilibrium positions of the linear chain,

1 N 1 3N
vi= 2! Z K;’Aqiqj T 31 Z L;,ikqujCIk
=1 " ijk=1
L
+ 41 Z M, 119199591
T ijkl=1

®)

where ¢; are the displacements around the equilibrium posi-
tions ©;(0), ¢; = u; — u;(0), the tensors L’ and M’ are given by
the expressions

v
= ©
auiaujauk u(0)
%
My =——————| (10)
’ Ou;0u;0uduy u(0)

and K’ is given by Eq. (2). Note that V, approximates the total
potential V, Eq. (1), in the limit in which the displacements
around the equilibrium positions are much smaller than the
interparticle distance at equilibrium.

As introduced in Sec. II, ®; denote the normal modes of
the linear chain, which diagonalize the matrix K’ and have
eigenvalues ma)? The linear chain is stable provided that all
eigenvalues are positive. In this regime, the w; are real and
correspond to the normal-mode frequencies. The condition
min; w; = 0 identifies the classical transition point of the
linear to zigzag instability. Potential Eq. (8) is cast in terms of
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the normal mode by means of the dynamical matrix A;; such
that g; = Zj A;j©; and takes the form

1 3N
a > Li©:0;6;
T ijk=1

L
_ 2 252
V4—2! Elmwi(@i +

N
1

+E E M;i0,0;0,0,, (11)
T ijkl=1

where now the tensors L and M are related to the tensors L’
and M’ by the relations

3N

Lijx = Z L shmitnjhsks (12)
mns=1

ljkl_ Z mmz}‘mz)\ )\sk)\tl- (13)
mnst=1

The total Lagrangian for the normal modes takes the form L =
3N 50
my i, @

In an appropnately defined thermodynamic limit, for
which the critical aspect ratio converges to a finite value as
N — 00, the linear-zigzag transition can be cast in terms of
the Landau potential,

Ui = VO + A8

o (14)
where ®,, is the amplitude of the zigzag mode in the linear
chain, A > 0 and V o (a? — o2). This potential is determined
from potential V, in lowest order in a gradient expansion [33].
The one-dimensional model strictly exhibits a phase transition
at zero temperature, where a quantum description becomes
appropriate [45,46,49,61]. In what follows, instead we con-
sider a finite system and do not scale the physical parameters
with V.

B. Thermal effects

We now discuss the low-frequency spectrum of the linear
chain across the linear to zigzag instability and in the presence
of laser cooling. We consider a finite chain and, starting from
the Fokker-Planck equation [55], we model the dynamics of
laser Doppler cooling in terms of Langevin equations. We
denote the damping (cooling) rates of the normal modes by
y; and write the corresponding Langevin equations as [62]

G =—1M g + Ei(t) (15)
I — ma®l yt i i )

where E;(t) is the Langevin force for the normal mode
0;, with (8;(1)) = 0, (E;(1)E;(t")) = 2yi(kgT /m)é;;6(t — ')
and we neglect here mode-mode correlations due to the dissi-
pative dynamics.

For finite chains and in the 2D phase, the lowest frequency
mode is a superposition of the zigzag mode and of the ax-
ial breathing mode of the linear chain as seen in Fig. 1(c).

The gap between the soft mode and all other normal modes
remains finite. Thus, whenever thermal excitations and the
line broadening are smaller than the gap, normal-mode spec-
troscopy of the chain shall provide in first approximation the
mode spectrum obtained by diagonalizing the quadratic term
of potential Eq. (1) about the stable equilibrium positions.

We now determine the effects of thermal excitation on
the lowest energy spectrum by considering the equations of
the lowest energy mode, here (0, N-1), which we label ®,
and the mode which is closest in frequency and to which
it couples. This mode is labeled by ®, and is according to
our notation (1,0). We then make the simplifying assumption
that w;, wy K w¢, where w, are here the frequencies of the
modes ®, to which ®; and ®, appreciably couple through
the anharmonicities. In this regime, we can identify the time
scale 8t for which w8¢t, w8t < 1 and w,ét > 1. Moreover,
we assume that the modes ®, are at thermal equilibrium. We
now perform the time average of Eq. (15) over the grid with
step 8¢. For convenience, we introduce the notation

1 t+3t
5/ dr f(r) = (f(1))s » (16)

where f(¢) is a function of time. Since w;dt, w8t < 1, then
(®1.2())s: = O12(t). Moreover, to provide an example, the
contribution of the fourth-order term of Eq. (11), which we
denote by Wy, takes the form

3W4 1 1
<8(~)1 >5, ~ XZ: (EM“M(@%)&@l + 5M12££(®§)5l®2> i

where the equation for ®, is found by replacing 1 — 2 and
we used that for £ # 1, 2 the eigenmodes are at thermal equi-
librium, thus (®;)s, = 0 and (®;O, )5, = &, g«@%)a,. Finally,
assuming ergodicity, we obtain (©2)5; = kgT /(mw?) from the
classical equipartition theorem. This procedure leads to the
two coupled equations:

O =-a10; — 20, +1m — O + 8, (17)

Oy = —@30; — 05,01 + 1m0 — 1O, + By, (18)

where @;, V2, and 7; are explicitly dependent on the tempera-
ture. In particular, the frequency squared @7 now reads

(T = ] +vi(T) = o} + %, T, (19)

and it contains a shift proportional to the temperature with
proportionality constant

1 k

2 B

Vi =5— Y Mikk— - (20)
2m P mawj

The second and third terms on the right-hand side of Egs. (17)
and (18) describe an effective coupling between the two
modes and a mean displacement force, respectively, with

k T
va(T) = Z M12kk £ ngf,lzT, (21)
m i
=—= Z L,kk = —neiriT - (22)
k;él 2
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The effective, temperature-independent constants vz ;, Vi |5,
and neg,; for the two modes i = 1, 2 are determined by car-
rying out the summation in Egs. (20)—(22) over all other
modes k. We remark that the shifts depend on « through the
coefficients of the expansion of V.

Equations (17) and (18) describe mode mixing and fre-
quency shifts induced by the thermal excitation of the chain.
Within this classical model, these terms are directly propor-
tional to the temperature. We can now determine the resulting
normal-mode frequencies. For this purpose, we note that
the term v, = 0 for the expansion about the linear-chain
equilibrium positions, see Table I of Appendix A. This is
a consequence of the fact the breathing mode is an exact
eigenmode of the linear chain [47]. In the underdamped limit,
corresponding to y; < w;, the characteristic frequencies are
now given by Eqgs. (19) and (20). Figure 7 displays the fre-
quencies @; as a function of the aspect ratio o and for four
increasing values of the temperature, ranging between 0.1 mK
and 3.5 mK. For comparison, the results of the numerical
simulation of Eq. (3) are reported, which agreed well with
the experimental measurements presented in Sec. III for T =
3.5 mK. The prediction of the analytical model and the result
of the numerical simulation agree for aspect ratios close to
the transition point «: This is the regime where our model
is plausible since the truncation of the Taylor expansion is
justified. We note that, even though these analytical arguments
have been applied to a finite chain, the considerations of our
theoretical model are also valid in the thermodynamic limit
and show that at finite temperatures the coupling with the
high-frequency modes significantly modifies the properties at
the instability. Loosely speaking, the thermal effects stabilize
the linear chain also for aspect ratios beyond the critical point.
This behavior might be interpreted as a shift of the transition
point [39] in the sense that a measurement of the mean trans-
verse displacement will give zero in the regime where the
ion dynamics consists of thermally activated jumps between
the two zigzag configurations. Thus, a linear chain will be
effectively detected for aspect ratios « below but close to «,.
Nevertheless, in the classical regime this is the manifestation
of a nonuniversal crossover dynamics.

VI. CONCLUSION

In this paper, we investigated experimentally and theo-
retically the effect of thermal noise on the low-frequency
spectrum of an ion chain near the symmetry-breaking linear
to zigzag transition.

In the experiment, we employed resonant light force mod-
ulation with an amplitude modulated laser beam to excite
collective oscillations in a crystal. The method is simple to im-
plement and can also be used to measure trapping frequencies,
replacing established excitation methods, such as modulation
of the trapping potentials [63]. This allows for stronger filters
in the rf and dc electronics of the Paul trap [51,52], reducing
the heating by electrical noise of the trapped ion crystals.
While we used an excitation beam profile encompassing mul-
tiple ions, a more focused beam or a spatially engineered beam

profile, e.g., generated by an spatial light modulator [64,65],
would allow for arbitrary mode excitations.

The experimental measurements did not show the softening
of the zigzag mode that is predicted at the structural phase
transition. Also, the frequency of the breathing mode was
nearly constant and independent of &« when sweeping into the
2D phase, instead of increasing as expected in the absence of
thermal noise.

With the help of molecular dynamics simulations, we could
reproduce the experimental observations within the uncertain-
ties, thus confirming that this behavior is primarily due to
thermal excitations. In particular, inspection of the trajectories
show that finite temperature effects induce collective jumps
of the ions between the two degenerate zigzag configura-
tions. This microscopic picture is at the basis of the expected
crossover behavior at finite temperatures.

We developed a simple analytical model that builds on
these findings and predicts the experimentally observed
frequency spectrum. This model shows that the temperature-
dependent shift of the zigzag mode at the transition point
is due to anharmonic coupling with high-frequency modes,
which act as an effective phonon environment. Separation
of timescales between the low-frequency soft mode and the
higher frequency modes allows taking the averaged higher fre-
quency modes as an effective potential that influences the soft
mode. Note that the thermally excited phonon environment
in our model could be replaced by nonthermal excitations.
Single quanta excitations with coherent interaction in third
order have been investigated in Ref. [66]. In future theoretical
works, their method could be extended to describe the effects
of finite temperatures. While we do not include the effects of
micromotion induced by the rf of the trap in our theoretical
models, it could be treated analytically following Ref. [67].
From our model it also follows that the observation of a
low-frequency zigzag mode near the linear-zigzag transition
at Doppler temperature of '>Yb* is unlikely. However, it
might be observed in a crystal with 7 ~ 100 uK. Therefore,
in future experiments, methods of (near) ground-state cooling
that can cool several modes in an ion Coulomb crystal, such
as Sisyphus cooling [68—70] or electromagnetically induced-
transparency cooling [71-75], need to be considered.

Our results suggest that a similar model can be developed
to describe the experimental measurements of the Aubry-type
transition in ion Coulomb crystals. Here the soft mode of the
pinning to sliding transition exhibited a finite frequency at the
critical point, when a finite temperature allowed the system
to switch between different minima of the Peierls-Nabarro
potential [12,76].

Our work is relevant for experiments operating close to
phase transitions in ion chains such as studies of energy
transport [77] or quantum information using the gapped
topological defect mode [78,79]. According to the results
presented, the cooling of high-frequency modes is crucial to
avoid the heating of the soft mode due to higher-order cou-
pling, showing the experimental complexity of these plans.
Similar challenges were recently discussed for laser cooling a
2D planar crystal confined in a Penning trap [80].

104106-11



JAN KIETHE et al.

PHYSICAL REVIEW B 103, 104106 (2021)

ACKNOWLEDGMENTS

We gratefully thank J. Keller for fruitful discussions.
This project has been funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) through
Grant No. CRC 1227 (DQ-mat, project A07) and under
Germanys Excellence Strategy EXC-2123 QuantumFron-
tiers 390837967. This project 17FUNO7 CCA4C has received
funding from the EMPIR programme co-financed by the Par-
ticipating States and from the European Union’s Horizon
2020 research and innovation programme. G.M. acknowl-
edges support by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) through Grant No. CRC
TRR 306 QuCoLiMa (“Quantum Cooperativity of Light and
Matter”) and by the German Ministry of Education and Re-
search (BMBF) via the QuantERA project NAQUAS. Project
NAQUAS has received funding from the QuantERA ERA-
NET Cofund in Quantum Technologies implemented within
the European Union’s Horizon2020 program.

APPENDIX A: EFFECTIVE ANALYTICAL CONSTANTS

In Table I, we present numerical values of the effective,
temperature-independent constants defined in Eqgs. (20)—(22)
for N = 30 ions near the linear to zigzag transition.

TABLE 1. Effective higher order constants for a N =30 ion
Coulomb crystal near the linear to zigzag phase transition for the
zigzag mode and breathing mode. Crystal expanded around a lin-
ear chain. v}, and vj;,, are given in units of the squared axial
frequency wzz. The constants 7ey; are given in units of ma)zzlc,
where [, = [¢*/ (47 egma? )]1/ ?is the length constant of a trapped ion
Coulomb crystal.

@ chff, 1 chff, 2 chff, 12 Neff, 1 Neff,2

11.70  3767.3904 —6.4896 —0.0039 0.0003 —26.1177
11.80 1505.2251 —2.7630 —0.0021 0.0001 —11.1188
11.85 1200.0101 —2.2324 0.0020 —0.0001 —8.9835
11.90 1007.8599 —1.8871 0.0021  —0.0001 —7.5937
11.91 977.3964 —1.8312 —0.0021 0.0001 —7.3688
11.92 948.9239 —1.7786 0.0022 —0.0001 —7.1572
11.93 922.2375 —1.7290 —0.0022 0.0001 —6.9577
11.94 897.1609 —1.6821 0.0023 —0.0001 —6.7689
11.95 873.5402 —1.6377 0.0023 —0.0001 —6.5900
11.96 851.2413 —1.5955 —0.0024 0.0001 —6.4201
11.97 830.1467 —1.5553 —0.0025 0.0001 —6.2584
11.98 810.1524 —1.5169 —0.0027 0.0001 —6.1041
11.99 791.1669 —1.4803 —0.0028 0.0001 —5.9565
12.00 773.1083 —1.4453 —0.0030 —0.0001 5.8158
12.05 694.4609 —1.2899 0.0000 0.0000 5.1913
12.10 630.6453 —1.1606 0.0000 0.0000 4.6702
12.20 532.5320 —0.9539 0.0000 0.0000 3.8383

APPENDIX B: SWITCHING RATES: SIMULATION AND
TRANSITION-STATE THEORY

In Fig. 8, we show the time evolution of the transverse
coordinate of the 15th ion for two different « and for

position [pm]

position [pm]

time [ms]

FIG. 8. Time evolution of transverse coordinate of ion 15. The
top row is for « = 11.7 and the bottom row for @ = 11.85. T = 2.0
mK closer to the transition at o, & 12.0 the ion changes more often
between the two ground-state configurations, about which the crystal
oscillates.

T =2.0 mK, to illustrate the switching of the crystal between
the two ground-state configurations. In Fig. 9, we show the
comparison between the escape rate obtained by transition-
state theory from the double-well potentials calculated in
Sec. IV C and the rates estimated from the simulation results.
The latter have been corrected by a factor of 2 for the compar-
ison to account for the possibility to come back to a potential
minimum.
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FIG. 9. Escape rate from transition-state theory krsr (lines) and
estimate rates from simulations .y /2 (symbols). Colors and markers
are « = 11.7; blue circles and solid line, @ = 11.8; orange crosses
and dotted line, o = 11.85; green diamonds and dash-dotted line,
o = 11.9; red left triangles and dashed line, « = 11.95; brown right
triangles and double-dash-dotted line.
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FIG. 10. Measured ROI fluorescence (blue dots) against modula-
tion frequency w, at « ~ 11.72. The red line is a running mean over
50 points, acting as a guide to the eye. The dashed gray vertical lines
indicate estimated maximum excitation for the breathing mode.

APPENDIX C: POWER DEPENDENCY OF
EXPERIMENTAL SIGNAL

Driving the intrinsically nonlinear Coulomb system can
lead to additional frequency shifts due to further increased
amplitudes. The excitation method employed in this paper
can lead to such shifts, depending on the laser power of the
modulated laser Py.

In Fig. 10, we show the power dependence of recorded
resonance features of measurement series (B) when sweep-
ing over the axial center of mass and the breathing mode at
a A~ 11.72. Tt can be clearly seen that the position of maxi-
mum excitation of the breathing mode shifts when increasing
the driving force. Additionally, the resonances become in-
creasingly asymmetric with higher forces. The center-of-mass
mode resonance around 31 kHz increases in width with higher
forces.

Measurements presented in Sec. III C were carried out with
P,, =20 uW for series (A) and with P, = 6 uW for series
(B).
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