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Anharmonic theory of superconductivity in the high-pressure materials
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Electron-phonon superconductors at high pressures have displayed the highest values of critical supercon-
ducting temperature Tc on record, now rapidly approaching room temperature. Despite the importance of high-P
superconductivity in the quest for room-temperature superconductors, a mechanistic understanding of the effect
of pressure and its complex interplay with phonon anharmonicity and superconductivity is missing, as numerical
simulations can bring only system-specific details, clouding out key players controlling the physics. Here we
develop a minimal model of electron-phonon superconductivity under an applied pressure which takes into
account the anharmonic decoherence of the optical phonons. We find that Tc behaves nonmonotonically as a
function of the ratio �/ω0, where � is the optical phonon damping and ω0 is the optical phonon energy at zero
pressure and momentum. Optimal pairing occurs for a critical ratio �/ω0 when the phonons are on the verge of
decoherence (“diffusonlike” limit). Our framework gives insights into recent experimental observations of Tc as
a function of pressure in the complex BCS material TlInTe2.
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I. INTRODUCTION

When a crystal lattice is subjected to (hydrostatic) pressure
deformation, its phonon frequencies change in response to the
change in volume in a way which is controlled by the ma-
terial’s Grüneisen parameter and hence by the anharmonicity
of the vibration modes. However, the effects of these changes
in the phonon frequencies and of the related anharmonicity
on the superconducting properties of a material have largely
remained poorly understood. Filling this knowledge gap is
an urgent problem in order to develop an understanding of
superconductivity in materials under pressure, which include
the highest Tc values recorded so far in high-pressure hydride
materials [1–4].

On the one hand, a large number of experimental works
have shown how the superconducting critical temperature Tc

changes as a function of pressure P for a variety of materials.
For elemental superconductors, a commonly observed trend
in experiments is a decrease of Tc with increasing P, which
has been theoretically predicted upon analyzing the behavior
of the Eliashberg electron-phonon coupling function α2g(ω)
as a function of P (see Refs. [5–9]). Similar behavior is seen
in many technologically important materials, such as Nb3Sn
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(see Ref. [10]). An increase of P typically shifts the α2g(ω)
distribution to higher frequencies, thus driving the system into
an unfavorable regime as per the Bergmann-Rainer criterion
[11] for the electron-phonon coupling. Notable exceptions to
the above standard rule for elemental superconductors are
represented by α-uranium [9,12], while another puzzling ma-
terial, bismuth, is known to have a very low Tc at ambient
pressure (on the order of millikelvins) [13,14] and a decent
Tc (7–8 K) at higher pressures [15]. In both these systems,
new effects play a role. In α-uranium the phonon density of
states is very rich in soft vibrational modes [16], traditionally
attributed to anharmonicity in crystals [17], although their
origin in α-uranium is still under debate [16]. In bismuth,
instead, the Debye energy is very close to the Fermi en-
ergy, thus leading to an almost vanishing attraction for the
Cooper pairs [14]. At high pressure, a more close-packed
structure becomes favorable, which changes the underlying
phonon physics, leading to more favorable conditions for
pairing.

On the other hand, exploring the effect of pressure on more
complex nonelemental materials has led to a zoology of trends
of Tc as a function of P (see, e.g., Ref. [18]). In such materials,
exceptions to canonical Tc behavior with pressure according to
phonon frequency shifts and the Bergmann-Rainer criterion
are numerous. In almost all cases, understanding and isolating
the key ingredients that affect Tc as a function of pressure at
the level of model Hamiltonians are a futile exercise given
their incredible microscopic complexity. The cuprates form a
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case in point where even the pairing mechanism is highly de-
bated and the quasiparticle picture is ill defined. Nevertheless,
in phonon-mediated superconductors, numerical simulations
have provided invaluable quantitative insights into the phonon
dispersion relations and into the structural stability of super-
conducting compounds, including many new materials.

More specifically, numerical calculations allow one to esti-
mate the anharmonicity of the various phonon modes involved
by comparing fully anharmonic calculations with harmonic
calculations [4,19]. As a matter of fact, early theoretical ap-
proaches [5–9] ignored phonon anharmonicity, while other
approaches [20–22], including more recent works on the
high-Tc hydrides [19,23–33], focus mainly on the phonon
energy renormalizations, neglecting anharmonic damping and
decoherence. The latter is a key ingredient that is needed to
properly describe the effect of pressure on phonon-mediated
Cooper pairing, as will be shown in our work. Thus, a mecha-
nistic picture of high-pressure effects on the superconducting
state which exploits the synergy between anharmonic phonon
decoherence and phonon energy renormalization is missing in
most materials, including elemental superconductors.

In this paper, we develop a minimal version of such a
theory by working with a gap equation in the weak-coupling
BCS limit. Crucially, to mediate Cooper pairing, we imple-
ment optical phonon propagators which contain the effect of
an external applied pressure and the resulting anharmonic
decoherence via the optical phonon damping [34,35]. The
analytical theory is able to provide predictions that allow
one to disentangle the complex interplay between pressure-
induced changes of optical phonon energy and anharmonic
decoherence and their effects on the Tc. The results of our
theory are presented in the specific context of a recent
high-pressure study on the superconductor TlInTe2. Different
physical regimes are predicted, which include (i) a monotonic
decrease of Tc with P as observed in many systems; (ii) a non-
monotonic trend with a minimum in conjunction with optical
phonon softening, which qualitatively explains recent exper-
iments in TlInTe2 from Ref. [36]; and (iii) a nonmonotonic
trend with a maximum in a regime of incoherent phonons
where the quasiparticle picture breaks down.

We emphasize that our goal is to approach this question
from a phenomenological viewpoint with key inputs from
experiments. We do not wish to provide accurate predictions
of Tc as a function of pressure—an elusive endeavor even
with state-of-the-art numerical methods. Rather, we take the
perspective that the coordination between decoherence and
frequency renormalization induced by phonon anharmonicity
can play a role dominant enough to provide a reasonable
qualitative understanding of experimental data. From such a
proof-of-principle demonstration, our expectation is that this
synergy between energy scales must necessarily constitute a
key ingredient of any serious future numerical first-principles
study that aims to understand superconducting properties of
materials such as TlInTe2.

II. EXPERIMENTAL STANDPOINT

Recent high-pressure Raman spectroscopy, x-ray diffrac-
tion, and transport measurements in TlInTe2 along with first-
principles band structure calculations uncovered a change in

Fermi surface topology due to a Lifshitz transition between
6.5 and 9 GPa, leading to the formation of enlarged electron
pockets at the Fermi level. This feature is preceded by a
superconducting transition at 5.7 GPa with Tc � 4 K. With
increasing pressure, Tc decreases steadily and rises again with
a minimum located around 10 GPa. Concurrent with this
V-shaped Tc “anomaly,” there is a further softening of the
Ag phonon mode. It is natural to attribute such a V-shaped
Tc behavior to changes in electronic density of states or the
softening of the Ag phonon mode, as was concluded by the
authors of Ref. [36]. After all, both these quantities play key
roles in controlling superconducting properties, especially in
phonon-mediated superconductors.

But on closer examination, these arguments are debatable
at best. First, the theoretically calculated electronic density
of states (DOS) from the electron pocket becomes larger in
the regime between 6 and 9 GPa due to the Lifshitz transi-
tion. However, this is exactly the regime where Tc decreases,
thus eliminating the electronic DOS as the key driver for
the observed trend in Tc. Second, the softening of the Ag

phonon mode occurs around P∗ ∼ 12.5 GPa greater than the
pressure where Tc is minimum. But any argument justifying
a decrease in Tc with increasing phonon frequency implicitly
invokes the Bergmann-Rainer criterion. While this criterion
works well for P < P∗, the same argument fails when P > P∗
since a softening phonon mode would imply a second dip in Tc

approximately symmetric with respect to P∗. This, however,
seems to contradict experimental observations.

Having ruled out a dominant role of (purely) phonon
frequency shifts or electronic DOS in explaining observed ex-
perimental behavior, we turn to the possibility that the phonon
linewidth could be a key player in determining superconduct-
ing properties in TlInTe2. Raman data as a function of pressure
indicate that anharmonicity in this material is strong enough
to significantly increase the phonon linewidth � with respect
to the peak frequency ω′, the latter being controlled by the
key parameter ω0, but weak enough that the phonons remain
coherent (� < ω0). As we will see below, this is precisely the
regime where Tc correlates with the ratio �/ω0. The delicate
balance in the hierarchy of scales and the possibility of dis-
entangling other effects such as electronic DOS and phonon
frequency shifts make TlInTe2 an ideal playground to test the
hypothesis presented in this paper. We note that the experi-
mental situation in TlInTe2 is evolving. For example, it is still
not clear whether the normal state yielding the superconductor
exhibits all conventional Fermi liquid properties. To date,
there have been no attempts to determine the pairing symme-
try of the superconducting state either. Even the nature and full
symmetry characterization of phonons responsible for pairing,
the strength of individual electron-phonon couplings, etc., are
undetermined. Furthermore, uncertainties exist between ex-
periment and theory in the measurement of the bulk modulus
and its derivative, which could, in principle, change the finer
details of the relationship between pressure and frequency. So
far, we know of no improved equation of state that accounts
for all the experimental measurable quantities precisely, so
we use the best candidate available in the literature, i.e., the
well-known Birch-Murnaghan equation of state for deriving
the relationship between pressure and frequency (used also
in the experimental study of Ref. [36]). Hence, we keep our
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formalism simple but general enough to accommodate these
uncertainties until future experiments paint a more complete
picture of the material’s phenomenology.

III. THEORETICAL FRAMEWORK

A. Optical phonon energy under pressure

We start by analyzing the effect of external pressure on
the optical phonons of a crystal lattice. The main effect of
pressure is to induce a negative volume change in the ma-
terial. The change in volume, in turn, is related to a change
in phonon frequency through the Grüneisen parameter, γ =
−d ln ω′/ d ln V , via [37]

ω′(V )

ω′
P=0

=
(

V

V0

)−γ

, (1)

where ω′
P=0 refers to the optical phonon energy at zero ambi-

ent pressure. The above relations apply to individual phonon
modes with frequency ω′.

The volume change is related to the change in pressure de-
scribed by the Birch-Murnaghan equation of state [38], which
is derived based on nonlinear elasticity theory and provides
an expression for P(V ). Upon replacing V with ω′ in (1),
one obtains the following relation between the optical phonon
frequency ω′ and the applied pressure [38]:

P(X ) = 3
2 B0(X 7 − X 5)[1 + η(1 − X 2)], (2)

with X ≡ (ω′/ω′
P=0)1/3γ . Upon inverting Eq. (2) to obtain

ω′ as a function of P, it is clear that ω′ is a monotonically
increasing function of P in the regime of interest here, with
the increase being modulated by anharmonicity through γ .
Also, B0 is the bulk modulus, while η = (3/4)(B′

0 − 4), with
B′

0 = dB0/dP.
In the above relations, the frequency ω′ refers to the real

part of the phonon dispersion relation (which already contains
the renormalization shift due to anharmonicity [39]), whereas
the imaginary part of the dispersion relation is related to the
phonon damping coefficient � (the inverse of the phonon
lifetime) as follows (e.g., Eqs. (23)–(27) in Ref. [39]):

ω2 = ω2
0 − i ω � + O(q2), (3)

ω′ ≡ Re(ω) = 1

2

√
4 ω2

0 − �2 + O(q2), (4)

�

2
≡ Im(ω) + O(q2). (5)

Quantitative numerical calculation of � can be done using the
self-consistent phonon (SCP) methodology [39,40] for spe-
cific systems [41], but that is not the goal of our paper, which
is rather focused on generic qualitative trends in terms of the
effect of � on the pairing and on Tc. Hence, ω′ denotes the
renormalized phonon energy measured, e.g., in Raman scat-
tering (i.e., the Raman shift), while � represents the linewidth
of the Raman peak. Let us emphasize that these expressions
are at leading order in the momentum q and higher-order
corrections O(q2) are neglected at this stage.

We now introduce a key dimensionless parameter for the
subsequent analysis

D ≡ �/ω0, (6)

FIG. 1. Mechanism of Tc enhancement through anharmonicity
with two phonon modes. Left: In the absence of anharmonic deco-
herence (D = 0), the Stokes and anti-Stokes processes are insensitive
to their phase and are thus indistinguishable. This scenario leads
to ordinary Cooper pairing. Middle: Weak anharmonic decoher-
ence (D ∼ D∗) sensitizes the phase of the Stokes and anti-Stokes
processes and enables them to act coherently and enhance the ef-
fective coupling of electrons and phonons, leading to strong Cooper
pairs. Right: For very strong anharmonicity (D � D∗), the Stokes
and anti-Stokes processes are only weakly sensitive to their phases,
making them effectively indistinguishable while acting to reduce
the effective coupling of electrons and phonons, leading to weak
pairing.

which quantifies the degree of coherence of the phonon. Low
values of D signify high coherence of the phonons, which can
thus be treated as approximately independent quasiparticles,
whereas, at the opposite end of the spectrum, very large D
values correspond to incoherent vibrational excitations in the
diffusive regime (“diffusons” in the language introduced by
Allen, Feldman, and coworkers [42]). The schematic picture
that will emerge from the subsequent theoretical analysis is
anticipated in Fig. 1.

In the following section, we introduce the theoretical
framework for the Cooper pairing, and we will start by consid-
ering how the superconducting critical temperature Tc varies
as a function of D.

B. Gap equation with anharmonic phonon damping

For a generic fermionic Matsubara frequency ωn and mo-
mentum k, we denote the gap function as �(iωm, k). We
assume throughout a quadratic dispersion relation for the
electronic band. With constant coupling g, the gap equa-
tion can be derived from the Eliashberg equations in the
one-loop (weak-coupling) approximation and takes the form
[43,44]

�(iωn, k) = g2

βV

∑
q,ωm

�(iωm, k + q)	(q, iωn − iωm)

ω2
m + ξ 2

k+q + �(iωm, k + q)2
, (7)

where β is the inverse temperature and V is the volume. In
Matsubara frequency space, we choose the pairing mediator to
be a damped optical phonon given by the bosonic propagator
[45]

	(q, i�n) = 1

�(q)2 + �2
n + �(q)�n

, (8)
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where �n is the bosonic Matsubara frequency, �(q) =
ω0 + â q2 is the phonon dispersion, and the damping fac-
tor, �(q) ≡ Dω0, is a constant independent of momentum
for high-frequency optical phonons [34]. In accordance with
the Klemens formula [34], one can also include an addi-
tional prefactor, 1 + 2

eω0/2T −1 , in the damping term �(q) to
account for a temperature-dependent phonon linewidth. We
find that this has a negligible effect on the results discussed
below. The factor D controls the strength of the damping
term and may change with pressure. The leading-order con-
tribution to the square of the dispersion is �(q)2 � ω2

0 +
vq2, where v = 2ω0â. This is the first momentum correc-
tion which was neglected in Eq. (5). Assuming an isotropic,
frequency-independent gap �(iωn, k) ≡ �, we can set the
external frequency and momentum to zero without any loss
of generality (see our note [46] regarding the ωn = 0 simpli-
fication). Converting the resulting summation into an energy
integral (and assuming a quadratic dispersion relation for the
fermions), the gap equation becomes

1 =
∑
ωm

∫ ∞

−μ

λT dξ[
vξ + M2 + ω2

m − Dωmω0
][

ω2
m + ξ 2 + �2

] ,

(9)

where M2 = μv + ω2
0. Here we have defined the effective

coupling constant λ = N (0)g2, N (0) is the density of states
at the Fermi level, and μ is the chemical potential. We can
now utilize the energy integral identity

∫ ∞
−∞

dξ

(zξ+s)(ξ 2+r2 ) =
πs

r(s2+z2r2 ) in the limit of large chemical potential to yield the
gap equation

1 =
∑
ωm

λπT
(
M2 + ω2

m − Dωmω0
)

√
ω2

m + �2
[(

M2 + ω2
m − Dωmω0

)2 + (
ω2

m +�2
)
v2

] .

(10)

We can now perform the final Matsubara sum using meth-
ods described in Ref. [47] after seeking a condition for
Tc by setting � = 0. Defining p = ω0D + iv and Q± =
1
2 (p ±

√
p2 − 4M2) leads to an equation for Tc that can be

numerically solved:

−M ′2 = ψ

(
1

2

)
+ 1

4

[{
p′ − Q′

+
Q′+ − Q′−

ψ

(
1

2
− Q′

+
2πT ′

c

)

+ −p′ + Q′
−

Q′+ − Q′−
ψ

(
1

2
− Q′

−
2πT ′

c

)
+c.c.

}
+{D → −D}

]
,

(11)

where ψ (x) is the digamma function and the primed quantities
are dimensionless and are defined as Q′

± ≡ Q±√
λ

, T ′
c = Tc√

λ
, and

so on.

IV. RESULTS

A. Schematic Tc dependence on optical phonon
energy and anharmonicity

Upon numerically solving Eq. (11) for a constant damping
coefficient �, we can study the evolution of Tc as a func-
tion of the dimensionless parameter D ≡ �/ω0. The trend is

FIG. 2. An illustration of the two regimes present in our model:
the “coherent” regime, where the critical temperature grows with
D ≡ �/ω0, and the “incoherent” regime, where the functional depen-
dence is inverted. In the coherent regime, the optical phonons behave
like independent quasiparticles with frequencies renormalized by
anharmonicity, whereas in the incoherent regime the quasiparticle
coherence breaks down due to the large anharmonic damping.

shown in Fig. 2. At low D values, Tc increases with D, then
goes through a maximum, after which it then decays sharply
upon further increasing D. The maximum appears around
D∗ ∼ O(1), with its exact value determined by the micro-
scopic parameter M2. This corresponds exactly to the scale at
which the real and imaginary parts of the phonon dispersion
relation become comparable (� ∼ ω0) and the phonons turn
into quasilocalized diffusonlike excitations [42]. In this sense,
this is analogous to the Ioffe-Regel crossover scale [48].

The mechanistic picture shown in Fig. 1 can be used to
understand the nonmonotonic dependence of Tc upon the an-
harmonic decoherence parameter D. To begin, we note that in
the absence of D, the gap equation in Eq. (9) has even terms
only in the Matsubara frequency transfer ωm. Hence, both con-
structive Stokes and destructive anti-Stokes processes, which
emit and absorb energy, respectively, contribute to the gap
equation equivalently. However, when D is nonzero, Eq. (9)
is sensitive to the sign of the energy transfer, thereby distin-
guishing the two processes. From this property, it is clear that
the energy integral and Matsubara summations in Eqs. (9) and
(10) lead to terms that are proportional to D in the numerator
of the gap equation. Provided D � D∗, this effectively in-
creases the electron-phonon coupling λ and hence the Cooper
pair binding energy. For values of D much larger than D∗,
the phonons are extremely damped, and Stokes and anti-
Stokes processes again contribute approximately equally to
the gap equation, thus reducing the effective electron-phonon
coupling.

At low values of damping � (low-D regime) and �/ω0 �
1, the real part of the dispersion relation dominates over
the imaginary part, and the phonons behave like coherent
quasiparticles with well-defined momentum k. In the oppo-
site regime of large anharmonic damping �/ω0 � 1 (hence
large D), we have Imω > Reω; hence, the phonons lose their
coherence, and the quasiparticle approximation breaks down.
These two regimes correspond to two different Cooper pairing
regimes. One regime we call the “coherent” regime (because
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here phonons behave like coherent quasiparticles), where Tc

correlates positively with anharmonic damping (hence where
damping enhances Tc). The second regime we call “incoher-
ent,” and here, instead, Tc decreases with further increasing
the anharmonic damping. Notice that, in the coherent regime,
Tc increases (decreases) as the optical phonon energy ω0 de-
creases (increases), whereas the opposite trends apply in the
incoherent regime. This implies that the effect of pressure can
either promote or depress superconductivity depending on the
underlying physics of the optical phonons in a given lattice.
In the Appendix, we provide additional plots for the variation
of Tc with other physical parameters M ′ and v′ appearing in
Eq. (11). For low and high D, Tc is barely affected by M ′ and
v′, whereas the peak value of Tc is suppressed at critical D∗
with increasing values of both these parameters. On the other
hand, the peak D∗ itself increases with M ′, while it is barely
affected by v′.

The theoretical prediction in Fig. 2 can be fitted with the
following simple functions for the coherent and incoherent
regimes, respectively:

Tc(D) ∼ a1 + a2 D ea3 D, D < D∗,

Tc(D) ∼ D−1, D > D∗, (12)

with an > 0.
We will show below that these two regimes lead to radi-

cally different scenarios in terms of the dependence of Tc on
the external pressure P. This conceptual schematization will
be shown in the next sections to have a number of conse-
quences for a deeper mechanistic understanding of the effect
of pressure on superconductivity in complex materials.

In Fig. 2 we assume that the pairing is mediated by high-
frequency optical phonons near the Debye frequency ωD for
which the Klemens model gives a simplified (constant) an-
harmonic damping coefficient � = Dω0. In the more general
case, the Klemens damping is given by � = αω5

0, where α

is a prefactor which depends on the microscopic physics
which governs the decay of the optical phonon into two
acoustic phonons. Notably, α ∼ γ 2, where γ is the lattice
Grüneisen parameter introduced above. The latter is a function
of the interatomic potential [49] and hence of the electronic
orbital/bonding physics and can be easily computed for a
given phonon mode in a given material from first principles
[50].

Using this more general Klemens formula for a generic
optical phonon that mediates the pairing, we obtain the trends
shown in Fig. 3. A linear decreasing trend of Tc as a function
of P is predicted by our theory for the incoherent-phonon
(strongly anharmonic) regime. A linearly decaying trend of
Tc with P was recently observed in the strongly anharmonic
AlH3 high-pressure hydride [51] as well as in the SC-I phase
of CeH10 in Ref. [52]. In more standard systems, a linear de-
cay of Tc with increasing P has been reported in the literature
for simple (e.g., elemental) superconductors [9,18,53].

B. Theoretical analysis of superconductivity in TlInTe2

at high pressure

In this section, we explore the potential of the above frame-
work to rationalize recent experimental data for which highly

FIG. 3. The normalized critical temperature with D = α ω4
0

and ω0 given by Eq. (2). α decreases from purple to red, α =
{0.5, 0.48, 0.45, 0.4, 0.35} × 10−7. The y axis is dimensionless in
our units. ω0(P) is taken from the experimental fit shown in Fig. 4(a).

nontrivial (e.g., nonmonotonic) dependences of Tc upon P
have been observed and for which a theoretical explanation is
lacking. We study the paradigmatic case of TlInTe2, for which
accurate experimental data are available for the phonon mode
Ag involved in the Cooper pairing. Data are available in terms
of the optical phonon energy and of the anharmonic damping,
as measured by Raman scattering, and also for Tc as a function
of pressure [36].

We start by fitting the experimental data for the frequency
of the Raman-active Ag optical phonon (renormalized by
anharmonicity) ω′ as a function of pressure, displayed in
Fig. 4(a). By using Eq. (2) for the fitting, we get

B0 = 15 GPa, γ = 0.3,
(13)

η = −2.475, ω′
P=0 ≈ ω0,P=0 = 127 cm−1,

where we fixed η = −2.475, as found experimentally from
the P-V relation in Ref. [36]. The value that we found for γ is
close to the value found for the Ag mode in this material [36],
γ ∼ 0.23, and larger values (up to 0.8) were also reported
in the literature [54]. Also, the value of the bulk modulus
that we found from our fitting (15 GPa) is quite close to the
experimental value (19 GPa) reported in Ref. [36].

The fitting is shown in Fig. 4(b), where the frequency
values refer to ω′. The latter was obtained by using Eq. (5) in
combination with Eq. (2). The optical mode energy increases
upon increasing P in a conventional way [37] up to P =
8 GPa, after which phonon softening, linked to the increase of
anharmonic damping �, is observed upon further increasing
P, as shown in Fig. 4(a).

The increase of anharmonicity with pressure is clearly
evidenced by the behavior of the Raman peak linewidth �,
as shown in Fig. 5(a). Notice that the percentile growth of
the linewidth under pressure is much larger than that of the
normalized Raman shift. In this sense, the material is char-
acterized by giant anharmonicities, and the damping effects
are fundamental. Here, in the same panel, different empirical
trends are shown, alongside the experimental data, which
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FIG. 4. (a) The normalized Raman shift (proportional to ω′) of
the Ag phonon mode in TlInTe2 as a function of pressure and its fit
to an empirical function. The value at zero pressure is ≈128 cm−1.
Data are taken from [36]. (b) Comparison between the best empirical
fit of [36] [shown in (a)] and Eq. (2) in terms of ω0 ≈ ω′ (� � ω0).
The parameters are set to the values shown in Eq. (13).

manifest a significant scatter. In general, � � ω0 for this
system, such that this case belongs to the coherent regime
discussed in the previous section and in Fig. 2. Indeed, we
checked that ω′ and ω0 differ by only about 0.01% at all P
values. These different trends for � have been implemented,
along with the fitted optical phonon energy ω′ from Fig. 4, in
our theoretical gap-equation framework for the prediction of
Tc presented in the previous section. The resulting theoretical
Tc trends are shown in Fig. 5 in comparison with the exper-
imental Tc data from Ref. [36] as a function of the applied
pressure.

All the � trends in Fig. 5(a) clearly lead to the same qual-
itative dependence of Tc on P, with a minimum. The physics
behind this trend is explained by our theoretical framework:

FIG. 5. (a) The normalized linewidth of the Ag phonon mode
in TlInTe2 and three different sets of fits. The zero pressure value
is taken to be 3.2 cm−1. Data are taken from [36]. (b) The corre-
sponding theoretical calculations for the critical temperature (solid
lines) are compared with the experimental data (symbols). The col-
ors of the theoretical curves for Tc match the respective models
for the linewidth in (a). The parameters used in the model cor-
respond to â = 1, α = (6, 5.4, 5.4, 4.2) × 10−8 eV−4, μ′ = μ√

λ
=

(37.3, 32.5, 35.6, 24) for the orange, blue, green, and purple curves,
respectively. We also choose λ = 1, ω0 ∼ 15 meV = 1

2 v.

at low P, Tc decreases because of the increase in P, which
induces an increase of the optical phonon frequency ω′ or
ω0. The subsequent phonon softening leads to the minimum
and to an inversion of the trend: upon further increasing the
pressure Tc starts to rise. This is due to the fact that lower ω0

values lead to a Stokes/anti-Stokes constructive interference
(in the presence of anharmonic damping), which enhances the
Cooper pairing [35,55]. This behavior, with a minimum in Tc,
is independent of the particular � trend with P and, in fact,
occurs even for � constant with P.

The role of the � trend with P is to control the position of
the minimum as a function of pressure. Also, importantly, the
presence of a rise in � leads to a stronger rise after the min-
imum, which confirms that in the coherent regime Tc can be
strongly enhanced by the anharmonic damping, as discussed
in the context of Fig. 2. This finding has deep implications
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for high-Tc hydrogen-based materials, where the anharmonic
damping of the optical phonons can be significant and may
be tuned by the material design. Also, phonon softening could
also be enhanced by the electron-phonon interaction itself, as
discussed in Refs. [56,57].

V. CONCLUSION

We presented a theory of the pressure effect on Cooper
pairing in superconductors where the pairing is mediated by
generic bosonic excitations. Our theory is based on solving
the gap equation with a bosonic propagator that is damped
due to anharmonic decoherence. A specific calculation is pre-
sented for optical phonons which takes into account (i) the
anharmonicity of the phonon via the Klemens damping and
(ii) the effect of pressure on the phonon frequency. The theory
identifies two fundamental regimes as a function of the dimen-
sionless ratio D between anharmonic phonon damping and
phonon frequency. At low values of this ratio, Tc is strongly
enhanced by anharmonicity and, at the same time, decreases
with increasing pressure. At large values of the D ratio (after
a maximum), where the phonons are no longer well-defined
quasiparticles, Tc instead correlates positively with pressure
and is lowered by anharmonicity (see Fig. 2). Optimal pairing
occurs for a critical ratio D∗ when the phonons are on the
verge of decoherence (diffuson limit).

A linearly decreasing correlation between Tc and P [18]
is predicted to occur in the regime of strongly anharmonic
phonons. Furthermore, the theory provides a qualitative de-
scription of recent experimental data on TlInTe2 for which
phonon frequencies, anharmonic phonon damping, and Tc

were all measured experimentally. It predicts that Tc initially
decreases with P as a consequence of the optical phonon
energy increasing with P but then goes through a minimum
as the optical phonon starts to soften and to become more an-
harmonic, after which it rises with P. The predicted behavior
is well supported by the experimental data.

This theoretical picture provides a mechanistic ra-
tionale for the pressure effect on superconductivity in
TlInTe2 by physically describing different regimes of the
negative/positive pressure effect on Tc. By clarifying the deep
interplay between anharmonicity of the bosonic glue and pres-
sure effects on the pairing mechanism, the theory provides
guidelines for material design which may prove useful for
discovering and/or engineering materials with enhanced Tc. In
future work, the presented framework could be combined with
models of strain-dependent critical properties in technolog-
ically important materials such as Nb3Sn, where anharmonic
phonon generation was recently shown to play a key role [58].
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APPENDIX

In Fig. 4, the functional form of the empirical fits of the
phonon linewidth is given by the following expression:

f (x)fit = 0.00064035 x5 − 0.00398124 x3 + 1.39603 x + 128.166.

(A1)
This fitting function works well up to P ≈ 15 GPa. Interest-
ingly, it seems to capture also the turning of the data point
between 15 < P < 25, but it definitely fails in capturing the
last two points of the data set.

In Fig. 5, the Raman linewidth is normalized with respect
to the experimental zero-pressure value, taken to be 3.2 cm−1.
The orange, blue, green, and purple curves shown in Fig. 5(a)
are given by, respectively,

�̃(P) = 1.09375, (A2)

�̃(P) = 0.3125

(
0.09523 (0.4422 P + 0.0597)[1 − tanh(7.326 − P)] + 3.3 P � 7.326

0.356 P + 1 7.326 < P

)
, (A3)

�̃(P) = 0.3125

(
0.09523(0.4422 P + 0.0597)[1 − tanh(11.326 − P)] + 3.7 P � 11.326

0.5 P − 1.47 11.326 < P

)
, (A4)

�̃(P) = 0.3125

(
0.09523(0.1822 P + 0.0597)[1 − tanh(11.326 − P)] + 3.7 P � 11.56

0.1952 P + 1.7 6 < P

)
. (A5)

Additionally, the parameters for Fig. 5(b) are as follows for
the orange, blue, green, and purple curves, respectively:

α = 6 × 10−8, μ′ = 37.3, (A6)

α = 5.4 × 10−8, μ′ = 32.5, (A7)

α = 5.4 × 10−8, μ′ = 35.6, (A8)

α = 4.2 × 10−8, μ′ = 24, (A9)

where we set â = 1 (the optical phonon stiffness) and μ′ =
μ√
λ

. This corresponds to μ ∼ 10 eV for a BCS supercon-

ductor with ω0 ∼ 15 meV = 1
2v. We have checked that the

dependence of ω′ on P is predominantly controlled by the
P dependence of ω0, whereas the contribution of the P de-
pendence of � in the square root appearing in the expression
for ω′ is much smaller (which is also consistent with our
conclusions that the experimental data for TlInTe2 are largely
in the weak-anharmonicity coherent-phonon regime).

094519-7



SETTY, BAGGIOLI, AND ZACCONE PHYSICAL REVIEW B 103, 094519 (2021)

FIG. 6. Plot of the dimensionless critical temperature Tc as a function of D for various v′ (left) and M ′ (right). We have chosen M ′ = 2
(left) and v′ = 0.5 (right). The Klemens factor has a negligible effect in both cases.

In Fig. 6, we also plot the dimensionless Tc as a function of
D for various v′ and M ′. As stated in the main text, increasing

both v′ and M ′ reduces the peak Tc. While v′ barely has an
effect on the critical D∗, increasing M ′ increases D∗.
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