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We show that the theoretical expressions presented in Khusnutdinoff et al. [Phys. Rev. B 101, 214312 (2020)]
for the longitudinal current spectral function CL (k, ω) and the dispersion of collective excitations are not correct.
Indeed, they are not compatible with the continuum limit and CL (k, ω → 0) contradicts the continuity equation.
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I. INTRODUCTION

In a recent paper [1], the authors formulated their “over-
arching goal of this research programme ...to reach the stage
where, despite the complexity of their theoretical description,
liquids emerge as systems amenable to theoretical understand-
ing at the level comparable to gases and solids.” Looking
at Figs. 4 and 5 of Ref. [1], one can really make sure that
the authors of Ref. [1] reached their ambitious goal in per-
fect agreement between the proposed theory and computer
simulations. In their paper, the authors proposed theoreti-
cal expressions for the longitudinal current spectral function
CL(k, ω), with k and ω being the wave number and frequency,
and for the dispersion of longitudinal collective excitations
ωL

c (k). Their expressions for CL(k, ω) [Eq. (18)] and ωL
c (k)

[Eq. (20)], as one can judge from their Figs. 4 and 5, recover
with high precision the molecular dynamics (MD) data in a
wide range of wave numbers and temperatures. The CL(k, ω)
in their theoretical scheme was obtained from a simple con-
tinued fraction shown in their Eq. (11). Although the standard
approach for a description of collective dynamics in liquids
is to represent the Laplace-transformed density-density time
correlation function as a continued fraction [2,3], in Ref. [1]
the authors derived the continued fraction for the longitudinal
current-current correlations. Applying different closures for
the chain of memory functions as in Refs. [4–6], one can
obtain a formal solution for CL(k, ω) within a precision of
several of its frequency moments.

However, such an approach of Ref. [1] is not really con-
sistent with hydrodynamics [4,7], which is a collection of
local conservation laws. Any liquid system on spatial scales
much larger than the mean interatomic distance must behave
similarly from the point of view of slow collective modes
derived by fluctuations of conserved quantities. In Ref. [1]
the proposed theoretical approach is developed from a single
conserved dynamic variable, a longitudinal component of total
momentum JL(k, t ), which is the slowest dynamic variable
in the presented approach. It is well known from textbooks
[4,7] as well as from other multivariable approaches [8–10]
which dynamic variables are responsible for a description of

the viscoelastic transition in the dispersion of collective exci-
tations [11,12]. The theoretical approach [1] does not contain
a coupling of longitudinal current fluctuations with fluctua-
tions of other conserved quantities, namely density n(k, t ) and
energy e(k, t ). The energy (or heat) density fluctuations reflect
specifically for liquid fluctuations of local temperature [13],
and long-wavelength heat relaxation processes are responsi-
ble for the central Rayleigh peak of the dynamic structure
factor S(k, ω) for one-component liquids at sufficiently small
wave numbers k. Outside the hydrodynamic regime the short-
wavelength density fluctuations n(k, t ) reflect the processes
connected with structural relaxation, and instead of heat re-
laxation, form the leading contribution to the central peak
of S(k, ω) [12,14,15]. The presence of heat and density re-
laxation, therefore, are essential ingredients for a correct
description of the spectra, including the propagating density
fluctuation regions, which are the main target of Ref. [1].

The poor theoretical approach presented in Ref. [1], miss-
ing the coupling with slow processes that are the most
important for liquids, is an oversimplified theory. It is there-
fore difficult to understand why it is able to reproduce to a
very good degree of accuracy the molecular dynamics (MD)
data for CL(k, ω) in some region of wave numbers as it is
shown in their Fig. 4 [1]. Moreover, we were motivated to
understand why their expressions were able to recover the
adiabatic speed of sound in the long-wavelength region of
their Fig. 5. Our question was as follows: Is it possible within
the proposed fit-free theoretical scheme to obtain in the long-
wavelength limit the propagating modes with an adiabatic
speed of sound cs? The multivariable approaches based on the
set of dynamic variables {JL(k, t ), J̇L (k, t ), . . .} usually can
produce in the long-wavelength limit the propagating modes
only in the elastic regime, with the propagation speed being
the high-frequency one c∞ slightly renormalized due to the
coupling to faster kinetic modes. No viscoelastic effects such
as positive sound dispersion can be expected in this theory.

Motivated by the surprisingly good agreement shown in
their Fig. 4 we will check the expressions [Eqs. (17)–(20)]
of Ref. [1] and the behavior of their “relaxation parameters”
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FIG. 1. Check of the properties of time derivatives of the longitudinal current for static correlators (a) 〈J̇L (−k)J̇L (k)〉 ≡ −〈J̈L (−k)JL (k)〉
and (b) 〈J̈L (−k)J̈L (k)〉 ≡ −〈...

JL (−k)J̇L (k)〉 for a supercritical Ne at T = 295 K and density 1600 kg/m3.

�i(k) in the k → 0 limit using a simple Lennard-Jones fluid,
because of its simplicity in order to have analytical spatial
derivatives of the interparticle potential needed for calcula-
tions of �i(k) and their Eqs. (17)–(20). In the next section we
provide details of our MD simulations and calculations of cor-
responding correlators. Then we will present our results and
discuss them in comparison with Eqs. (17)–(20) of Ref. [1].
The last section contains the conclusion of this study.

II. DETAILS OF MD SIMULATIONS

We performed molecular dynamics simulations for super-
critical Ne at T = 295 K and density 1600 kg/m3 using its
Lennard-Jones potentials, the same as in our previous study
[16]. A model system of 4000 particles was simulated in a mi-
crocanonical ensemble with perfect energy conservation over
the whole production run of 300 000 time steps. The time step
was 0.5 fs. Our main task was in sampling the space-Fourier
components of all hydrodynamic variables, i.e., of density
n(k, t ), mass current J(k, t ), and energy e(k, t ), as well as
of their time derivatives, in particular, of the mass current
up to the third order

...

J (k, t ). We sampled all the possible
wave vectors corresponding to the same absolute value, and
used all of them in a spherical average of the corresponding
correlators. The smallest wave number sampled in this MD
study was 0.143 598 Å−1.

In order to check the reliability of the sampled time deriva-
tives of the longitudinal mass current and of our calculated
static correlators, we made use of the exact relations, which
follow from a property of the time derivatives of time correla-
tion functions [4],

〈J̇L(−k)J̇L(k)〉 ≡ −〈J̈L(−k)JL(k)〉,
〈J̈L(−k)J̈L(k)〉 ≡ −〈...

JL (−k)J̇L(k)〉.
One can see in Fig. 1 that a perfect equivalence (a difference
of less than 0.2% for any k point) is evidence of the correct
direct sampling of JL(k, t ), J̇L(k, t ) J̈L(k, t ), and

...

JL (k, t ) in
MD simulations. These dynamic variables are needed for cal-

culations of quantities �i(k), i = 1, 2, 3 in the expressions for
CL(k, ω) and ωL

c (k) in Ref. [1]. Throughout this Comment we
will use reduced units of energy kBT = 1, mass m = 1, and
time τσ = 1.997 446 ps.

III. RESULTS AND DISCUSSION

As we mentioned above, the perfect agreement between
the fit-free theory proposed in Ref. [1] and MD results for
CL(k, ω) in their Fig. 4 looks too good to be true. Indeed, a
simplest check of their Eq. (18) in the ω → 0 limit results in
the nonzero value of CL(k, ω = 0),

CL(k, ω = 0) = 1

π

�1(k)�2(k)�3(k)3/2

B0(k)

≡ 1

π

�2(k)

�1(k)�3(k)1/2
, (1)

while any viscoelastic theory must result in CL(k, ω = 0) ≡ 0
as a consequence of the continuity equation. We cannot ex-
plain how the authors of Ref. [1] obtained in their Fig. 4 the
CL(k, ω → 0) ∝ ω2 behavior from their fit-free theory [their
Eq. (18)].

We calculated from their Eqs. (16) and (17) the “relaxation
parameters” �i(k), i = 1, 2, 3 and double checked the rela-
tions

�1(k) + �2(k) = 〈J̈ (−k)J̈ (k)〉
〈J̇ (−k)J̇ (k)〉 ,

where the right-hand side tends to a constant in the long-
wavelength limit and is simply the ratio of k dependences
shown in Figs. 1(a) and 1(b), and

�3(k) =
[
〈...

J (−k)
...

J (k)〉 − 〈J̈L(−k)J̈L(k)〉2

〈J̇L(−k)J̇L(k)〉
]/

[
〈J̈L(−k)J̈L(k)〉 − 〈J̇L(−k)J̇L(k)〉2

〈JL(−k)JL(k)〉
]
.

In Fig. 2 we show the k dependence of the relaxation param-
eters [1], and one can see the parameters �2(k) and �3(k)
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FIG. 2. Dependence of the “relaxation parameters” �i, i =
1, 2, 3 [Eq. (16) of Ref. [1]] on wave numbers for supercritical Ne
at T = 295 K and density 1600 kg/m3.

tending in the long-wavelength limit to nonzero values while

�1(k) ≡ 〈J̇L(−k)J̇L(k)〉
〈JL(−k)JL(k)〉

behaves in the k → 0 limit as ∝c2
∞k2, with c∞ being the high-

frequency speed of sound.
Now we can estimate how large is the deviation of

CL(k, ω = 0) from the correct zero value. Since the �1(k)
goes to zero in the long-wavelength limit and �2(k → 0)
and �3(k → 0) tend to finite nonzero values, the resulting
CL(k, ω = 0) taken from Eq. (18) of Ref. [1] should diverge
for k → 0. Indeed, in Fig. 3 one can observe the strong
increase of CL(k, ω = 0) ∝ k−2 in Ref. [1], which means
a wrong theoretical result compared with the exact relation
CL(k, ω → 0) = 0.

Now we will analyze the expression for the dispersion of
collective excitations [1]. Since only the relaxation parameter
�1(k) tends to zero as k2 in the long-wavelength limit, and
higher relaxation parameters �2,3(k) tend to constants in that
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FIG. 3. Dependence of the zero-frequency value CL (k, ω = 0)
[Eq. (18) of Ref. [1]] on wave numbers for supercritical Ne at
T = 295 K and density 1600 kg/m3.
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FIG. 4. Peak positions of the longitudinal current spectral func-
tion CL (k, ω), obtained from MD simulation (plus symbols with error
bars). The dispersion of the nondamped high-frequency acousticlike
modes with a long-wavelength asymptote (2) is shown by the line-
connected cross symbols. Equation (20) of Ref. [1] (line-connected
star symbols) contains a positive expression under the square root
only for the two lowest k points, and for larger k values no real ωL

c (k)
exist.

limit, one can easily estimate that their Eq. (20) for ωL
c (k)

tends to a constant for k → 0,

ωL
c (k → 0) = �2(0)√

2[�3(0) − �2(0)]
,

while the correct dispersion law had to recover in that limit
the hydrodynamic dispersion law ω(k → 0) = csk. In Fig. 4
we show the dispersion of collective acoustic modes esti-
mated from the peak positions of MD-derived CL(k, ω) (plus
symbols with error bars) and compare it with the dispersion
of “bare” (nondamped) high-frequency modes which in the
long-wavelength limit have a linear dispersion with the high-
frequency (elastic) speed of sound c∞,

ω∞(k → 0) =
[ 〈J̇L(−k)J̇L(k)〉
〈JL(−k)JL(k)〉

]1/2
∣∣∣∣∣
k→0

→ c∞k. (2)

The coupling to the faster dynamic modes (connected with
higher time derivatives of the longitudinal current) can only
slightly renormalize down the theoretical dispersion law, how-
ever, it will never result in the hydrodynamic speed of sound
cs and positive sound dispersion [11]. Within the theoretical
approach proposed in Ref. [1] it is impossible to obtain prop-
agating modes with an adiabatic speed of sound, because in
order to obtain it one has to include coupling with density
and energy (or heat) density fluctuations in the theoretical
scheme. And, as it was expected from the wrong behavior
of CL(k, ω) discussed above, the proposed expression for the
dispersion of longitudinal collective excitations is wrong too.
In Fig. 4 only for the two lowest k values did we obtain a
positive expression under the square root in their Eq. (20). For
higher wave numbers the expression under the square root
became negative, i.e., no propagating modes for those wave
numbers. It is not clear how in Fig. 5 of Ref. [1] the authors
were able to reproduce perfectly the MD data by using their

096301-3



COMMENTS PHYSICAL REVIEW B 103, 096301 (2021)

Eq. (20) and even reach the adiabatic speed of sound in
the long-wavelength region, that is impossible to do in their
theoretical approach. Even conceptually, their theoretical ap-
proach does not contain coupling to fluctuations of conserved
quantities, density n(k, t ), and energy density e(k, t ), and Eq.
(20) cannot result in a long-wavelength limit in a linear dis-
persion with the adiabatic speed of sound. In their run for the
“overarching goal of this research programme” the authors
forgot about the existing methodologies of calculations and
theories of collective excitations in liquids, which correctly
satisfy the exact relations and a large number of sum rules.

IV. CONCLUSION

The theoretical scheme proposed in Ref. [1] for the descrip-
tion of longitudinal collective excitations in simple liquids is
not consistent with hydrodynamics, because only one hydro-
dynamic variable, the longitudinal current, was used in that
scheme, which raised questions about whether the expressions
obtained in Ref. [1] for the longitudinal current spectral func-
tion CL(k, ω) and for the dispersion of collective excitations
are correct. We performed molecular dynamics simulations on
a simple supercritical Ne at 295 K and density 1600 kg/m3

with the purpose of numerically checking these expressions.
We showed that the expression proposed in Ref. [1]

for CL(k, ω) does not have the correct low-frequency limit
CL(k, ω → 0) and even diverges in the long-wavelength limit,
which is wrong, while according to the continuity equation
it must be CL(k, ω = 0) ≡ 0. We cannot explain why their

Fig. 4 shows perfect agreement of their theoretical CL(k, ω)
with MD data.

Within the theoretical scheme proposed in Ref. [1] it is
impossible to recover the hydrodynamic dispersion law in
the k → 0 limit and macroscopic adiabatic speed of sound,
because the coupling of the longitudinal current with other
fluctuations of conserved quantities is absent in that scheme.
We checked the expression proposed in Ref. [1] for the disper-
sion of collective excitations and found that with increasing
wave numbers the expression under the square root in their
Eq. (20) becomes negative, i.e., wrong result. We cannot ex-
plain why their Fig. 5 shows perfect agreement between their
theoretical expression and the MD-obtained dispersion of col-
lective excitation, and even recovers the hydrodynamic linear
dispersion law with cs. We would suggest for the authors
of Ref. [1] to show their similar checks for the correlators
〈J̈L(−k)JL(k)〉 and 〈...

JL (−k)J̇L(k)〉 as we presented in Fig. 1,
as well as to reveal the k dependence of their �i(k). This will
definitely allow us to find out why the low-frequency limit
of CL(k, ω), their Eq. (18), and the long-wavelength limit of
ωL

c (k), their Eq. (20), do not correspond to the data in their
Figs. 4 and 5, respectively.
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