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Helical superconducting edge modes from pseudo-Landau levels in graphene
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We explore Andreev states at the interface of graphene and a superconductor for a uniform pseudomagnetic
field. Near the zeroth-pseudo-Landau level, we find a topological transition as a function of applied Zeeman field,
at which a gapless helical mode appears. This one-dimensional mode is protected from backscattering as long
as intervalley and spin-flip scattering are suppressed. We discuss a possible experimental platform to detect this
gapless mode based on strained suspended membranes on a superconductor, in which dynamical strain causes
charge pumping.
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I. INTRODUCTION

Synthetic gauge fields resulting from strain [1–5] have
been observed in numerous experiments on graphene samples
[6–9]. These gauge fields result from the movement of the
Dirac points in momentum space, which results from the
modification of the hopping amplitudes by strain [10,11]. This
phenomenon is general for Dirac materials [12–17] and results
in time-reversal symmetric pseudo-Landau levels (PLLs). In
various geometries of graphene membranes, it is possible
to engineer strain to yield uniform pseudomagnetic fields
[10,18–20].

Since pseudomagnetic fields act oppositely on the two
valleys of graphene, they may have a distinct interplay with
superconductivity [21–30]. A usual superconducting order
parameter involving pairing of time-reversal partners is blind
to such a field. Nevertheless, the microscopic theory, crit-
ical temperature, and quasiparticle excitations are strongly
affected by a pseudomagnetic field.

In this paper, we explore one-dimensional (1D) Andreev
modes that can be stabilized on the interface between strained
graphene and a superconductor [31,32]; see Fig. 1(a). In the
presence of a real magnetic field, Akhmerov and Beenakker
[33] found cyclotron orbits of Andreev reflected electrons
and holes that are fully localized when the chemical po-
tential lies at the Dirac point; see Fig. 1(b). Physically,
a specular-reflected hole [32] proceeds along the mirror-
reflected segment of the electronic cyclotron trajectory. In the
case of a pseudomagnetic field, Gunawardana and Uchoa [34]
found propagating states instead; see Fig. 1(c). By performing
a mirror transformation to the hole trajectories and recalling
that the pseudomagnetic field has opposite signs for the two
valleys, those solutions become snake states, propagating on
interfaces at which a magnetic field changes sign.

Here we study the interplay of the pseudomagnetic field
B and a Zeeman magnetic field BZ on the graphene-
superconductor interface; see Fig. 1(a). We show that as BZ

exceeds the chemical potential μ measured from the Dirac
point, the 1D interface becomes gapless, hosting a helical
1D mode; see Fig. 1(d). Helical modes consist of counter-
propagating Dirac fermions carrying opposite spin, similar
to those realized on the edge of a 2D topological insulator
[35] or in the zeroth Landau level in graphene subjected to a
Zeeman field [36,37]. On the interface between a supercon-
ductor and a strained graphene, the helical modes appearing
due to the Zeeman field are gapless Andreev states protected
from backscattering as long as (i) the disorder is smooth and
does not result in intervalley scattering, and (ii) spin flip is
not possible. By contrast, in the case of a real magnetic field,
superconducting pairing leads to the gapping of the helical
edge modes, providing a platform for hosting Majorana zero
modes at the boundaries of superconducting domains [38].

The paper is organized as follows. In Sec. II we solve the
BdG equations describing graphene within the Dirac theory in
the presence of a pairing potential step and pseudomagnetic
field. We explore in detail the low-energy part undergoing a
phase transition in Sec. III by projecting down to the zeroth
PLL and treating superconductivity, the Zeeman field, and
also spin-orbit coupling as perturbations. In Sec. IV we dis-
cuss a Thouless pumping experiment, taking place as the flux
associated with the pseudomagnetic field varies in time. We
conclude in Sec. V.

II. INTERFACE MODES

We consider a graphene sheet subjected to a uniform
pseudomagnetic field B, proximitized by a superconduc-
tor covering the x < 0 region; see Fig. 1(d). We write the
Bogoliubov–de Gennes (BdG) equation as[

H − μ �(x)
�(x)∗ μ − T HT −1

]
� = ε�, (1)

where �(x) = � for x < 0 and �(x) = 0 for x > 0. T here
is the time-reversal operator and μ is the chemical potential.
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FIG. 1. (a) Schematics of a graphene ribbon deposited on a
superconductor (�) for x < 0 and strained along x. The (x = 0)
interface along y is assumed to be infinite. (b) Andreev interface
modes for graphene near the neutrality point, for a real magnetic
field Bext [33], or (c) for a pseudomagnetic field B [34]. (d) With an
additional Zeeman field BZ , an Andreev helical mode is stabilized.

The 8 × 8 Hamiltonian H is decomposed as H = H0 + HZ ,
where H0 describes the graphene and HZ is a Zeeman term.
Each piece can be written in terms of Pauli matrices τ , σ , and
s acting in valley, pseudospin, and spin spaces, respectively.
In the valley-symmetric notation [33], graphene in a pseudo-
magnetic field is described by the Hamiltonian

H0 = vF

∑
i=x,y

(piτ0 ⊗ σi + Aiτz ⊗ σi ) ⊗ s0, (2)

where vF is the Fermi velocity. Written explicitly in the valley
space, it reads

H0 = vF

(
(p + A) · σ 0

0 (p − A) · σ

)
⊗ s0. (3)

Even in the presence of the pseudomagnetic field, H0 is time-
reversal symmetric, H0 = T H0T −1. Here T = −iτyσysyC,
where C denotes complex conjugation, satisfying T 2 = −1.
On the other hand, HZ = BZτ0 ⊗ σ0 ⊗ sz describes a Zeeman
field, which is time reversal odd, HZ = −T HZ T −1.

In what follows, we use the Landau gauge A = Bxŷ. An
eigenvector of the Hamiltonian in Eq. (3) in the K valley can
be written as φK eipyy, where φK (x) is a 2-spinor satisfying

[(−i∂x )σx + (py + x)σy]φK = εφK . (4)

We measure length in units of magnetic length 	B = √
h̄/eB,

momentum py in units of h̄/	B, and energy in units of h̄vF /	B.
The 2-spinor solutions are



(n)
K = e− 1

2 ξ 2
+

(−i
√

2nHn−1(ξ+)
±Hn(ξ+)

)
ε=±√

2n

,

(5)



(n)
K ′ = e− 1

2 ξ 2
−

( ±Hn(ξ−)

−i
√

2nHn−1(ξ−)

)
ε=±√

2n

,

where ξ± = x ± py and Hn(x) are Hermite polynomials. As
detailed in Appendix A, we proceed by using these solutions
for the normal region x > 0 and imposing a boundary con-
dition describing Andreev reflection [33,39], which is valid
when the superconducting coherence length is smaller than
	B.

The dispersion relation ε(py) is plotted in Fig. 2. The
momentum along the interface, py, determines the position

FIG. 2. Dispersion relation ε(py ) of Andreev states at a 1D in-
terface between proximitized graphene and normal graphene with
PLLs, obtained by solving Eq. (A10) for � = 10, BZ = 0.2. We use
red/blue to describe opposite spins, and full/dashed lines to describe
opposite valleys. Panel (a) shows a gapped spectrum at μ = 0.3;
(b) the gap closes at μ = 0.2; (c) gapless helical interface modes
are marked by dashed rectangles for μ = 0.1.

along the x-axis; for K (K ′) the electron wave function is
localized near x = −py (x = py). Solid lines represent valley-
K electron states, which for negative momentum approach
the ±√

2n values of the PLLs for BZ = μ = 0 (not shown),
and correspond to states localized in the normal region. For
increasing py, the modes acquire a dispersion due to the
pairing potential �(x) inside the superconducting region. The
opposite py-x relation applies for K ′ states (dashed lines).

This model has two phases in the μ-BZ plane. For |μ| <

|BZ |, we have gapless 1D interface modes, as seen in Fig. 2(c).
By contrast, for |μ| > |BZ |, the interface is gapped, as seen in
Fig. 2(a). At the transition |μ| = |BZ | [see Fig. 2(b)], the PLL
excitation gap closes at the normal side. The corresponding
phase diagram is shown in Fig. 3 for the regime where μ and
BZ are small compared to the PLL separation h̄vF /	B.
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FIG. 3. Phase diagram of our superconductor-normal (SN) inter-
face for BZ , μ smaller than the PLL spacing.

In Appendix B we demonstrate the emergence of gapless
1D interface modes using a tight-binding model, reproducing
the same low-energy physics even when additional lattice
effects are present, such as zigzag edge states. In Appendix A
we discuss what happens when the Zeeman field BZ exceeds
the PLL gap. Below we focus on the low-energy part by
restricting the theory to the zeroth PLL.

III. PROJECTION TO THE ZEROTH PLL

We proceed by projecting the Hamiltonian to the zeroth
PLL. This approach is valid for BZ , μ,� � h̄vF /	B. The
normalized zero-energy solutions of H0 in Eq. (5) are



(n=0)
K = 1

π1/4
e− 1

2 ξ 2
+

(
0
1

)
, 


(n=0)
K ′ = 1

π1/4
e− 1

2 ξ 2
−

(
1
0

)
. (6)

We use the valley-symmetric notation in which the two sub-
lattices are interchanged for valley K ′. For a given py the
dimension of the degenerate zero-energy space of the BdG
matrix Eq. (1) is 8, which includes an additional duplication
due to particles and holes. We introduce a basis |τ z, sz, ηz〉
(τ z, sz, ηz = ±) denoting the valley, spin, and particle-hole
spaces, respectively. Equivalently, in Eq. (1) we can use the
Bogoliubov spinor

� = (ψK↑, ψK↓, ψK ′↑, ψK ′↓, ψ
†
K ′↓,−ψ

†
K ′↑, ψ

†
K↓,−ψ

†
K↑) (7)

whose eight components are defined in the basis |τ z, sz, ηz〉 as

| + ++〉, | + −+〉, | − ++〉, | − −+〉,
| + +−〉, | + −−〉, | − +−〉, | − −−〉 ≡ |1〉, . . . , |8〉. (8)

We now project the various terms of the BdG Hamiltonian
in Eq. (1). Consider the pairing part of the Hamiltonian first:

H� =
(

0 �(x)
�∗(x) 0

)
.

It has matrix elements

〈+sz ∓ |H�| + sz±〉 = �

∫ 0

−∞

1√
π

e−(x+py )2
dx ≡ � F (py),

〈−sz ∓ |H�| − sz±〉 = � F (−py). (9)

The function F (py), describing the matrix element of the
pairing potential in a state with momentum py, behaves as

F (py) → 1 for py → ∞ and F (py) ∼= e−p2
y

2
√

π |py| for py → −∞.
Physically, for positive py the support of wave functions in
Eq. (6) corresponding to valley K is well within the super-
conductor, while for negative py it is mainly in the normal
region. In the latter case, the wave functions are affected
by the pairing potential only through their exponential tail.
Hence,

H�(py)= �

2
[F (py)(τ0 + τz ) + F (−py)(τ0− τz )] ⊗ s0 ⊗ ηx.

(10)
Similarly, the Zeeman term takes the form

HZ (py) = BZτ0 ⊗ sz ⊗ η0. (11)

The eigenvalues of the projected zeroth-PLL Hamiltonian,

H0LL(py) = HZ (py) + H�(py) − μηz, (12)

are plotted in Fig. 4 for various values of BZ and μ, reproduc-
ing the low-energy sector seen in Fig. 2.

Let us focus on the four solutions at large negative py,
which are basically unaffected by �. They originate from
electrons in valley K or holes of valley K ′ (not dashed). Their
energies are

ε1(eK↑) = BZ − μ − λI ,

ε2(eK↓) = −BZ − μ + λI ,
(13)

ε5(hK ′↓) = BZ + μ + λI ,

ε6(hK ′↑) = −BZ + μ − λI .

In Sec. III B we will introduce the spin-orbit coupling λI and
discuss its role; for now we set λI = 0. Here the subscripts
refer to components of the Bogoliubov spinor �; see Eqs. (7)
and (8). We can see in Fig. 4 that � separately couples
modes 1 and 5 (K ↑ and K ′ ↓) as marked by red curves,
which diverge as py increases, and similarly 2 and 6 (K ↓
and K ′ ↑) shown as diverging blue curves. Let us denote the
corresponding level separations by �1,2, respectively. As can
be seen in Fig. 4(c), in the topological phase |BZ | > μ this
level repulsion leads to zero-energy edge states.

Consider the left-moving gapless quasiparticles denoted
γL originating from the py < 0 region due to the �1 sector
in Fig. 4(c). Along with the gapped partner denoted χ , this
pair [red solid curves in Fig. 4(c)] can be expressed as a
combination of ψK↑,p and ψ

†
K ′↓,−p in the form

gapless : γL,py = upyψK↑,py + vpyψ
†
K ′↓,−py

,
(14)

gapped : χpy = −vpyψK↑,py + upyψ
†
K ′↓,−py

.

Similarly, consider the red dashed pair of curves in Fig. 4(c)
forming the �2 sector. They lead to a right-moving gapless
mode γR, and a gapped mode denoted χ ′,

gapless : γR,py = u′
py

ψK ′↑,py + v′
py

ψ
†
K↓,−py

,
(15)

gapped : χ ′
py

= −v′
py

ψK ′↑,py + u′
py

ψ
†
K↓,−py

.

These 1D modes are Dirac rather than Majorana fermions.
Namely, γL �= γ

†
L and γR �= γ

†
R . Considering, for example,

γR in the py > 0 region (red-dashed), given in Eq. (15), and
applying Hermitian conjugation, one obtains the right-moving
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FIG. 4. Dispersion relation of our SN interface (as in Fig. 3)
focusing on the zeroth PLL using Eq. (12), setting � = 10 and
BZ = 0.6. In (a) μ = 1 and we have a gapped interface. As we
decrease μ, the gap decreases and eventually closes in (b) at μ = 0.6.
The condition |μ| < |BZ | leads to a gapless helical Dirac fermion
as seen in (c), where μ = 0. At the bottom we illustrate the x-py

relationship.

gapless mode in the py < 0 region (blue-solid). Thus we
have both particle and hole excitations, formed out of the
quasiparticle operators, allowing us to define Dirac fermions.
Linearizing the spectrum near ε = 0, the low-energy Hamil-
tonian is

HDirac = v0

∑
py

[
(py − p0)γ †

R,py
γR,py − (py + p0)γ †

L,py
γL,py

]
.

(16)
It is valid for energies low compared to min{ε1, ε2, ε5, ε6}; see
Eq. (13).

FIG. 5. Low-energy spectrum describing the helical Dirac mode.
The right- and left-moving excitations are described in Eqs. (14) and
(15), and the Dirac Hamiltonian is given in Eq. (16).

The resulting counterpropagating Dirac modes are similar
to the edge states in the quantum-spin Hall effect. While
we consider noninteracting electrons, interactions as well as
disorder on the edge can be treated as is done in the context of
the quantum spin Hall effect [40–42].

A. Z2 × Z2 symmetry

Usually proximity-induced superconductivity
∑

i �c†
i↑c†

i↓
breaks U(1) charge conservation down to Z2, the parity con-
servation:

P = eiπ
∑

j,σ c†
j,σ c j,σ . (17)

At energy sufficiently low compared to the band-
width of graphene, the pairing Hamiltonian becomes∫

dr[�1ψ
†
K↑ψ

†
K ′↓ + �2ψ

†
K ′↑ψ

†
K↓ + H.c.], with the two terms

accounting for the two valleys at opposite momenta. While
�1 = �2 = �, this form emphasizes that we have two
conserved parities,

P1 = eiπ
∫

d2r(ψ†
K↑ψK↑+ψ

†
K ′↓ψK ′↓ )

,
(18)

P2 = eiπ
∫

d2r(ψ†
K↓ψK↓+ψ

†
K ′↑ψK ′↑ )

.

This Z2 × Z2 parity symmetry applies as long as the
following two processes are suppressed: intervalley scatter-
ing, Hi-v = Viv

∑
σ,py

ψ
†
Kσ,py

ψK ′σ,py + H.c., and spin-flip scat-

tering, Hs-f = Vsf
∑

py
ψ

†
K↑,py

ψK↓,py + ψ
†
K ′↑,py

ψK ′↓,py + H.c..
Both processes break the separate conservation of P1 and P2

down to a single Z2 symmetry corresponding to the conserva-
tion of P1P2. Expressed in terms of the low-energy quasiparti-
cle excitations, Hi-v becomes Hi-v ∼ Viv

∑
py

γ
†
L,py

γR,py + H.c.
A spatially uniform intervalley scattering term does not open
a gap since generally scattering between the two Dirac modes
requires momentum transfer; see Fig. 5. However, sufficiently
short-range disorder can enable such momentum transfer, and
hence backscattering. In the quasiparticle language, Hs-f be-
comes Hs-f ∼ Vsf

∑
py

γ
†
L,py

γ
†
R,−py

+ H.c. Naively, one would
expect that the level crossing at ε = 0 would become avoided
for the Zeeman magnetic field tilted away from the z axis.
However, this intuition is incorrect, and the gapless mode per-
sists irrespective of the direction of the field as long as a U (1)
conservation of the spin along some direction persists. In that
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FIG. 6. Low-energy dispersion from Eq. (12) with the addition
of SOC Eq. (20). Here � = 10, BZ = λI = 0.6, and μ = 0.4.

case, one can redefine a corresponding conserved Z2 × Z2.
However, as discussed in the next subsection, in the presence
of spin-orbit coupling, tilting the direction of the Zeeman field
does open a gap due to the quasiparticle backscattering.

In general, zero-energy solutions to the BdG equation re-
flect a degeneracy between ground states with different parity.
In our model, for |BZ | > |μ| we have ε → 0 quasiparticle
solutions that change either P1 (γL) or P2 (γR), allowing us
to identify four ground states.

It is interesting to note that the association of left-movers
with �1 = �K↑,K ′↓ and of right-movers with �2 = �K ′↑,K↓
switches upon switching the sign of the Zeeman field.

B. Spin-orbit coupling

Intrinsic spin-orbit coupling (SOC) in graphene, which
in the standard notation [43] takes the form λIτz ⊗ σz ⊗ sz,
becomes in our valley-symmetric notation

HSO = λIτ0 ⊗ σz ⊗ sz. (19)

Projecting this time-reversal symmetric term to the zeroth
PLL subspace, its contribution to the BdG matrix Eq. (1),
using Eq. (6), becomes

HSO = −λIτz ⊗ sz ⊗ ηz. (20)

While the phase diagram in Fig. 3 reflects a phase transition
occurring in both Z2 sectors, in the presence of SOC one can
induce a phase transition separately in each sector. One can
generalize the arguments about the level repulsion due to �1

or �2 for the presence of SOC. In this case, the energies of
the four states in the normal region are given in Eq. (13) with
λI included. The condition for the topological phase in the �1

sector (�2 sector) is that ε1 and ε5 (ε2 and ε6) have opposite
signs. One can achieve these conditions independently. An
example is shown in Fig. 6, where only the �2 sector is
topological, with two right-moving branches, composing one
right-moving chiral Dirac fermion, and no left-movers. This
exemplifies a quantum Hall state stabilized by a Zeeman field
and SOC. In this case, the edge states are chiral and hence
protected against either spin-flip or intervalley scattering.

C. Other pairing channels

We remark that we have considered s-wave pairing in
Eq. (1), but our model allows us to consider more gen-
eral pairings. In our Z2 × Z2 decomposition, s-wave pairing

is reflected in equal pairings in each Z2 sector, �1 = �2,
where we recall that �1 = �K↑,K ′↓ and �2 = �K ′↑,K↓. How-
ever, one can consider any combination of singlet and triplet
pairings, �1 = �s + �t , �2 = �s − �t . This provides an ad-
ditional knob for tuning the topological transition in each Z2

sector. Here we remark that close to the extreme case of equal
superposition of singlet and triplet pairing, implying �2 = 0
(or �1 = 0), similar to the case of strong spin-orbit coupling
in Fig. 6, we can have a situation in which only the �1 (or �2)
sector is topological.

D. Symmetry classification

Like any weakly interacting fermionic system, our model
can be classified according to the Altland-Zirnbauer sym-
metry classes. The superconducting system considered here
has neither time-reversal nor spin-rotation symmetry, hence
it belongs to class D [44] (see also Table I in Ref. [45]).
Since our system has conserved Sz, implying a superconductor
with Z2 × Z2 parity symmetry, its symmetry classification
corresponds to two sectors, each of which is in class D.

Class D superconductors in two dimensions are charac-
terized by a topological Z index, counting the number of
chiral Majorana fermions on the edge with vacuum. The 1D
interface under consideration here, on the other hand, is an
interface with a normal system (nonsuperconducting symme-
try class A). Nevertheless, as we discuss in Appendix B 1,
the interface with vacuum has indeed edge states when the
Zeeman field exceeds the pairing gap. It is interesting that the
two parity sectors generically can have unrelated Z indices,
whereas a helical-like state is characterized by two oppo-
site indices. The occurrence of Dirac rather than Majorana
fermions implies that in our system the Z index is restricted
even integers.

IV. PUMPING

Consider a circular geometry with the superconductor cov-
ering the region r > R. Imagine that the pseudomagnetic field
is uniform in space and changes in time slowly. As we explain
next, in this dynamical process charge is pumped into or out
of the normal region, through the NS interface.

First consider the region � = 0 at r < R. dB/dt generates
an azimuthal pseudoelectric field �E = − d �A

dt ; Together with

the pseudomagnetic field, we have a drift velocity �vd = �E×�B
|B|2

along the radial direction; see Fig. 7(a). The drift velocity has
the same sign for the two valleys [20]. The resulting charge
current into a region of radius r is

dQ(r)

dt
=

∮
r

�j(r) · d �	 = 2πrnee
E (r)

B
, (21)

where we used j = neevd for the inward charge current den-
sity. Assuming that the density, ne, is determined by the filling
factor ν as ne = B


0
ν, we have

dQ(r)

dt
= nee

πr2Ḃ

B
= e


̇


0
ν. (22)

Thus the change in the number of particles coincides with ν

times the change in the number of flux quanta of the pseudo-
magnetic field.
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(a)

(d)(c)

×

( )

(b)

FIG. 7. Charge pumping: (a) Circular NS interface with a time-
dependent pseudomagnetic field Ḃ creating a pseudoelectric field E .
The crossed E and B pseudofields result [20] in a radial charge cur-
rent. (b) Ringlike PLL solutions adiabatically shrink as B increases.
(c) Quantized momenta and their occupation in the instantaneous
ground state. These bands correspond to the left side (py < 0) of
Fig. 5(c). The black arrow denotes the drift in py as B increases. In
the py > 0 region, the drift is in the opposite direction in momentum
space, and in the same spatial direction, not shown. (d) Excited state
resulting from pumping. Marked are excited single-quasiparticle
states within the gapless helical branch.

Equivalently, consider the adiabatic evolution of the many-
body wave function generated by Ḃ. In the radial geometry, py

corresponds to angular momentum and is quantized, together
with the radius of the ring-orbitals, as

p j = h̄

	B

√
j, r j = 	B

√
j, j ∈ N. (23)

The values of p j and r j change upon increasing B in such
a way that the r j’s become denser; see Fig. 7(b). The particle
density remains locked to the instantaneous value of B accord-
ing to ne = B

φ0
ν.

A. Pumping through the interface

Now we discuss the role of the SN interface r ∼ R. Does
the many-body state resulting from the motion in py-space
coincide with the instantaneous ground state? The answer is
positive if the BdG spectrum of the interface is gapped, as in
the trivial phase |μ| > |BZ |. However, the answer is negative
for |BZ | > |μ|. In this case, Fig. 7(c) represents schematically
the occupation of BdG states near the left crossing in Fig. 4(c)
before pumping. We can see that occupied states form only
subsets of BdG bands. As the spectral flow occurs, from the
superconductor to the normal region, the pj’s move to the left.
The resulting many-body state in Fig. 7(d) is an excited state.

Thus, the gapless bands at the interface influence pumping
by creating excitations. While we do not treat this explicitly,
relaxation will eventually occur and create dissipation. On the

other hand, no dissipation is expected in the gapped regime
|BZ | < |μ|.

B. Possible experimental realization

Finally, we mention a possible realization of this sys-
tem. On a practical level, our setup requires systems with
controlled pseudomagnetic fields. Designs of graphene mem-
branes with programmable strain in order to engineer nearly
uniform pseudomagnetic fields over macroscopic distances
have been proposed [10,18–20]. One such platform consists
of a graphene flake suspended on top of a triangular aperture,
with the sides normal to the 〈100〉 crystallographic axes of the
graphene membrane. In this system, a few-Tesla pseudofield
can be generated over a micrometer scale by electrostatically
pulling the membrane toward a gate [10]. This platform can
then allow us to induce pairing correlations on PLLs using a
superconducting substrate.

In the same system with the pseudomagnetic field con-
trolled by a gate, one can pump electrons in and out of the
membrane simply by oscillating the gate potential, while the
nanomechanical quality factor and frequency of the mem-
brane could in principle be detected using approaches such
as those described in Ref. [46]. The charge pumping itself can
be detected via a shift of the mechanical resonance frequency.
An explicit treatment of pumping in such a device remains a
subject a future study.

Another possible detection scheme is based on a rectifica-
tion of the ac pumped current. One may create a current path
from one side of the membrane to the other [47]. A rectified
dc current could be created, e.g., using an additional ac control
of the relative resistance between the membrane and the two
contacts.

V. CONCLUSIONS

We studied a 1D interface between graphene with a strain-
induced pseudomagnetic field and a superconductor. Adding
a Zeeman magnetic field, we identified a phase that supports
helical edge modes. They are protected by a Z2 × Z2 sym-
metry, reflecting the separate conservation of either (K,↑)
and (K ′,↓) electrons, or of (K ′,↑) and (K,↓) electrons. This
emergent symmetry of proximitized graphene becomes exact
when intervalley and spin-flip scatterings are suppressed. SOC
allows to eliminate either the right-going or the left-going
edge modes, resulting in a chiral edge mode.

Recently there have been numerous experiments exploring
the interface of graphene with superconductors in the presence
of real magnetic fields [48–55]. Supplementing this setting
with controlled strain is an important future direction. We
discussed a possible experimental realization of a pseudomag-
netic field in a strained membrane that would allow one to
probe the predicted edge states. We demonstrated that in our
time-reversal symmetric PLLs, ac modulation of the pseud-
ofield results in charge pumping. This charge pumping can
flow from the superconductor to the normal region in a nondis-
sipative way as long as the interface is gapped. When the
low-energy states are present, however, as can be controlled
by the Zeeman field, dissipation will occur.
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Finally, while we have studied noninteracting electrons,
the interplay of interactions with the weakly dispersing PLLs
and superconducting correlations may lead to numerous inter-
action instabilities [24,56–59] and possibly to realize exotic
fractional phases [22].
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APPENDIX A: INTERFACE DISPERSION
VIA THE AKHMEROV-BEENAKKER METHOD [33]

We start with a graphene Hamiltonian containing a pseud-
ofield, intrinsic SOC, and Zeeman terms in the valley isotropic

basis, as described in Eqs. (3), (11), and (19), and we trans-
form it into the BdG equation in Eq. (1).

We wish to describe bound Andreev states at the SN in-
terface, thus we follow the procedure set by [33] and start
by solving Eq. (1) in the x > 0 normal region. The solution
follows the canonical lines of PLL theory in graphene, where
we adjust for the presence of SOC and Zeeman terms. We find
the eigenvectors

�(x, y) = eipyy

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CK,↑
e 
K,↑

e (ξ+)

CK,↓
e 
K,↓

e (ξ+)

CK ′,↑
e 
K ′,↑

e (ξ−)

CK ′,↓
e 
K ′,↓

e (ξ−)

CK ′,↓
h 


K ′,↓
h (ξ+)

CK ′,↑
h 


K ′,↑
h (ξ+)

CK,↓
h 


K,↓
h (ξ−)

CK,↑
h 


K,↑
h (ξ−)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

with the spinors 
 defined as


K,sz
e (ξ+) = e− ξ2+

2

(−i(μ + ε + λI sz − BZ sz )H (μ+ε)2−λ2
I −2BZ (μ+ε)sz+B2

Z
2 −1

(ξ+)

H (μ+ε)2−λ2
I −2BZ (μ+ε)sz+B2

Z
2

(ξ+)

)
, (A2)


K ′,sz
e (ξ−) = e− ξ2−

2

(
H (μ+ε)2−λ2

I −2BZ (μ+ε)sz+B2
Z

2

(ξ−)

−i(μ + ε − λI sz − BZ sz )H (μ+ε)2−λ2
I −2BZ (μ+ε)+B2

Z
2 −1

(ξ−)

)
, (A3)



K ′,sz

h (ξ+) = e− ξ2+
2

(−i(μ − ε − λI sz − BZsz )H (μ−ε)2−λ2
I −2BZ (μ−ε)sz+B2

Z
2 −1

ξ+)

H (μ−ε)2−λ2
I −2BZ (μ−ε)sz+B2

Z
2

(ξ+)

)
, (A4)



K,sz

h (ξ−) = e− ξ2−
2

(
H (μ−ε)2−λ2

I −2BZ (μ−ε)sz+B2
Z

2

(ξ−)

−i((μ − ε) + λI sz − BZsz )H (μ−ε)2−λ2
I −2BZ (μ−ε)sz+B2

Z
2 −1

(ξ−)

)
, (A5)

where sz = ↑↓ = ±1. The bound Andreev states on the in-
terface at x = 0 are described using a boundary condition
equation

(MNS − 1)� = 0, (A6)

where the matrix MNS is given by [33,39]

MNS = τ0s0

(
ε

�
− iσx

√
1 − ε2

�2

)
. (A7)

This is similar to the BC equation presented in [33], where we
include the constraint for transitions between electrons and

holes to involve opposite spins via s0 in Eq. (A7). Solving
Eq. (A6) for the wave function in Eqs. (A1)–(A5) at x = 0
gives the dispersion relation ε(py). By defining

fα±λI ∓BZ (py) ≡
H α2−λ2

I ∓2BZ α+B2
Z

2

(py)

(α ± λI ∓ BZ )H α2−λ2
I ∓2BZ α+B2

Z
2 −1

(py)
, (A8)

fα±λI ±BZ (py) ≡
H α2−λ2

I ±2BZ α+B2
Z

2

(py)

(α ± λI ± BZ )H α2−λ2
I ±2BZ α+B2

Z
2 −1

(py)
, (A9)

the four solutions can be written compactly as

fμ−ε+szλI +szBZ (py) − fμ+ε+szλI −szBZ (py) =
√

�2 − ε2

ε

[
1 + fμ+ε+szλI −szBZ (py) fμ−ε+szλI +szBZ (py)

]
, (A10)

fμ−ε−szλI +szBZ (−py) − fμ+ε−szλI −szBZ (−py) =
√

�2 − ε2

ε

[
1 + fμ+ε−szλI −szBZ (−py) fμ−ε−szλI +szBZ (−py)

]
. (A11)

We solve Eqs. (A10) and (A11) for ε as a function of py

numerically for the case in which the Zeeman field BZ is
smaller then the first nonzero PLL to get the spectra plotted
in Fig. 2.
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FIG. 8. Dispersion relation ε(py ) as in Fig. 2, with the parameters
� = 10, μ = 0, and BZ = √

3, leading to a total of six crossings.

As BZ increases beyond the energy of the n � 1 PLLs,
more zero-energy crossings are created. To simplify the pic-
ture, we focus on μ = 0, and we plot in Fig. 8 the spectrum for
a value of BZ between the first and second PLLs, BZ = √

3.
When BZ surpasses the energy of each n > 0 PLL, we see
eight new bands that go through E = 0, leading to four new
crossings. Two crossings appear when BZ is equal to the
energy of the LL, and another two appear when BZ is larger.

APPENDIX B: INTERFACE DISPERSION
VIA TIGHT-BINDING CALCULATIONS

To corroborate the low-energy calculations, we construct a
tight-binding model of the system presented in the main text.
We look at a graphene hexagonal lattice in a ribbon geometry,
translationally invariant in the ŷ (zigzag) direction and finite in
the x̂ (armchair) direction, where the directions are described
in Fig. 1 in the main text. To create the pseudofield, we linearly
change the hopping amplitude in the x̂ direction [22,26,60,61].
The full tight-binding Hamiltonian is

Htb = HG + HZ + HSC. (B1)

Here, the graphene ribbon with the pseudofield Hamiltonian
reads

HG =
∑

s

∫
dky

2π

[
−

∑
σ

N∑
i=1

μc†
i,σ,s(ky)ci,σ,s(ky)

−
N∑

i=1

t cos

(√
3

2
aky

)
c†

i,B,s(ky)ci,A,s(ky)

−
N∑

i=2

(t − δt (i))(c†
i−1,B,s(ky)ci,A,s(ky)) + H.c.

]
, (B2)

where s runs over spin, i runs over the discretized layers of the
lattice in the x̂ direction, t is the hopping amplitude between
nearest neighbors, δt (i) is the change in the hopping amplitude
for hopping between adjacent layers, which is a function of the
layer index i, and A/B is the honeycomb sublattice index. In
what follows, we set a = 1, t = 1, and dt = 0.006. We plot
the spectrum with and without a pseudofield in Fig. 9.

We add a Zeeman field

HZ =
∑
λ,i

∫
dky

2π
BZ [c†

i,λ,↑(ky)ci,λ,↑(ky) − (↑→↓)], (B3)

FIG. 9. Spectrum of a graphene ribbon described by the tight-
binding model in Eq. (B1) without (a) and with (b) a pseudofield
generated by δt = 0.006. The system size is Nn = 140. The green
and red segments represent the zigzag edge states on the bottom and
top of the ribbons, respectively, whose inversion symmetry is broken
by the strain gradient in (b).

where λ = A, B is a sublattice index and BZ is the Zeeman
amplitude. Finally, we induce superconductivity in the regions
specified below, with the following Hamiltonian [26]:

HSC =
∑

λ,i∈SC

∫
dky

2π
[�c†

i,λ,↑(ky)c†
i,λ,↓(−ky) + h.c − (↑�↓)],

(B4)

FIG. 10. Illustration of the two types of normal-superconducting
interfaces we investigate in Fig. 11. In the SN configuration the
superconducting region is at the bottom of the graphene ribbon, and
in the NS configuration it is at the top. The zigzag edge states are
color-coded in accordance with the zigzag bands in the spectra in
Figs. 9 and 11.
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FIG. 11. Spectra of an SN [(a)–(c)] and NS [(d)–(f)] graphene ribbon interface described by the tight-binding model in Eq. (B2), with a
pseudofield, a Zeeman field described by Eq. (B3), and a superconducting potential described by Eq. (B4). The size of the normal region is
Nn = 90, the size of the superconducting region is Ns = 50, and we use the parameters δt = 0.06, � = 0.006, and BZ = 0.002. In (a) and (d)
μ = 0.3 and we see a gap on the SN interface, in (b) and (e) μ = 0.2 and this gap closes, and in (c) and (f) μ = 0.1 and we observe the helical
states described in the main text. The dashed rectangles mark the interface between the normal and superconducting regions around each node.
The green and red lines are the zigzag edge states on the bottom and top of the ribbons, respectively.

where � is the superconductive potential. Here i ∈
SC refers to the sites that belong to the proximitized
region.

We compute the spectrum of the tight-binding model for an
interface between a normal and a superconducting region. Ns

denotes the size of the superconductive region (� > 0), and
Nn denotes the size of the normal region (� = 0). Unlike in
the Akhmerov-Beenakker method and the low-energy calcu-
lations, the ribbon geometry produces zigzag edge states in
the spectrum, which are different on each of the edges due to
the pseudofield. We thus look at both possible configurations
for the interface, i.e., one where the superconducting region is
at the top edge of the ribbon (NS), and the other where the su-
perconductive region is at the bottom edge of the ribbon (SN).
Both configurations are plotted in Fig. 10. The strain gradient
breaks the inversion symmetry, making these configurations
nonequivalent.

We plot the spectra of the three scenarios discussed in
the main text: BZ < μ, BZ = μ, and BZ > μ for the SN
and NS geometries in Fig. 11. The zigzag edge states on
the bottom of the ribbon are colored green, and the zigzag
edge states on the top of the ribbon are colored red. The
position-momentum coupling is such that around the K node,
increasing momentum corresponds to decreasing x-position,
while around the K ′ node increasing momentum corresponds
to increasing x-position. As seen in Fig. 11, specifically in
panels (c) and (f) of the mentioned figures, the tight-binding
calculation reproduces the helical states when BZ > μ.

1. Superconducting-vacuum interface

We now consider the zigzag graphene ribbon under (i)
uniform Zeeman splitting BZ , (ii) uniform pairing �, and (iii)
strain gradient leading to PLLs. The resulting tight-binding
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FIG. 12. Spectrum of the fully superconducting system with a
pseudofield. We set � = 0.006, δt = 0.006, and μ = 0. In (a) BZ =
0 < � and in (b) BZ = 0.008 > �. The system size is Ns = 140.

spectrum is shown in Fig. 12. We see that for BZ > � the in-
terface with vacuum supports gapless edge states. Therefore,
our class D superconductor supports a topological nontrivial
phase.

As discussed in Sec. III D, due to the Sz conservation
our system maps to two models classified by the Altland-
Zirnbauer class D superconductor with Z index in each sector.
This double-copy allows to accommodate the presence of
counterpropagating modes at each interface, as seen in the
small boxes in Fig. 12(b) (similar to a system of spin-up
electrons under a positive orbital magnetic field and spin-
down electrons under opposite field). As we discussed in
depth above, the nature of each chiral mode is that of a

FIG. 13. Same as in Fig. 12, with δt = 0.

Dirac fermion, which can be decomposed into two Majorana
fermions. Hence in each sector our topological supercon-
ductor exhibits an even Z index. Presumably this can be
associated with the fact that pairing connects two discon-
nected Fermi points in our system.

Turning off the strain, the spectrum is shown in Fig. 13.
We can see that similar to the case with PLLs, the spec-
trum becomes gapless for BZ > � even in the absence of
PLLs. However, the present state is gapless in the bulk. In-
deed the entire Dirac cones, which have quantized levels due
to the finite stripe, cross the ε = 0 line. On the other hand, in
the strained case of Fig. 12 the gapped modes are localized at
the boundary.
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