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Voltage staircase in a current-biased quantum-dot Josephson junction
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We calculate the current-voltage (I-V ) characteristic of a Josephson junction containing a resonant level in
the weakly coupled regime (resonance width small compared to the superconducting gap). The phase φ across
the junction becomes time dependent in response to a DC current bias. Rabi oscillations in the Andreev levels
produce a staircase I-V characteristic. The number of voltage steps counts the number of Rabi oscillations per 2π

increment of φ, providing a way to probe the coherence of the qubit in the absence of any external AC driving.
The phenomenology is the same as the Majorana-induced DC Shapiro steps in topological Josephson junctions
of Choi et al. [Phys. Rev. B 102, 140501(R) (2020)]—but now for a nontopological Andreev qubit.
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I. INTRODUCTION

A single-mode weak link between superconductors sup-
ports a two-level system with a spacing that is adjustable via
the superconducting phase difference [1,2]. Because Andreev
reflection is at the origin of the phase sensitivity, the levels are
called Andreev levels. Although their existence was implicit
in early studies of the Josephson effect [3], the characteristic
dependence ∝

√
1 − τ sin2(φ/2) of the level spacing on the

phase φ, with τ the transmission probability, was only identi-
fied [4] with the advent of nanostructures. The present interest
in quantum information processing is driving theoretical [5,6]
and experimental [7–10] studies of Andreev levels as qubits.

To assess the coherence of the qubit one would use AC
microwave radiation of the two-level system and perform a
time-resolved detection of the Rabi oscillations of the wave
function [11]. In this paper we will show how a DC current
IDC and measurement of the time-averaged voltage V̄ can be
used to detect Rabi oscillations of an Andreev qubit: The
staircase dependence of V̄ on IDC counts the number of Rabi
oscillations per 2π increment of φ.

Our study is motivated by Choi, Calzona, and Trauzettel’s
report [12] of such a remarkable effect (dubbed “DC Shapiro
steps”) in a Majorana qubit—which is the building block of
a topological quantum computer. As we will see, neither the
unique topological properties of a Majorana qubit (its non-
Abelian braiding and fusion rules) nor its specific symmetry
class (class D, with broken time-reversal and spin-rotation
symmetry) are needed, a similar phenomenology can be found
in a nontopological Andreev qubit with preserved symmetries
(class CI).

The outline of this paper is as follows. In Sec. II we present
the model of the weak link that we will consider: a quantum
dot connecting two superconductors with a tunnel rate � small
compared to the superconducting gap �0. Such a Josephson
junction has been extensively studied [13–15] in the regime
where Coulomb charging and the Kondo effect govern the
charge transfer [16–18]. We will assume the charging energy
is small and treat the quasiparticles as noninteracting.

The dynamics of a current-biased, resistively shunted
quantum-dot Josephson junction is studied in Secs. III and IV.
The voltage staircase is shown in Fig. 3 and the one-to-one
relationship with the number of Rabi oscillations is in Fig. 6.
In the concluding section, Sec. V, we will explain why the
substitution of the quantum dot by a quantum point contact
will remove the voltage staircase.

II. ANDREEV LEVEL HAMILTONIAN

We consider the Josephson junction shown in Fig. 1, con-
sisting of a quantum dot in the normal state (N) coupled via a
tunnel barrier to superconductors (S) at the left and right, with
pair potentials �0eiφL and �0eiφR . We focus on the weakly
coupled regime, when the tunnel rates �L and �R through the
barrier are small compared to �0.

We assume that the fully isolated quantum dot has a single
electronic energy level E0 within an energy range � = �L +
�R from the Fermi energy μ. The normal-state conductance
GN is then given by the Breit-Wigner formula

GN = 2e2

h
τBW, τBW = �L�R

(E0 − μ)2 + 1
4�2

. (2.1)

Coupling of electrons and holes by Andreev reflection from
the superconductor produces a pair of Andreev levels at ener-
gies ±EA(φ), dependent on the phase difference φ = φL − φR

between the left and right superconductors.
A simplifying assumption of our analysis is that the

Coulomb charging energy U is small compared to � and can
be neglected. If U is larger than � but still smaller than �0,
the main effect of the charging energy is a shift of the energy
level of the dot, E0 �→ E0 + U/2. Provided E0 > 0 the ground
state remains a spin singlet [19], and we do not expect a qual-
itative change in our results. If U becomes larger than �0 the
supercurrent is reduced by a factor �/�0 because tunneling
of a Cooper pair into the quantum dot is suppressed [16–18].

To describe the nonequilibrium dynamics of the junction
we seek the effective low-energy Hamiltonian of time-
dependent Andreev levels. This requires information not only
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FIG. 1. Current-biased, resistively shunted Josephson junction,
formed out of two superconductors (phases φL and φR) separated by
an insulator containing a quantum dot (tunnel rates �L and �R from
the left and from the right). The superconducting phases become time
dependent when a voltage difference V develops in response to a DC
current IDC.

on the eigenvalues but also on the eigenfunctions. In Secs. II A
and II B we summarize results from Refs. [19–22] for the
time-independent situation, which we need as input for the
dynamical study starting from Sec. II C.

A. Andreev levels

For an arbitrary ratio of � and �0 the energies of the
Andreev levels are equal to the two real solutions ±EA of the
equation [20,21]

�(E , φ) + �E2
√

�2
0 − E2 = 0, (2.2)

with

�(E , φ) = (
�2

0 − E2
)[

E2 − (E0 − μ)2 − 1
4�2

]
+ �2

0�L�R sin2(φ/2). (2.3)

In the weak-coupling regime � � �0, assuming also |E0 −
μ| � �0, this reduces to

EA = �eff

√
1 − τBW sin2(φ/2),

�eff =
√

(E0 − μ)2 + 1
4�2, (2.4)

no longer dependent on �0. The two Andreev levels have an
avoided crossing at φ = π , separated by an energy

δE =
√

4(E0 − μ)2 + (�L − �R)2 (2.5)

(see Fig. 2).
The equilibrium supercurrent, at temperatures kBT � �, is

given by

Ieq(φ) = −2e

h̄

dEA

dφ
= e�L�R sin φ

2h̄EA(φ)
, (2.6)

with critical current (maximal supercurrent)

Ic = e

h̄

[√
(E0− μ)2 + 1

4
�2−

√
(E0 − μ)2 + 1

4
�2 − �L�R

]
.

(2.7)

There is no contribution from the continuous spectrum in the
weak-coupling regime [20].

FIG. 2. Andreev levels ±EA(φ) according to the full expres-
sion (2.2) (solid curve) and in the weak-coupling approximation (2.4)
(dashed curve, parameters E0 = 0.045, μ = 0, �L = �R = 0.115, all
in units of �0).

B. Effective Hamiltonian: Time-independent phase

For time-independent phases the effective low-energy
Hamiltonian in the weak-coupling regime � � �0 follows
from second-order perturbation theory [19,22],

H = − 1
2 (eiφL�L + eiφR�R)a†

↑a†
↓ + H.c.

+ (E0 − μ)(a†
↑a↑ + a†

↓a↓). (2.8)

Here, a↑ and a↓ are the fermionic annihilation operators of a
spin-up or spin-down electron in the quantum dot.

The corresponding Bogoliubov–de Gennes (BdG) Hamil-
tonian H is a 4 × 4 matrix contracted with the spinors 	 =
(a↑,−a†

↓, a↓,−a†
↑) and 	†,

H = 1
2	† H	 + E0 − μ. (2.9)

It is block-diagonal, so we only need to consider one 2 × 2
block, given by

H =
(

E0 − μ 1
2 eiφL�L + 1

2 eiφR�R
1
2 e−iφL�L + 1

2 e−iφR�R μ − E0

)
.

(2.10)
One readily checks that the eigenvalues ±EA of H are given
by Eq. (2.4).

C. Effective Hamiltonian: Time-dependent phase

When the left and right superconductors are at differ-
ent voltages ±V/2, the superconducting phase becomes time
dependent. We choose a gauge such that φL(t ) = φ(t )/2,
φR(t ) = −φ(t )/2, evolving in time according to the Joseph-
son relation

φ̇ ≡ dφ/dt = (2e/h̄)V. (2.11)

The voltage bias imposes an electrical potential on the quan-
tum dot, which shifts μ by an amount 1

2γ eV with γ =
(�L − �R)/�.
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The time-dependent BdG Hamiltonian then becomes

H(t ) =
(

E0 − μ − 1
4 h̄γ φ̇(t ) 1

2 eiφ(t )/2�L + 1
2 e−iφ(t )/2�R

1
2 e−iφ(t )/2�L + 1

2 eiφ(t )/2�R μ − E0 + 1
4 h̄γ φ̇(t )

)

= [
E0 − μ − 1

4 h̄γ φ̇(t )
]
σz + 1

2�
[
σx cos 1

2φ(t ) − γ σy sin 1
2φ(t )

]
. (2.12)

The Pauli matrices act on the electron-hole degree of freedom.
The corresponding current operator is given by

I (t ) = 2e

h̄

∂

∂φ
H(t ) = −e�

2h̄

[
σx sin

1

2
φ(t ) + γ σy cos

1

2
φ(t )

]
.

(2.13)

Notice that the Hamiltonian (2.12) depends both on φ(t )
and on φ̇(t ), unless �L = �R. It is possible to remove the φ̇

dependence by a time-dependent unitary transformation [23],
but since this does not simplify our subsequent calculations
we will keep the form (2.12).

III. VOLTAGE STAIRCASE

As shown in Fig. 1, a time-independent current bias IDC

is driven partially through the Josephson junction, as a super-
current IS(t ), and partially through a parallel resistor R as a
normal current IN(t ) = V (t )/R. Substitution of the Josephson
relation (2.11) gives the differential equation

dφ(t )/dt = (2eR/h̄)[IDC − IS(t )]. (3.1)

Here, we neglect the junction capacitance (overdamped
regime of a resistively shunted Josephson junction) [24]. We
work in the low-temperature regime, kBT � �0, so that we
may ignore thermal fluctuations of the phase due to the voltage
noise over the external resistance [25].

The supercurrent is obtained from the expectation value

IS(t ) = 〈	(t )|I (t )|	(t )〉, (3.2)

where the current operator is given by Eq. (2.13) and the wave
function evolves according to the Schrödinger equation

ih̄
d

dt
|	(t )〉 = H(t )|	(t )〉. (3.3)

As initial condition we take φ(0) = 0 and |	(0)〉 the eigen-
state of the Andreev level at −EA for φ = 0. The DC current
IDC is increased slowly from zero to some maximal value and
then slowly decreased back to zero. The I-V characteristic is
obtained by averaging V (t ) over a moving time window in
which IDC is approximately constant.

Results of this numerical integration are shown in Fig. 3.
We observe a staircase dependence of V̄ on IDC. The nonzero
voltage appears at the critical current (2.7) for the up sweep
and disappears at a slightly lower current for the down sweep.
(A similar difference between switching current and retrap-
ping current was found for the Majorana qubit [27].) The
voltage steps at IDC > Ic also show hysteresis: The voltage
jump up happens at larger DC current than the voltage jump
down. (This hysteresis also appears in the Majorana qubit; see
the Appendix.)

IV. ANDREEV QUBIT DYNAMICS

The voltage staircase of Fig. 3 is a signature of Rabi os-
cillations of the Andreev qubit formed by the two Andreev
levels in the Josephson junction, in much the same way that
the voltage steps of Ref. [12] were driven by Rabi oscillations
of a Majorana qubit. Let us investigate the Andreev qubit
dynamics.

A. Adiabatic evolution

In the adiabatic regime of a slow driving, h̄φ̇ � δE , tran-
sitions between the Andreev levels can be neglected and the
phase evolves in time as an overdamped classical particle,

φ̇ + dUA/dφ = 0, (4.1)

(a)

(b)

FIG. 3. Current-voltage characteristic of the quantum-dot
Josephson junction, for two different parameter sets [26]. The blue
curve is for increasing DC current, the red curve for decreasing
current. The Andreev levels in Fig. 2 correspond to the parameters
in (a). The critical current (2.7) is indicated by the black arrow.
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FIG. 4. Washboard potential (4.2) that governs the time depen-
dence of the superconducting phase in the adiabatic limit. The curve
is plotted for the junction parameters of Figs. 2 and 3(a), at a value
of IDC slightly above the critical current Ic.

moving in the “washboard potential” [24]

UA(φ) = −(2eR/h̄)[φIDC + (2e/h̄)EA(φ)], (4.2)

plotted in Fig. 4.
The time dependence of the phase resulting from integra-

tion of Eq. (4.1) is shown in Fig. 5(a). Figure 5(b) tracks
the adiabatic dynamics of the Andreev qubit, by plotting
the Bloch sphere coordinates R = (X,Y, Z ), with Rα (t ) =
〈	(t )|σα|	(t )〉. The qubit dynamics is 4π -periodic in φ,
because the Hamiltonian (2.12) is 4π -periodic: When φ is

increased by 2π , one has H �→ σzHσz, so on the Bloch sphere
the qubit is rotated by π around the z axis (X �→ −X , Y �→
−Y ). The full spectrum is a 2π -periodic function of φ, in
particular the Josephson current (2.6) is 2π -periodic—this
nontopological Josephson junction does not exhibit the 4π -
periodic Josephson effect that is the hallmark of a topological
superconductor.

B. Pulsed Rabi oscillations

Figures 5(c) and 5(d) show the full nonadiabatic dynamics,
obtained by integration of Eq. (3.3) for the same parameter
set as in Figs. 5(a) and 5(b). Transitions between the Andreev
levels produce pronounced Rabi oscillations of the qubit, also
visible as small oscillations in φ(t ).

Because the supercurrent carried by the two Andreev levels
±EA has the opposite sign, the interlevel transitions reduce IS,
thereby increasing IN = IDC − IS and hence V̄ . This is evident
from Fig. 5(c), which shows that the first 2π increment of φ,
without interlevel transitions, takes a time δt ≈ 1000 h̄/�0,
while the second 2π increment, with Rabi oscillations, only
takes a time δt = 700. The average voltage V̄ � 2π/δt is
therefore increased by a factor 10/7 because of the interlevel
transitions.

The Rabi oscillations are pulsed: They appear abruptly
when φ crosses (2n − 1)π and increases rapidly to 2nπ ,
which is the steepest part of the washboard potential (see
Fig. 4).

To estimate the Rabi frequency we substitute 	(t ) =
[u(t )eiφ(t )/4, v(t )e−iφ(t )/4] in the Schrödinger equation (3.3)

(a)

(b) (d)

(c)

FIG. 5. Time dependence of the superconducting phase (top row) and of the Bloch sphere coordinates of the Andreev qubit (bottom row),
in the adiabatic limit (left column) and in the nonadiabatic regime in which transitions between the Andreev levels produce Rabi oscillations
of the qubit (right column). The junction parameters are those of Fig. 3(a), at IDC = 0.08 e�0/h̄. The wave function was initialized as an
eigenstate of the lowest Andreev level −EA(0) at t = 0.

094518-4



VOLTAGE STAIRCASE IN A CURRENT-BIASED … PHYSICAL REVIEW B 103, 094518 (2021)

FIG. 6. Top panel: Portion of the I-V characteristic from Fig. 3(a), with red dotted lines into the bottom panels to show how the voltage
steps line up with the change in the number N of Rabi oscillations of the qubit in a 2π phase increment δφ.

and make the rotating wave approximation, discarding rapidly
oscillating terms ∝eiφ(t ):

ih̄u̇(t ) = [
E0 − μ + 1

2 eV (t )
]
u(t ) + 1

4�v(t ),

ih̄v̇(t ) = −[
E0 − μ + 1

2 eV (t )
]
v(t ) + 1

4�u(t ). (4.3)

(We have set �L = �R for simplicity.) If we further neglect the
slow time dependence of the voltage, we obtain oscillations
∝ sin2 ωRt of the Bloch vector components X,Y, Z with Rabi
frequency

h̄ωR =
√(

E0 − μ + 1
2 eV

)2 + (�/4)2. (4.4)

The oscillations in Fig. 5(d) near t = 1000 × h̄/�0 have a
period of 35 h̄/�0, while TR = π/ωR = 40 h̄/�0 if we set
V = RIDC, in reasonable agreement.

C. Voltage steps count Rabi oscillations

The key discovery of Ref. [12] is that steps in the time-
averaged voltage track the change in the number of Rabi
oscillations of the Majorana qubit per 2π increment of the
superconducting phase. Figure 6 shows the same correspon-
dence for the Andreev qubit.

If we estimate the duration δt of a 2π phase increment
by the product of the number N of Rabi oscillations and the
Rabi period TR, we obtain the estimate (2e/h̄)V̄ = 2π/δt �
2ωR/N . A stepwise decrease of N with increasing IDC would
then produce a stepwise increase of V̄ . This argument is sug-
gestive, but does not explain the sharpness of the steps. We

have no quantitative analytical derivation for why the steps
are as sharp as they appear in the numerics.

V. DISCUSSION

Two lessons learned from this study are as follows: (1)
Rabi oscillations of an Andreev qubit can be counted “one by
one” without either requiring time-resolved detection or AC
driving. (2) The voltage staircase phenomenology of Ref. [12]
does not need a topological Majorana qubit — it exists in a
conventional Andreev qubit.

We worked in the weak-coupling regime � � �0 because
it simplifies the calculations, but also for a physics reason: The
voltage staircase is suppressed when � becomes larger than
�0, due to a well-known decoherence mechanism [25,28]:
equilibration of the Andreev levels ±EA(φ) with the continu-
ous spectrum at |E | > �0 when φ crosses an integer multiple
of 2π . Let us discuss this in a bit more detail.

For �  �0 the Andreev levels are given by

EA = �0

√
1 − τBW sin2(φ/2), (5.1)

according to Eq. (2.2), with τBW the Breit-Wigner transmis-
sion probability (2.1). The difference with the weak-coupling
result (2.4) is that the reduced gap �eff has been replaced
by the true gap �0. This means the Andreev level merges
with the superconducting continuum whenever φ = 0 modulo
2π . As the phase evolves in time in response to the current
bias, each 2π phase increment will restart from an equilibrium
distribution.
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Now if we examine Figs. 5(c) and 5(d), we see that the
Rabi oscillations are pulsed by the rapid increase of the phase
in the (π, 2π ) interval, and only fully develop in the (2π, 3π )
interval. Equilibration at φ = 2π will restart the cycle from
t = 0, suppressing the Rabi oscillations and hence the voltage
staircase.

For the same reason a superconducting quantum point con-
tact will not show the voltage staircase: Its Andreev levels
also reconnect with the superconducting continuum at φ = 0
modulo 2π .

This argument points to one difference in the Majorana
versus Andreev phenomenology of the voltage staircase: A
topological Josephson junction needs to be magnetic in order
to prevent the equilibration of the Majorana modes with the
continuum at φ = 0 modulo 2π [29]. In a nontopological
quantum-dot Josephson junction this can achieved without
breaking time-reversal symmetry.

As a topic for further research, it would be worthwhile to
see if the voltage staircase can be used to count the number
of Rabi oscillations over multiple 2π phase increments, since
that would provide additional information on the coherence
time of the qubit. This could involve the constructive interfer-
ence of Landau-Zener transitions at φ = π, 3π, . . . [30].
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APPENDIX: HYSTERESIS OF THE VOLTAGE STAIRCASE
FOR THE MAJORANA QUBIT

The voltage staircase of the Andreev qubit is hysteretic,
and the steps appear at a higher current for the up sweep than
for the down sweep. No hysteresis was reported in Ref. [12],

FIG. 7. Hysteretic voltage staircase of the Majorana Josephson
junction, for the parameters of Ref. [12], Fig. 3. The blue curve
is for increasing DC current, the red curve for decreasing current.
(The voltage V̄ is averaged over a time window δt such that δt ×
dIDC/dt = 10−3 eEz/h̄.)

so here we show that it is present for the Majorana qubit as
well.

Instead of Eqs. (2.12) and (2.13), one has for the Majorana
qubit the time-dependent Hamiltonian

H(t ) = Exσx + Ezσz cos 1
2φ(t ), (A1)

and current operator

I (t ) = 2e

h̄

∂

∂φ
H(t ) = −eEz

h̄
σz sin

1

2
φ(t ). (A2)

The Pauli matrices act on the fermion parity of two pairs
of Majorana zero modes, such that σx flips the even-even
parity state into the odd-odd parity state, while σz changes
the sign of the odd-odd parity state. While the physical origin
of the Majorana coupling terms is different from the Andreev
qubit, mathematically the Hamiltonian (A1) is equivalent to
Eq. (2.12) in the symmetric case �L = �R. (Switch σx ↔ σz

by a unitary transformation and replace Ex �→ E0 − μ and
Ez �→ �/2.)

In Fig. 7 we show the hysteretic voltage staircase, for
the same parameters Ez = 5 μeV, Ex/Ez = 0.67, and R =
0.827 h̄/e2 as in Ref. [12].
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