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We consider heterostructures obtained by stacking layers of two s-wave superconductors with significantly
different coupling strengths in the weak- and strong-coupling regimes. The weak- and strong-coupling super-
conductors are chosen with similar critical temperatures for bulk systems. Using dynamical mean-field theory
methods, we find a ubiquitous enhancement of the superconducting critical temperature for all the heterostruc-
tures where a single layer of one of the two superconductors is alternated with a thicker multilayer of the other.
Two distinct physical regimes can be identified as a function of the thickness of the larger layer: (i) an inherently
inhomogeneous superconductor characterized by the properties of the two isolated bulk superconductors where
the enhancement of the critical temperature is confined to the interface and (ii) a bulk superconductor with an
enhanced critical temperature extending to the whole heterostructure. We characterize the crossover between
these regimes in terms of the competition between two length scales connected with the proximity effect and the
pair coherence.
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I. INTRODUCTION

The design of artificial heterostructures has established
an ideal framework to engineer the properties of functional
materials by combining materials with different bulk behav-
iors. The advances in our ability to control the properties of
heterostructures allows us to realize tunable quantum phe-
nomena, which happen in the spectacular example of twisted
bilayer graphene [1,2]. Remarkable examples include het-
erostructures based on oxides [3–6] and two-dimensional Van
der Waals materials [7].

Any heterostructure is built by a series of interfaces
between different materials where a variety of fascinating
phenomena such as magnetism [8,9] and superconductivity
[5,6,10] can be observed even when they are not present in
the bulk of the constituent materials. The periodic repetition
of interfaces in different patterns offers a further handle to
design and engineer artificial compounds, thereby controlling
their functional properties [11].

Superconducting materials are among the most used bricks
to build heterostructures, not only for their intrinsic interest
but also because they are known to show the proximity effect,
which is associated with Cooper pairs leaking from a super-
conductor to another material across an interface [12–14].
For example, the proximity effect can be used to stabilize a
superconducting state at the interface, which either does not
exist in the bulk compound or requires different conditions to
be realized.
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This was proposed and realized in seminal works, mainly
using cuprate high-temperature superconductors [6,15,16].
In these examples, the key is to exploit the different prop-
erties of under- and overdoped compounds in order to
enhance the overall superconductivity. These ideas can have
a very wide range of applications, for example, building
heterostructures of materials with different pairing sources
or pairing symmetries and/or displaying other quantum
phases.

In this work we consider heterostructures in which the
two components are two s-wave superconductors character-
ized by different strengths of the superconducting coupling,
which puts one of the two systems in a weak-coupling regime
and the other in the opposite strong-coupling regime. We
choose an s-wave pairing as described by a simple attrac-
tive Hubbard model. We can tune the two systems to have
a similar critical temperature in the bulk owing to the non-
monotonic behavior of the critical temperature as a function
of the coupling in models with tunable attractive interaction.
We consider different patterns, and we study the evolution of
the superconducting state using an extension of the dynam-
ical mean-field theory (DMFT) [17,18] designed for layered
structures [19–22]. The use of DMFT allows us to treat the
different regimes of superconductivity without any perturba-
tive assumption or bias.

Besides its fundamental character, this analysis also has
relevance for real systems since a crossover from weak to
strong coupling can be used as a very simple effective picture
of the evolution of superconductivity moving from overdoped
to underdoped cuprates [23–27], which can also be realized in
the two-dimensional Hubbard model [28,29], and it was also
recently proposed in iron-based superconductors [30,31].
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Our main result is that in the case in which a single layer
of one material is hosted on a thicker slab of the other, we
find an enhancement of the critical temperature with respect
to both the isolated samples. We understand this result by
discussing how the heterostructuring cures the weaknesses
of the two bulk superconductors, leading to an optimized
superconducting phase which can be pictured as an effective
intermediate-coupling superconductor. We show how such an
effective critical temperature is affected by the periodicity of
the heterostructure, and we rationalize the results in terms
of two length scales, associated with the proximity effect
between weak- and strong-coupling superconductors and with
the coherence properties of the pairs.

The rest of this paper is organized as follows: in Sec. II
we introduce the model for the heterostructure and discuss its
physical properties in different limits. In Sec. III we present
the results concerning the critical temperature and its evolu-
tion with some relevant model parameters. The discussion of
the main results and their physical interpretation in terms of
phenomenological quantities is the subject of Sec. IV.

II. MODEL

We model the heterostructure in terms of a simple attrac-
tive Hubbard model in which every site experiences a local
interaction between two fermions on the same site,

Hint = −
∑

i

Uini↑ni↓, (1)

where ni↑ and ni↓ are the number operators for the fermions
and Ui > 0. The two different superconductors forming our
heterostructure will be characterized by different values of Ui.

For uniform systems with constant U , the model has been
widely investigated using several methods [32–35], including
DMFT [24,26,36–40] and its extensions [20,22,41,42].

The ground state of the model is superconducting with s-
wave symmetry for every value of U , but the properties of the
superconducting state evolve in a nontrivial way as a function
of the ratio between the interaction and the bandwidth W of
the noninteracting model.

At weak coupling, when U is much smaller than W ,
the superconducting state is well described by a BCS-like
theory with an instantaneous attraction, and the superconduct-
ing state is characterized by the formation of weakly bound
Cooper pairs with a large correlation length. Upon increasing
the temperature the pairs are progressively broken, until we
reach the critical temperature where the pairs are completely
destroyed and the system becomes a normal metal.

In the opposite limit of strong attraction for U/W � 1,
the superconducting state is associated with the formation of
tightly bound pairs with a short correlation length and quickly
losing their coherence with increasing temperature. This is of-
ten called a Bose-Einstein condensation (BEC) regime where
“preformed” bosonic pairs condense when the critical tem-
perature is reached from above. In the BCS regime U/W � 1
the critical temperature Tc is exponentially small and increases
as a function of the attraction. Instead, in the strong-coupling
regime Tc decreases as t2/U . This results in a nonmonotonous
behavior of the critical temperature as a function of U/W . The
optimal critical temperature is realized for an intermediate

pairing strength U � W for which neither of the two limiting
scenarios applies. In this regime we have a delicate balance
between a large pairing amplitude φ and a high mobility of
pairs, leading to coherent quantum state. The nonmonotonic
behavior of Tc is realized despite the zero-temperature super-
conducting order parameter φ = 1/N

∑
i〈ci↑ci↓〉 measuring

the amplitude of Cooper pairs increasing monotonically with
U/W . The large value of φ in the BEC limit reflects the
fact that the electrons are tightly bound in pairs, while the
low critical temperature follows from the reduced mobility
of the pairs. At the critical temperature the modulus of the
order parameter remains finite, but the system is a collection
of local pairs with disordered phase, hence the average of φ

as the complex number vanishes. The dome-shaped behavior
of the critical temperature is the result of an optimization
of the superconducting properties, and it matches a common
experimental trend in materials, where the critical temperature
reaches maxima as a function of doping as in the cuprates or
of other control parameters like pressure. These results for the
homogeneous system guide us to understand the properties of
the heterostructures.

In the rest of this work we consider a layered structure.
The system is assumed to be spatially homogeneous in the
the xy plane, while it has a modulation along the z direc-
tion given by the alternate stacking of two different layered
superconductors at weak coupling and strong coupling. The
periodic pattern is determined by the infinite repetition of
slabs of Nw (weak coupling) and Ns (strong coupling) layers.
(Nw = 1, Ns = 0) and (Nw = 0, Ns = 1) realize two homoge-
neous bulk superconductors with weak- and strong-coupling
characters, respectively.

Accordingly, we split the site index in terms of the in-plane
coordinate R and z the layer index z. The interaction depends
only on the layer coordinate U ≡ U (z). The layered structure
Hamiltonian reads

H (Nw, Ns ) =
∑
kσ

∑
z

ε(k)c†
kzσ ck‖zσ − tc†

kzσ ck(z+1)σ + H.c.

−
∑
Rz

U (z)nRz↑nRz↓ − μ
∑
Rσ

nRzσ , (2)

with the interaction U (z) varying periodically every � =
Nw + Ns layers,

U (z) =
{

Uw 1 + n� � z � Nw + n�,

Us Nw + 1 + n� � z � � + n�,
(3)

where n is an integer number n = 0, . . . , Nk − 1 and we
assume periodic boundary conditions in every spatial direc-
tion. ε(k) is the two-dimensional dispersion for each layer,
namely, that of a square lattice with nearest-neighbor hop-
ping t , ε(k) = −2t[cos(kx ) + cos(ky)]. The in-plane hopping
is chosen to be equal to the out-of-plane one. Inhomoge-
neous attractive Hubbard models similar to Eq. (2) have been
discussed in the context of layered superconductivity in boro-
carbides [43].

Throughout the rest of the paper we set Uw/W = 0.28 and
Us/W = 3.16, which in the homogeneous system are charac-
terized by comparable critical temperatures Tc,w/W ≈ 0.015
and Tc,s/W ≈ 0.014. In the rest of the paper we indicate by
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interface layer

hosting bulk

FIG. 1. Sketch of the heterostructures considered in this work.
The different colors indicate two different types of superconductors.
In the following we will denote the strong-coupling superconductor
in blue and the weak-coupling one in red.

Tc,0 = (Tc,w + Tc,s)/2 the average of the critical temperatures
of the two bulk superconductors.

Among all the possible (Nw, Ns ) configurations of the het-
erostructure, we consider the two extreme cases (1, Ns ) and
(Nw, 1), corresponding to the periodic insertions of a single
layer of one type of superconductor into the bulk of the
other. In the following we will refer to the periodic inser-
tion as the interface and to the hosting bulk as the bulk (see
Fig. 1). Given this choice of the configuration, we introduce a
single parameter, �N ≡ Ns − Nw, to univocally identify the
heterostructure. For �N > 0 the strong-coupling supercon-
ductor assumes the role of the bulk, and the weak coupling
is the interface, whereas the opposite holds for �N < 0.
The case with �N = 0 corresponds to the (· · · -w-s-w-s- · · · )
heterostructure, where w and s indicate weak and strong
coupling, respectively, and there is no distinction between
interface and bulk.

The inhomogeneous superconducting phases of model (2)
are described by using a real-space extension of DMFT
[19–22] in which the self-energy is local in space, i.e., �i j =
�iδi j , where i and j are two lattice sites, but it can depend
on the site. In this work we explicitly enforce translational
invariance within each layer, while the different layers have
different local self-energies with normal and anomalous su-
perconducting components �(z) and S(z) with the same
periodicity of the heterostructure �(z + �) = �(z) and S(z +
�) = S(z). We solve the quantum impurity models associated
with each layer using a Lanczos-based exact diagonalization
algorithm at zero and finite temperatures [44,45]. The self-
consistent bath at each site is discretized using Nb = 8 bath
levels so that each impurity model has a total of Nb + 1 = 9
effective sites. The in-plane Brillouin zone is discretized by
using a 10 × 10 grid of k points, and we equally choose
Nk = 10.

Finally, we impose a half-filling condition for every layer
using a particle-hole-symmetric interaction on each layer.
Therefore, we inhibit charge-density wave solutions, which
are known to exist for the attractive Hubbard model and any
process where the charge distribution is not homogeneous.
This choice allows us to focus on superconductivity and the
intrinsic effect of the heterostructuring.

FIG. 2. Spatial average of the superconducting order parame-
ter as a function of temperature. We compare the homogeneous
cases (thin lines with small symbols) at weak coupling U = Uw =
0.28W (diamonds) and strong coupling U = Us = 3.16W (triangles)
with the heterostructures with �N = +4 (circles) and �N = −4
(squares), whose data are connected by thick lines. The gray arrow
below the horizontal axis highlights the critical temperature enhance-
ment with respect to the value of the homogeneous case. The vertical
dashed lines with symbols indicate the temperature values used in
Fig. 3.

III. RESULTS

A. Enhancement of the critical temperature

We start the discussion by highlighting the main result of
this work, namely, the overall enhancement of the critical
temperature of the heterostructure with respect to the con-
stituents. We illustrate this enhancement for the two cases,
�N = ±4, in Fig. 2. For each layer we compute the local
superconducting order parameter φ(z) = 〈cRz↑c†

Rz↑〉, and we

compute the average along z, 〈φ〉 = 1
N

∑
z φ(z).

Notice that the two homogeneous superconductors have
fairly different zero-temperature order parameters despite
their very close critical temperatures. While the zero-
temperature order parameters of the two heterostructures fall
between the two homogeneous systems, we observe that the
average order parameter clearly remains nonzero up to tem-
peratures significantly larger than the homogeneous Tc.

In the homogeneous case the order parameter falls to zero
with a rather sharp behavior compatible with a square-root
behavior φ ∼ √

Tc − T . On the other hand, the decrease in the
heterostructure as a function of temperature is much smoother,
mainly as a consequence of the inhomogeneous nature of the
order parameter. Mean-field critical exponents are expected
in DMFT also for the inhomogeneous case because of the ne-
glect of nonlocal correlations. However, computing the spatial
average leads to the smoother curves we have reported where
the critical behavior can be observed only very close to the
critical temperature, which makes its detection very hard in
our numerical calculation.

A first simple interpretation of these results can be drawn
in terms of a proximity effect which has already been dis-
cussed at interfaces between s-wave superconductors [22].
The key observation is that, for the bulk superconductor,
superconducting order requires finite values of the complex
order parameter, which in turn requires both a finite pair-
ing amplitude and a fixed value of the phase. The latter is
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FIG. 3. Order parameter as a function of the layer index at different temperatures for (a) �N = +4 and (b) �N = −4. The temperatures
of the order parameter profiles are indicated by vertical lines with the corresponding symbols in Fig. 2. Temperature evolution of the order
parameter (c) and (d) on the interface and (e) and (f) in the bulk. (c) and (e) refer to the case with �N � 0, whereas (d) and (f) refer to the case
with �N � 0. The �N = 0 case is shown for both configurations. In (c)–(f) the solid light red and light blue lines indicate the temperature
dependence of the order parameters for the weak- and strong-coupling superconductors, respectively, in the homogeneous bulk configuration.

associated with the coherence between the pairs, which is
ultimately related to the pair mobility. The critical temperature
is basically set by the “weak link” between the two, i.e.,
the condition which is harder to meet. More concretely, the
weak-coupling superconductor is characterized by a coherent
motion, but the critical temperature is low because of the
small pairing amplitude, while the strong-coupling system
has a large pairing amplitude but the pair mobility and the
relative coherence are small (proportional to t2/U ), lead-
ing to the critical temperature decreasing as the ratio U/W
grows.

In the heterostructure proximity effects are expected to
compensate for the weaknesses of the two bulk superconduc-
tors. The proximity of the BEC superconductor can enhance
the pairing amplitude on the weak-coupling side, which can
be pictured as a leaking of Cooper pairs. On the other hand,
the strong-coupling side can benefit from an enhancement
of the mobility induced by the coupling with BCS layers,
similar to what happens in heterostructures involving metals
and Mott insulators, where the quasiparticles on the metallic
side increase their degree of localization through coupling
with the Mott insulator [46–48].

In a nutshell, both the superconductors are supplied by the
other with a boost in the weak-link quantity. In very loose
terms, we can picture the enhancement of the critical tem-
perature as an effective intermediate-coupling system which
realizes artificially the ideal conditions for superconductivity.
In the following we explore in more detail the results to make
the physical picture more concrete and definite.

B. Inhomogeneous superconductivity:
Interface and bulk order parameters

We now investigate in detail the inhomogeneous character
of the superconductivity in the heterostructure. In Figs. 3(a)
and 3(b) we report the order parameter profile as a function
of the layer index for the two cases with �N = ±4 intro-
duced above for the four temperatures marked in Fig. 1 with
symbols. At low temperatures (pentagons and diamonds, in
the order of increasing temperature) the profiles qualitatively
follow the weak- and strong-coupling characters of each layer,
showing alternating minima and maxima. However, upon in-
creasing the temperature the order parameter profile evolves
following completely different behaviors in the �N = 4 and
�N = −4 configurations.

For �N = 4 [Fig. 3(a), one layer of weak coupling and
five of strong coupling] the large values of the order pa-
rameter found in the strong-coupling section are rapidly
suppressed with temperature. Close to the critical temperature
superconductivity remains thus mostly confined to the weak-
coupling interface, whose order parameter decreases much
more slowly.

On the other hand the temperature evolution in the �N =
−4 case [Fig. 3(b), one layer of strong coupling and five of
weak coupling] is more homogeneous in the different layers.
In this case the strong- and weak-coupling layers progres-
sively reduce the order parameter, though the BEC interfaces
undergo a faster decay. The striking difference is that in this
case, near the critical temperature the system is characterized
by a quasihomogeneous superconducting order parameter.
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In order to gain further insight into the mechanism lead-
ing to the enhancement of the critical temperature and to
the different scenarios we have discussed, we consider the
behavior as a function of the number of layers in the bulk
section, parameterized by �N . For simplicity we focus on
the order parameters at the interface and in the central layer
of the hosting bulk, hereafter referred to as the bulk layer.
In Figs. 3(c)–3(f) we report the temperature evolution of the
interfaces [Figs. 3(c) and 3(d)] and bulk layers [Figs. 3(e) and
3(f)] for different values of �N > 0 [Figs. 3(c) and 3(e)] and
�N < 0 [Figs. 3(d) and 3(f)]. For the �N = 0 case the two
order parameters are found to vanish concomitantly at a tran-
sition temperature ∼1.75Tc,0. Remarkably, this corresponds to
the largest enhancement of the critical temperature observed
in the setup considered in this paper [49].

As |�N | increases, the bulk and interface become more
and more different. For �N > 0 [weak-coupling interface in a
strong-coupling bulk; Figs. 3(c) and 3(e)] the order parameter
of the interface layer weakly depends on �N and rapidly
converges to an asymptotic value. The bulk layer changes
more substantially, and it collapses onto the corresponding
homogeneous bulk superconductor curve for large �N . Yet
we observe an enhancement close to the critical temperature
that it is only gradually reduced for larger values of |�N |.

The �N < 0 setup [strong-coupling interface in a weak-
coupling bulk; Figs. 3(d) and 3(f)] varies more slowly as a
function of the modulus of �N , while the critical temperatures
at which the two order parameters vanish are closer to each
other and to the homogeneous results, in agreement with the
analysis in the previous section. Interestingly, owing to the
extremely localized nature of the pairs in the strong-coupling
regime, in this case also the interface layer resembles the
behavior of the homogeneous solution for low temperature.

C. Critical temperatures

In this section we explore the relation between the behavior
of the interface layer and that of the bulk by comparing the
interface critical temperature T interface

c with that of the whole
heterostructure T hetero

c . The critical temperature T interface
c is

naturally defined as the temperature at which the interface
order parameter vanishes [50]. A definition of T hetero

c requires
taking into account the inhomogeneous nature of the order
parameter over the heterostructure. In order to avoid the influ-
ence of large local values, we define T hetero

c as the geometric
average of the order parameter over the whole sample, which
obviously coincides with the average on the building block of
� = Nw + Ns layers which is periodically repeated,

φ =
[

�∏
z=1

φ(z)

] 1
�

. (4)

In Fig. 4 we report the evolution of T interface
c and T hetero

c
as a function of �N . T interface

c achieves its maximum value
at �N = 0 and decays as a function of |�N |, reaching a
rather rapid convergence for both configurations �N ≷ 0.
In particular for �N > 0 the critical temperature saturates
already for �N � 4. The other regime, �N < 0, is instead
characterized by a slower decay, and almost 10 layers are
needed to reach saturation. We stress again that the interface

FIG. 4. Critical temperature of superconductivity confined to the
interface layer T interface

c (green circles) and heterostructure critical
temperature T hetero

c (purple diamonds) as a function of the parameter
�N . Error bars measure the uncertainty in the determination of the
critical temperature [50]. Solid lines represent the critical tempera-
tures extracted from the fit using the model in Eq. (7). The shaded
area represents the area between the critical temperatures of the two
homogeneous superconductors. The enhancement is measured with
respect to the average of the two homogeneous critical temperatures
Tc,0. Vertical dashed lines indicate the separation of regions I, II, and
III of the phase diagram.

critical temperatures are always higher than those of the two
bulk superconductors and that the asymptotic values reached
in the �N > 0 configuration are larger.

T hetero
c has a similar qualitative behavior with a maximum

for �N = 0 and a decay in both directions. Yet while the two
critical temperatures are very close for small values of �N ,
increasing the thickness of the bulk, T hetero

c decays below the
saturated values of the interface. This effect is particularly
pronounced on the �N > 0 side, where, as we discussed
above, the bulk layers gradually recover the properties asso-
ciated with their local coupling strength.

Comparing the interface and the heterostructure critical
temperatures, we can identify three different regimes (marked
in Fig. 4 as I, II, and III) as a function of the spacing �N
between two successive interfaces.

Regime I, centered around �N = 0, is characterized by
a rather uniform superconducting state with enhanced criti-
cal temperature T interface

c ≈ T hetero
c > T homo

c . In the other two
regimes the critical temperature of the interface is higher than
that of the whole heterostructure T interface

c > T hetero
c , but in the

intermediate regime II they are both larger than T homo
c , while

in regime III the heterostructure converges to the homoge-
neous superconductor T hetero

c ≈ T homo
c .

The three regimes highlight a crossover from a super-
conductivity enhancement which for large heterostructure
periodicity (III) remains confined to the interfaces, while the
bulk reproduces the result of the corresponding homogeneous
material to a system in which the enhancement of Tc extends to
the whole heterostructure (I) when |�N | is reduced. The evo-
lution happens through the intermediate regime II, in which
an enhancement of Tc for the whole structure is observed
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but the superconducting state is highly inhomogeneous, with
important differences between the interface and bulk critical
temperatures. It is apparent that regime II is essentially absent
for �N < 0, in agreement with the results in the previous
sections.

D. Two-length-scale model

In this section we complement the DMFT analysis with a
phenomenological Landau model which includes the specific
features of our geometry and is based on two length scales
that characterize the heterostructure superconducting state.
We start by modeling a single interface layer embedded in
the bulk of the other superconductor. We consider a Landau
expansion of the free energy, assuming a continuous order
parameter which varies along the z direction φ(z) and a de-
pendence on z of the coefficient of the quadratic term. For an
interface placed at z = z0 we can write

Fz0 [φ] =
∫

dz f (z − z0)

=
∫

dzα(z − z0)φ2(z) + βφ4(z) + ξ 2
z (∇φ)2. (5)

All the other parameters do not depend on z.
The key feature of the model is the definition of the free

energy in terms of two length scales, �p and ξz:
(i) �p describes the spatial extent over which the proximity

effect responsible of the critical temperature enhancement is
active. This effect is included in the free energy by assuming
a spatial dependence of the quadratic term α(z − z0) through
the relation α(z − z0) ∼ T − T̃c(z − z0), where T̃c(z − z0) is a
fictitious space-dependent critical temperature which is maxi-
mum at the interface and decays to the homogeneous value in
the bulk,

T̃c(z − z0) = T0(1 − e−|z−z0|/�p ) + Tie
−|z−z0|/�p . (6)

In the above equation T0 represents the critical temperature of
the bulk, while Ti > T0 is a parameter controlling the critical
temperature enhancement at the interface.

(ii) The coherence length ξz, which, as is evident from
Eq. (5), measures the energetic cost associated with a spatial
variation of the order parameter. The system therefore tends
to remain spatially uniform over a length ξz.

The critical temperature profile Tc(z) is determined by the
competition between the two length scales. We notice that,
in general, it will be different from the fictitious T̃c(z) de-
fined in Eq. (6). In particular, we expect Tc(z) → T̃c(z) in
the limit ξz/�p → 0, whereas a finite value ξz/�p > 0 will
result in a renormalization of the value of the interface critical
temperature with respect to the fictitious one Tc(z = z0) < Ti.
Eventually, for ξz/�p → ∞ the model describes a homoge-
neous superconductor with Tc(z) → T0.

Starting from the single interface free energy, we define the
free energy of the heterostructure with periodicity � as

Fhetero[φ] =
∫

dz(z), (z) =
n=∞∑

n=−∞
f (z − n�), (7)

with (z + �) = (z).

The stationarity condition for the functional, i.e., δFhetero
δφ

=
0, determines the temperature evolution of the order parameter
φ(z) as a function of the four parameters (Ti, β, �p, ξz ). We
therefore extract the Landau parameters by fitting the critical
temperatures T interface

c and T hetero
c to the data in Fig. 4. For each

configuration type of heterostructure (�N > 0 and �N < 0)
a single set of parameters is used to simultaneously fit both
T interface

c and T hetero
c .

The best fit, shown as solid lines in Fig. 4, is obtained
for �N > 0 using Ti/T0 ≈ 2.0, �p ≈ 1.10, β ≈ 1.5, and ξz ≈
0.35, while for �N < 0 we obtain Ti/T0 ≈ 1.65, �p ≈ 1.3,
β ≈ 1.5, and ξz ≈ 0.9. The crossover from the different re-
gions of the phase diagram is overall well captured by the
fitting procedure.

Comparing the two sets of optimized parameters, we ob-
serve that T �N>0

i > T �N<0
i , as expected from the behavior

of T interface
c . In line with what was discussed above, due to

the finite values of ξz the fictitious temperatures Ti correctly
overestimate the saturated values of T interface

c .

The extracted values of the characteristic lengths
strengthen our physical picture for the heterostructure su-
perconductivity and its different regimes. In particular, the
crossover from the different regions for �N ≷ 0 is well de-
scribed in terms of the ratio �p/ξz. In the case with �N >

0 (strong-coupling bulk), ξz is the shortest length scale. In
this case T interface

c saturates on a scale � � �p, and concomi-
tantly, Tc in the bulk starts to decay towards the homogeneous
value (region II). This can be readily understood as the co-
herence length of the bulk is short and smaller than the
proximity scale �p, so it quickly gets uncorrelated from the
interface. On the contrary, ξz becomes the largest length
scale for the �N < 0 case (weak-coupling bulk), favoring
the formation of a homogeneous superconducting state. As
a result, T interface

c follows the behavior of T hetero
c for a wide

range of periodicities, reaching a saturated value T interface
c for

� � �proximity, which is smaller with respect to the �N > 0
case.

IV. CONCLUSIONS

In this work we have studied by means of inhomogeneous
DMFT the superconducting properties of a hybrid heterostruc-
ture obtained by arranging superconducting layers with weak
and strong coupling through the periodic intercalation of a
single interface layer of one type into the bulk of the other.

We have shown that the superconducting critical temper-
ature of the layered system is enhanced with respect to the
critical temperatures of homogeneous superconductors with
the pairing strength of the two constituent materials.

The behavior of the critical temperature as a function of
the periodicity of the heterostructure reveals the existence
of two different regimes, one in which the heterostruc-
ture superconductivity is dominated by the interface layer
intercalated in a “bulk” of the other superconductors and
one which is a much more homogeneous superconduc-
tor extending with similar local properties on the whole
system.

We rationalize our results in terms of a phenomenological
Landau model based on two length scales which control the
length scale over which the proximity effect is established and
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the coherence length of the new superconducting state which
controls the homogeneity.

We can picture the heterostructure superconductivity as a
state in which the system manages to improve the properties
of the two constituents. The weak-coupling superconductor
is boosted by a proximity effect in which the larger pair-
ing amplitude of the strong-coupling system leaks, while the
strong-coupling superconductor increases its critical temper-
ature because the carriers become more mobile and coherent.
In a sense, we optimize the superconducting property in a
way similar to what happens for the intermediate-coupling su-
perconductor which maximizes the critical temperature in the
homogeneous system. By means of the heterostructuring the
maximum critical temperature can be obtained by controlling
the number of layers of the two materials without a fine tuning
of the coupling strength.

This effect is due to the formation, close to the interface,
of superconducting pairs with mixed weak- and strong-
coupling characters, realizing an effective intermediate-
coupling regime which optimizes the condition for supercon-
ductivity.

Our results can be used to rationalize and predict the be-
havior of heterostructures obtained by combining materials

characterized by different pairing properties and comparable
critical temperatures, for example, underdoped and overdoped
cuprates chosen on the two sides of the superconducting
dome, if we assume that, to some extent, the doping evo-
lution of these materials can be described in terms of an
effective strong- to weak-coupling evolution [28,51]. We can
expect similar results also for other phases with long-range
order, e.g., antiferromagnetism [52] and charge density waves,
which show an evolution similar to a function of the coupling
strength.
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