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Estimation of the condensate fraction from the static structure factor
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We present an analytical method to estimate the condensate fraction ny/n in strongly correlated systems
for which the zero-temperature static structure factor S(p) is known. The advantage of the proposed method
is that it allows us to predict the long-range behavior of the one-body density matrix (i) in macroscopic and
mesoscopic systems, (ii) in three- and two-dimensional geometry, (iii) at zero and low finite temperature, and
(iv) in weakly and strongly correlated regimes. Our method is tested against exact values obtained with various
quantum Monte Carlo methods in a number of strongly correlated systems showing an excellent agreement.
The proposed technique is also useful in numerical simulations as it allows us to extrapolate the condensate
fraction to the thermodynamic limit for particle numbers as small as tens to hundreds. Our method is especially
valuable for extracting the condensate fraction from the experimentally measured static structure factor S(p),
thus providing a simple alternative technique for the estimation of ny/n. We analyze available experimental data

for S(p) of superfluid helium and find an excellent agreement with the experimental value of n/n.
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I. INTRODUCTION

Strongly-interacting Bose systems, such as excitons in
quantum wells [1-3] and transition metal dichalcogenides
(TMDs) [4,5], ultracold gases [6] in optical lattices [7], at
Feshbach resonance [8-10], Rydberg atoms [11,12], as well
as superfluid “*He [13] are now attracting special attention.
Whereas weakly correlated systems are routinely described
by mean-field theory [14], the regime of strong correla-
tions hardly allows for an analytical description. Importantly,
the Bose-Einstein condensate (BEC) density, being the main
magnitude quantifying the macroscopic coherence, cannot
be calculated perturbatively in the regime of strong correla-
tions. This failure is caused by the large condensate depletion
produced by interparticle correlations. For example, the con-
densate fraction of superfluid *He is only 7% [15] and in
two-dimensional dipolar excitons in GaAs quantum wells
[16,17] is 40% [1], 25% [18], or even smaller, 10% [19].
Large condensate depletion entails significant complications
for a precise determination of the condensate density both in
experiment and in theory. Unfortunately, at present there is not
a simple analytical theory capable of making a quantitative
prediction for the condensate fraction in the regime of strong
correlations. The experimental estimation of the condensate
fraction in liquid “He was done, among others, by Glyde
and collaborators [20] after intensive neutron scattering ex-
periments. The analysis of the experiment is quite elaborated
as final state effects (FSE) in the scattering process have to
be taken into account. The estimation of the FSE is rather
involved and several theories have been devised to account
for them, normally acting as a convolution function applied to
the impulse approximation [21-31]. The experimental values
obtained in this way are in close agreement with quantum
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Monte Carlo (QMC) simulations in a wide range of densities
[13]. Still, high-precision neutron scattering experiments are
quite complicated and expensive so this field would benefit
from a simpler alternative to estimate the condensate fraction.

In this paper, we establish a useful relation between
the condensate fraction ng/n and the zero-temperature static
structure factor S(p) with n (ng) being the total (condensate)
density. We present a fully analytical method for describing
the long-wavelength properties of cold bosonic systems in
terms of S(p), which enters as the only input quantity. Our
method is based on an empirical choice of the ultraviolet (UV)
cutoff in quantum-field hydrodynamics (HD) [32-35]. We
exploit a number of advanced quantum Monte Carlo (QMC)
methods (variational, diffusion, path-integral) in order to ver-
ify our theory. We find a remarkable quantitative agreement
in a number of mesoscopic and macroscopic systems and in
different dimensionalities (2D and 3D), both at zero and low
temperatures. Our method is valid, not only in the Bogoliubov
perturbative regime, but in the regime of strong correlations,
since the small parameter in our theory is the normal fraction
(n — ng)/n rather than the noncondensate fraction (n — ng)/n,
with n, the superfluid density. Remarkably, and in contrast to
standard approaches [32-35], we obtain a quantitative agree-
ment with QMC results for a spatial range as small as a few
interparticle distances. This allows one to make a reliable ex-
trapolation to the thermodynamic limit based on simulations
performed with only hundreds or even tens of particles. As
a further check, we apply our method to probably the most
famous and difficult example of a strongly correlated system,
namely superfluid helium. Even if the condensate fraction is
as small as 7%, our method is able to reproduce it correctly
when QMC data for S(p) is taken as an input. Finally, we
use experimental data [13,36,37] of S(p) and find that the
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condensate fraction obtained in this way are in agreement with
the ones derived from deep-inelastic neutron scattering. This
opens the door to an alternative and easier way of determining
the condensate fraction of quantum systems in which strong
correlations produce a deep depletion of the condensate.

II. HYDRODYNAMIC THEORY

We consider a bulk homogeneous three-dimensional (3D)
or two-dimensional (2D) bosonic superfluid system in the
absence of static currents. The effective Hamiltonian corre-
sponding to the free-energy functional can be conveniently
written in the form [33,35]

A= = [ (506 @F +7G/@)ar. @

with m the particle mass, w the chemical potential, and N
the particle number operator. The density operator p,(r) of
the superfluid component is conveniently split into the super-
fluid density ng and the density fluctuation operator p'(r) as
ps(r) = ng + p'(r). The density p'(r) and velocity ¥'(r) fluc-
tuation operators of the superfluid component have zero Gibbs
averages, (p/'(r)) = (¥/(r)) =0, and zero volume averages,
f,b/(r)dr = fV’(r)dr = 0. As usual, brackets (---) denote
averaging over the equilibrium state of the system that pre-
serves the number of particles. Finally, the function f(p'(r))
in Eq. (1) describes two-, three-, or many-body interactions.

The Hamiltonian (1) H — uN can be decomposed into
quadratic and anharmonic terms. In order to find the corre-
lation functions, we need only the quadratic form

fo= [ (@R Sewr)e.

with g = m?/x a generalization of the coupling constant to
the case of strong correlations and x being the adiabatic
compressibility [35]. Let us expand the density and velocity
fluctuation operators in Fourier series,

> ey, V)= —Ze’*’”hvp, 3)

p#0 paéO

pl(r) = M

where D =2 or 3 is the system dimensionality and Vp =
N/n is the quantization volume. We decompose the Velocity
fluctuation operator Vp into phonomc 9l and vortex V contri-

butions, where ¥ V || pand ¥ V L p, w1th v + v = Vp. Then,
the quadratic Hamlltoman (2) in remprocal space turns to

mng
Hy=Hy+ ) =995, )
p#0

where
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p#0
is the phononic part of the Hamiltonian.
Following Popov [33], we generalize the standard hy-
drodynamic Hamiltonian (5) by introducing the momentum

dependence of the coupling constant g,

2
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Here, U (p) is a momentum-dependent potential satisfying the
limiting condition U (p — 0) = g. After substituting Eq. (6)
into Eq. (5) the hydrodynamic Hamiltonian takes the follow-
ing form

A mng .\ . U(p) P2 A A
N e R e L O
p#0 y

The zero-temperature static structure factor S(p) =
(Opp—p)/n at T = 0 is our single input parameter. Therefore,
a proper theory must reproduce the static structure factor self-
consistently. Under the conditions of interest, n — ny < n, this
dictates the following choice for the momentum-dependent
potential,

r ! 1 8
4mn, <(S(p))2 B ) ®

with the U(p — 0) = g condition being automatically held.
Then, the empirical Hamiltonian (7) is diagonalized by the
transformation

Pp = iv/nS(P)(@Ep — &5, V) =

Up) =

ip/m
V4n S(p)

& At
(Cp + ¢t

&)

with p # 0. In Eq. (9), ¢, is the annihilation operator of
a phonon with momentum p, satisfying the usual bosonic
commutation relations [34], [¢p, éq] = 0, [Cp, éjl'] = 8pq. We
recast the empirical Hamiltonian (7) in the final form

2

Al =Y &), g =P 10
g T s (10)

where the energy of the quasiparticles &, corresponds to the
Feynman excitation energy. Therefore, &p is an empirical dis-
persion relation, which differs from the true one and coincides
with it only in the phononic long-wavelength limit p — 0,
where the described approach is valid.

Our main interest focuses on the estimation of the one-
body density matrix. To this end, we use the Kubo cumulant
expansion [32],

((@(l‘)—@(o))z)]
e —

gi(r)= (U (r)¥ (0)) =const x exp|:—

(11)

where W(r) is the operator of the Bose particle field, and
the constant prefactor depends on the particular choice of the
ultraviolet cutoff. The phase fluctuation operator @(r) can be
expressed in terms of the superfluid velocity v(r),

A A m r a/ / /
o) —¢0) = E/o vV (x')dr' . (12)
We assume sufficiently low temperatures so that the thermal
activation of the vortex rings (3D) or vortices (2D) is exponen-
tially suppressed, and we set the corresponding contribution to
zero, ¥ = 0. In the 3D case, vortex effects are not important
up to sufficiently high temperatures, where our method is no
longer expected to be applicable. In the 2D case, the vortex
effects must be taken into account, since they are necessary
for an appropriate description of the BKT phase transition.
Renormalization by free vortices (if they are generated) can
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be taken into account following Kosterlitz [38] by introducing
a e’/ factor in Eq. (11) with £, the distance between free
vortices [40]. Instead, a renormalization originating from pairs
of vortices can be included in n, [39]. Therefore, in both 2D
and 3D cases we arrive at the result

g1(r) = const x exp[—{(@y(r) — ¢ (0))*/2)]e~"5, (13)

where the phononic contribution to the phase fluctuation is

. . 1 mp .\, e
m@%wwn=ﬁ52h?¢@““4> (14)
p#0
In two dimensions, if free vortices are absent (below the
BKT critical temperature) one should set the corresponding
distance &, to infinity. In three dimensions, one should always
set £, = oo. After substituting Eq. (14) into Eq. (13) with

&, = oo one has

gi(r) 1 m pr
1n =exp |:V_D Z;cp(r)p(vl”,v[p)(cos o 1>:|

p#0

s)

where we inserted an ultraviolet cutoff factor «p (r) “by hand”
and take into account the fact that g;(0) = n.

Averages of Bose operators satisfy (¢p) = (¢p¢q) = 0 and
(&5 ¢q) = 8pa/ (e®/T — 1), thus the velocity-velocity correla-
tion function becomes [see Eq. (9)]

2 Ep/T 1

el y P ev +

Vovlo) = - . 16

(¥p¥=p) 4m?n,S(p) ef/T — 1 (16)
Within first-order perturbation theory, there is no distinction
between the total and superfluid densities. Thus in Eq. (16)
we substitute ng by n and, by using Eq. (15), we arrive at the
following final expression for the OBDM in a finite system,

1 &/T 4 ]
81(r) =exp| — Z fep(r) —e~ + (cos pr_ 1) .
n Vb = 4nS(p) /T — 1 h

a7

In the thermodynamic limit, the summation over momenta in
Eq. (17) should be replaced by an integral. This yields the final
form for OBDM in a macroscopic system

8i(r) =ex dp cos
2 h)P 4nS(p) /T — 1

kp(r) /T 4 1( pr 1):|
h

(18)

The integral is convergent in both the infrared and ultraviolet
integration limits, p — 0 and p — oo, if we take the cutoff
factor in the form of

Kp(r) = [1 — S(p)[¥/ @&~ ®/m (19)

and consider that the structure factor converges sufficiently
fast to unity at large momenta. The cutoff function (19) sat-
isfies the conditions «p_o(r) =1 and «p_.o(r) =0 at any
distance r, as it must be in a proper HD theory [33]. As the
OBDM also appears in the cutoff, the calculation of g;(r)
has to be done by solving an algebraic equation for g{:‘)(r).
The efficiency of our approach is based on the reduction of
the complicated Hamiltonian (1) to a simple quadratic in p’

1.0 T T T T
Monte Carlo data
08} = = = Hydrodynamic prediction -
N
- 0.6 1
=
~ . 2
S04l 2D dipoles, nry = 1 i
2D He
0.2} - .
2D dipoles, nrg = 290
0.0 . . = D EE—
0 1 2 3 4 5
1/2
n ™

FIG. 1. The one-body density matrix g;(r) in 2D strongly-
correlated quantum systems at zero temperature. The solid lines are
QMC results. Upper line: DMC results obtained for dipoles at density
nr2 = 1 and N = 100 particles; middle line: PIGS results for “He at
n=0.04347 A2 and N = 64; lower line: variational Monte Carlo
(VMC) results for dipoles at nré =290 and N = 100. The dashed
lines are the predictions of HD theory.

and V' form (7). Substituting Eq. (19) into (18) and taking the
r — oo limit, we obtain the ground-state macroscopic con-
densate density nj = g1 ="(c0) as a solution of the following
algebraic equation

o [ dp
™ _exp | —
n

2w h)P

|1 = S(p)/ e 0
4nS(p) ' @0

III. TESTING THE HYDRODYNAMIC THEORY BY
MONTE-CARLO METHODS

Equations (17)—(20) constitute the main result of our work
and allow us to calculate g;(r) (a nondiagonal function) re-
lying only on the knowledge of the static structure factor
(a diagonal function) at zero temperature S(p). In doing so,
we assume that the superfluid fraction is large and neglect
the normal component. In this way, our approach is appli-
cable even if the condensate fraction is tiny thus providing
predictions in parameter regions characterized by the failure
of Gross-Pitaevskii, Bogoliubov, and other theories which
are perturbative in the noncondensed occupation. In order to
verify the correctness of our theory we compare the results
obtained for g;(r), according to the prescription given above
and the exact results obtained in nonperturbative quantum
Monte Carlo methods. We use the most appropriate QMC
methods to calculate the OBDM, that is diffusion Monte Carlo
(DMC) and path-integral ground state (PIGS) methods at zero
temperature and path-integral Monte Carlo (PIMC) at finite
temperature.

In Fig. 1, we show a comparison of the OBDM for the
ground state of some 2D systems. The path-integral ground
state (PIGS) method is used for 2D liquid “He at its equilib-
rium density and the DMC method for 2D quantum dipoles,
with all the dipolar moments oriented perpendicularly to the
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plane, at densities nrj = 1 and nrg = 290 (dipolar length ry
is defined as in Ref. [16]). As is known, in the T = 0 limit a
2D quantum fluid has a finite condensate fraction or, in other
words, it manifests off-diagonal long-range order. In the same
figure, we report the results obtained for the same conditions
and system using HD theory. We emphasize that our analytic
approach requires only the knowledge of the static structure
factor at zero temperature. To this end, we use the function
S(p) provided by the same QMC methods used to estimate
g1(r). As anticipated, our approach is accurate for small p or
equivalently for large r. This is, in fact, observed in Fig. 1
where predictions of hydrodynamics are compared with the
exact QMC results. Notably, we find out that even at interme-
diate and smaller distances both results are not so different,
especially for the dipolar system.

Focusing on the limit of large distances, we can estimate
the condensate fraction from the long-range asymptotic limit
of g1(r) as ng ~ g(L/2) where L = (N/n)'/? is a box size.
Our HD theory yields results for ng/n which match the QMC
ones within their statistical error. We obtain ng/n = 0.22 for
“He and no/n = 0.36 and 0.015 for dipoles at densities nr; =
1 and 290, respectively. Remarkably, even for such small
values of the condensate fraction, corresponding to strongly
interacting systems, we obtain a perfect agreement. It is worth
mentioning that standard perturbative theories are not appli-
cable for such strongly-correlated systems.

It can be seen from Fig. 1 that the OBDM is correctly de-
scribed by HD theory already at small distances, r > £n~'/P,
starting from ¢ &~ 1.5-3 interparticle separations. Hence, the
HD approach is expected to be valid in mesoscopic systems,
i.e., for numbers of particles starting from N ~ €% ~ 10-30
in a 2D geometry and N ~ 47£%/3 ~ 30-100 in a 3D one.
This hypothesis is verified in Fig. 2, which shows the compar-
ison of HD theory predictions with the results of first-principle
simulations. Furthermore, the small offset remaining at large
distances can be significantly reduced if the exact value of the
OBDM is known in a single point for a sufficiently large dis-
tance r* at a low temperature for a large number of particles.
In this case, one can use the ansatz g;(r) = [¢{P(r)]'" to
describe all other distances, temperatures, and particle num-
bers, with the exponent |s¢| < 0.03 fixed by matching the
HD prediction (17) [¢"P(r*)]'** to the exact value g (r*).
Notably, the thermodynamic value of the condensate fraction
is rather accurate even when it is obtained from S(p) and
g1(r*) calculated in systems containing as few as 10 particles.
Moreover, starting from 3040 particles, the prediction for
its thermodynamic value becomes almost exact. Thus, we
conclude that our HD theory captures correctly the behavior
of the OBDM already for small systems sizes (see Fig. 2) at
which the OBDM is not yet converged to its thermodynamic
shape. The success of the HD theory in predicting the OBDM
in small systems can be understood by the fact that the static
structure factor typically converges much faster to the ther-
modynamic limit than the OBDM itself. For example, it can
be shown that, within the HD approach in two dimensions,
g1(L/2) converges to ny as O(1/L), i.e., O(l/«/ﬁ) in terms of
the number of particles.

We envision a practical utility of our method in predicting
the OBDM for large system sizes, which are hard or even

0-5 |\ ] ] ] ] ]
RN 2D dipol 21
2 ipoles, nry =
1 XS i
0.4 ~<@a._._._
e —cea®d
g B A S
~ £ v
Q 0.3 @ Monte Carlo data T
5 — =HD prediction for g,(L/2)
Sy 0.2 ¢ HD, input S(p)
“r ¥ HD, input S(p) & g,(L/2)]
LD v~ thermodynamic limit
-0
0.1 = e ccce=d -
. 2 S - —
[ 2D dipoles, nrﬁ = 32
0.0 1 i 1 i 1 i 1 i 1 i 1
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N

FIG. 2. The one-body density matrix at r = L/2, as a function of
the particle number N and at two different interaction strengths. The
circles stand for the DMC results and the dashed lines correspond
to finite-size HD theory. Diamonds show the results of extrapolation
from the finite-size data to the thermodynamic limit using the HD
theory with S(p) as input data, Eq. (20). Stars use S(p) and g,(L/2)
as input, Eq. (22). The solid lines are the condensate fractions. The
data correspond to 7 = 0 2D dipoles at densities nr2 = 1 (top) and
32 (bottom).

impossible to simulate directly. As an example, we can cal-
culate the OBDM in 2D “He at zero temperature for system
sizes as large as one million particles. Figure 3 shows the

0.24 T : T
o 0.23
~-
S
=Y

0.22

0.21 L L L

102 10° 10* 10° 108
1/2
n s

FIG. 3. HD prediction for the OBDM at r = L/2 as a function
of the particle number N in 2D “He at the equilibrium density, n =
0.04347 A2, and T = 0 (red line). It is compared to its asymptotic
value (dashed line), Eq. (20). All curves are based on the PIMC static
structure factor calculated at 500 mK and N = 64, and considering a
linear phononic behavior for small momenta.
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FIG. 4. The one-body density matrix g, (r) for 2D liquid “He and
same parameters as in Fig. 3 as obtained from the HD method, at
different temperatures, expressed in units of the BKT critical temper-
ature Tgkr. Dashed lines show the long-range power-law asymptotic
behavior predicted by the BKT theory below Tgkr.

convergence of the condensate fraction to the macroscopic
limit in this case. Even for systems consisting of thousands
of particles, the difference between the finite-size condensate
fraction and its thermodynamic value is significant. Only for
system sizes as large as N &~ 10° the differences become
negligible. It is appropriate to note that a direct simulation
with any QMC method consisting of 10° particles, if possible,
would require the use of large supercomputing facilities. On
the contrary, the use of our extrapolation method yields a
high-precision estimation at the thermodynamic limit already
starting from N ~ 100, as shown in Fig. 2.

Interestingly, our approach is able to describe correctly
the effect of a finite temperature on spatial coherence. The
advantage of using HD theory is that it properly takes into
account both thermal and zero-point phase fluctuations. In
Fig. 4, we show the long-range behavior of g; (r) for 2D *He at
temperatures below the BKT critical temperature. It is worth
noticing that, to produce these results, we only need the zero-
temperature static structure factor calculated for a single finite
size of the simulated system, with periodic boundary condi-
tions. As one can see, our results perfectly match the expected
BKT power-law decay, g;(r) ~ r~%, with o« = mT /(2m hny).

We verify that our method works also correctly in 3D
quantum liquids. For that purpose, we make a comparison
for bulk superfluid 4He, where we know that the conden-
sate fraction is small due its strongly interacting nature. We
show a comparison between QMC and HD in Fig. 5. The
results corresponding to 7 = 0 are obtained with PIGS and
the ones at T = 1 K with PIMC. The equilibrium density,
n=0.02186 A3, is used in both cases. As one can see, the
agreement in the plateau is excellent and quite good at short
and intermediate distances. The condensate fraction obtained
with the two methods is again in agreement within the error
bars of the QMC estimation, ng/n =~ 0.07.

1.0 T T T T
Monte Carlo data
0.8 = = = Hydrodynamic prediction
£ 3D He T=1K, PIMC
Py 3D He T—0K, PIGS
S 0.6 | b
Sy
04 -
0.2 | -
0.0 1 1 1 1
0.0 0.5 1.0 1.5 2.0 25
1/3
n T

FIG. 5. The one-body density matrix g,(r) in bulk *He at zero
and finite temperatures. Solid and dashed lines stand for QMC and
HD results, respectively.

The comparison between the hydrodynamic predictions for
the condensate fraction and available experimental results [13]
is the more exigent test to conclude on the usefulness of
our method. This check can be made for the paradigmatic
case of liquid “He. In Fig. 6, we report results of ng/n for
superfluid “He as a function of the density. The functions
S(p), required for the one-body density matrix calculation,
are obtained using the PIGS method. As we can see in the
figure, an overall agreement is achieved with the experimental
results [13], obtained by using deep-inelastic neutron scatter-
ing and after an accurate inclusion of FSE in the analysis.

0.10 : . ’ . .
*
0.08 | ,é i
Z 0.06 } (] i
~
ZO

0.04 | é
3D He:

O experiment [PRB 85, 140505(R) (2012)] % %
O HD + s(k) PIGS

0.02 F & HD + (k) exp. [PRB 21, 3638 (1980)] .
@ HD + S(k) exp. [PRB 24, 159 (1981)]

@ HD + S(k) exp. [PRB 35, 89 (1987)]

0.00

0.024 0.025 0.026

density (A™)

0.022 0.023

FIG. 6. Condensate fraction of superfluid *He as a function of
the density. Open circles are experimental results obtained from deep
inelastic neutron scattering [13]. Squares are HD predictions at the
same densities. The star, diamond, and hexagonal points correspond
to HD results using the experimental measurements of S(p) from
Refs. [37], [41], and [36], respectively.
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Remarkably, the accuracy of our theory does not fall even
when the freezing density is approached and the condensate
fraction is significantly reduced.

One may wonder whether the HD approach can also pro-
vide an alternative way of measuring the condensate fraction
instead of the present way, based on deep inelastic scattering
at large momentum transfer. In other words, whether the ex-
perimental measure of the static structure factor can be used
to infer ny/n. We have verified this possibility by using in our
theory three independent experimental measurements of S(p),
two obtained by x rays [36,41] and the other by neutron scat-
tering [37] at low momentum transfer. Our method predicts
no/n = 0.071 based on the experimental S(p) from Ref. [37],
and ng/n = 0.086 for data from Ref. [41] (see Fig. 6). Unfor-
tunately, Ref. [41] does not report the values of S(p) for large
momenta, resulting in an overestimation of ng/n due to the
use of truncated data in the HD analysis. Data form Ref. [36]
produces results at different densities that are very close to the
results from Ref. [13], obtained through deep inelastic neutron
scattering, thus validating the usefulness of our method for
extracting the condensate fraction in an alternative way.

IV. CRITERIA FOR A PROPER CUTOFF FUNCTION

The proper choice of the cutoff function «(r) is central to
our theory. Although we do not provide a rigorous derivation,
the following considerations apply:

(a) In the regime of weak correlations a proper choice is
kp(r) =11— S(p)|?, with the quadratic dependence coming
from the Bogoliubov theory [42].

(b) In the regime of strong correlations one has «p(r) =
[l —S(p)|, with the linear dependence demonstrated in
Ref. [43].

(c) More generally, we assume that the cutoff factor has
a power-law form |1 — S(p)|”, where the exponent must be
equal to v = 1 in the limit of strong correlations (ny/n = +0)
and v = 2 in the limit of weak interactions (ng/n = 1).

(d) In addition, the exponent v is assumed to be a function
of the condensate fraction, v = v(ng/n).

(e) We demonstrate that an excellent agreement with
experimental data and results of numerical simulations is ob-
tained when the cutoff function is chosen as v(x) = 2/(2 — x).
The high quality of the predictions was illustrated in Sec. III
and a comparison with a number of different cutoffs is shown
in Sec. V.

(f) Once the cutoff expression has been chosen, we have
verified that the OBDM and mesoscopic values of the conden-
sate fraction are correctly reproduced. Here, the underlying
assumption is that instead of the thermodynamic condensate
fraction v(ny/n) one should use the value of the OBDM at half
size of the box v(g;(L/2)/n).

(g) Finally, we use scaling considerations (similar to those
used in BKT theory [44]) and we substitute L/2 by r in the
OBDM. This leads to the final form of the cutoff as given
in Eq. (19). In other words, for a given length » we do the
following: (i) instead of the original system we consider a
different one of size L ~ r and (ii) we approximate g|(r)/n
by the condensate fraction in the system of size L ~ r. The
obtained expression does not apply to short distances as g; has

a fast dependence on r and hydrodynamics does not apply at
distances smaller than the mean interparticle distance. A sim-
ilar method was used [45] to calculate the superfluid fraction
ny/n in a mesoscopic system of a finite size L from the known
scale-dependent value of the superfluid fraction ny(r)/n in the
thermodynamic limit.

(h) In two dimensions, there is an infrared Hohenberg
divergence [46] at T # 0. Therefore, we use g/ =°(r) rather
than g;(r) in the exponent (19). Indeed, because of the
power-law decay in the one-body density matrix [32] g;(r)
pomT/Qaln) 5 (0 for r— oo we would obtain 2/(2 —
gi(r)/n) — 1 for all cases. Whereas according to us, the
correct value of the exponent in Eq. (19) at » — oo must
be different from unity and equal to 2/(2 —n9/n), where
n) = g'=%(r — o00) is the quasicondensate density, i.e., the
condensate density at T = 0.

Based on the above considerations, we chose the cutoff
factor in the form given in Eq. (19). The ultimate test for
the accuracy of the proposed theory is the verification of the
method in a direct comparison with the experimental and
theoretical results for the static structure factor S(p) and the
OBDM g/ (7).

V. OPTIMAL CUTOFF FUNCTION

It is important to verify the stability of our method with
respect to a particular choice of the cutoff function. To do so
we have considered a number of cutoff functions, v(x) with
x = ng/n, satisfying the conditions discussed in Sec. IV. In
particular, the following eight choices have been used:

1 v = 2/Q-x),

2 vx) = 1+x%

3) vix) = 2/(2—x)optimal,

@ vx) = 2%

5) vx) = l+x @D
© v@x) = 1/(1—-x+x%/2),

7 vy = 40,

®) vx) = 1+4+x2-—x).

In particular, all considered choices of the cutoff function
satisfy the conditions for weak correlations, v(1) =2, and
strong correlations, v(0) = 1.

In order to verify the accuracy of different cutoff functions,
Eq. (21), we use a 2D dipolar system as a reference. Figure 7
shows the comparison of the condensate fraction as we get
it from the hydrodynamic theory with the reference data,
obtained by extrapolating the OBDM to the thermodynamic
limit. We consider a wide range of densities, 10710 < nrg <
290, covering a variety of regimes from weakly-interacting
Bogoliubov gas and up to the highest possible density after
which the dipolar gas experiences a transition to a solid.

It can be seen that there is a negligible dependence on a
specific choice of v(x) both in the Bogoliubov perturbative
regime, Ny/N 2 90%, and in the regime where the condensate
fraction is almost completely exhausted, No/N < 10%. Those
are the regimes where all considered functions approach ap-
propriate limiting values which are known analytically. This
is not the case for the intermediate strength of correlations,
where there is a weak dependence on the specific choice
of v(x). Indeed, the maximum difference between different
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FIG. 7. Dependence of the accuracy of the HD prediction for
the macroscopic condensate fraction Ny/N on the choice of the
cutoff function v(x) for 2D dipoles as a function of the density nr2.
Stars: condensate fraction obtained directly and used as a reference
[QMC + HD theory based on OBDM and S(p) calculated with N =
100 particles, VMC + DMC extrapolation is done for Ny /N values];
dashed lines: predictions of our hydrodynamic method with eight
different cutoff functions [Eq. (21) in increasing order from bottom
to top]; solid line: prediction of our hydrodynamic method with the
optimal cutoff function v(x) = 2/(2 — x).

choices observed for Ny/N = 60% is smaller than 10%. Out
of the considered functions, the choice v(x) =2/(2 —x)
stands out for the high quality of the results obtained and so it
is the one used in our theory.

VI. IMPROVED EXTRAPOLATION PROCEDURE

As shown above, the hydrodynamic theory can be used
to predict the long-range behavior of the OBDM based on
the knowledge of S(p). At the same time, the hydrodynamic
theory fails at short distances and hence it introduces a small
offset in the OBDM at large distances. The value of the offset
depends on details of the pair interactions, density, dimen-
sionality, etc. This offset can be removed if a single value
of the OBDM is known. That is if at least a single value of
g1(r*) is known at some large distance r*, then it is possible
to predict well the long-range behavior of OBDMs for any
low temperature, large distance, and large particle number.
In particular, such a procedure is especially important for
extrapolation of the condensate fraction to the thermodynamic
limit in numerical simulations.

An improved procedure relies on the simultaneous knowl-
edge of S(p) for different values of momentum p and g; () for
a single point r = r* (e.g., r* = L/2) in a finite-size system at
some (zero or low) temperature. Then the finite-size effects
can be significantly reduced by approximating the g;(r) by
the ansatz

g1(r) = [¢Pn]™7, 22)

where g (r) is given by Eq. (17) and s is chosen in such
a way that g,(r*) = [¢(r*)]'+* for the distance r = r* at

which the exact value of OBDM is known. In this way, the
long-range envelope of OBDM follows the form predicted
by hydrodynamics while the offset is essentially removed by
appropriately adjusting the value of s < 1. We note that it is
convenient to use a power-law ansatz instead of an additive
shift in order to preserve the correct value of the OBDM at
origin as g;(r =0) = 1.

We propose the following extrapolation procedure:

(1) measure S(p) for different momenta and g;(r) in a
single point r*,

(2) calculate the OBDM g!°(r) with HD theory using
S(p) as an input,

(3) fix the value of parameter »r < 1 in such a way that
the ansatz (22) is exact for the point 7* in which the OBDM is
known,

(4) then the ansatz (22) can be used for any sufficiently
low temperature 7', large number of particles N, and large
distance r.

Typically, the adjustable parameter s¢ is of the order of
3%. Its specific value depends on the interaction type, density,
system dimensionality, etc. At the same time, its value is
almost independent of the distance r*, particle number, and
temperature if T is sufficiently small while 7* and N are large
enough. It is worth noting that the ability of predicting the
finite-size results is especially important in two dimensions
where the condensate fraction is absent at any finite tempera-
ture.

VII. FINITE-SIZE EFFECTS

The advantage of using the static structure factor S(p) as
an input is that typically it has much faster convergence to the
thermodynamic limit as compared to the convergence of the
OBDM g, (r). Indeed, the main effect of a finite-size box on
the static structure factor is the discretization of the allowed
momenta. The value of the low-momentum linear slope is
related to the speed of sound which is almost not changed
with system size. As a result, the overall shape of the static
structure factor does not significantly change with the number
of particles (see Fig. 8 for a characteristic example). If the
size of the box is larger than the mean interparticle distance,
the missing small-momentum behavior can be safely recon-
structed from the linear phonons, S(p) = p/(2mc), where ¢
is the speed of sound. Instead, the change of the OBDM as
the size of the box is increased can be significant, see Fig. 9.
There are several reasons for this much stronger dependence.

One reason is that according to the periodic boundary con-
dition the OBDM g (r) must be a periodic function of r when
any of the x, y, z arguments is displaced by the box length L.
This flattens the OBDM at distances » & L/2, for example, in
a one-dimensional geometry the first derivative g'(L/2) = 0.

Another reason is the exponential dependence of the
OBDM on phase fluctuations, see the cumulant Kubo
Eq. (11). The stronger the correlations, the larger the speed
of sound and the coefficient in the exponent according to
Eq. (17) for S(p) o 1/v,. This makes convergence with N
even slower. In contrast, there is no cumulant exponent in the
structure factor which is rather the Fourier transform of the
pair correlation function (for details on cumulant technique re-
fer to Ref. [32]). Gapless systems at zero temperature feature a
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FIG. 8. An example of finite-size effect in the static structure
factor for N = 100 and N = 625 particles in a two-dimensional
dipolar system at dimensionless density nrZ = 32.

fast power-law decay in the long-range asymptotic of the pair
distribution function as 1/r°*! due to the phononic behavior
of S(p) & p at small momenta p. The decay in OBDM is
slow and g;(r) scales as 1/rP~! at large distance since the
momentum distribution at small p behaves like n(p) o< 1/p.
The mentioned properties of finite-size convergence of the
static structure factor and OBDM suggest that the extrapola-
tion to the thermodynamic limit is more efficient when it is
done based on S(p). In Fig. 10 we compare different methods
of extrapolation to the thermodynamic limit. One method is
based on the definition of the condensate number in terms of
the momentum distribution n,, = [ g (r)e’™ dr as the number
of particles with zero momentum ny = f gi1(r)dr. Thus, one
integrates the OBDM and then takes the limiting value in the
N — oo limit. This method has the slowest convergence to
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FIG. 9. An example of finite-size effect in the one-body density
matrix for N = 100 and N = 625 particles in a two-dimensional
dipolar system at dimensionless density nrZ = 32.
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FIG. 10. Example of a finite-size convergence of the conden-
sate fraction. Squares: the one-body density matrix calculated at
the largest possible distance, g;(r = L/2). Circles: average value
of the OBDM foL/z g1(r)2mr dr/(wL?/4). Diamonds: hydrodynamic
theory prediction for the thermodynamic condensate fraction based
on the static structure factor for a given number of particles, Eq. (20).
Stars: thermodynamic values as obtained from the ansatz (22) at
r* = L/2. Solid lines: fits in the form of a + b/N'/> + ¢/N where
a, b, and c are free parameters. Thick dashed lines: thermodynamic
values as obtained from the fit.

the thermodynamic limit from the considered ones. Another
method is based on the calculation of the OBDM value at
the half size of the box which is the largest allowed dis-
tance, g1(L/2), and taking the thermodynamic limit. The use
of our method is advantageous as (i) it shows the fastest
convergence, (ii) commonly the calculation for large system
sizes is much more numerically expensive (N2, N3, or even
exponential scaling is common) and even might require the
use of supercomputing facilities so dealing with small system
sizes is preferable, and (iii) there is no need to calculate a grid
in the system size number.

VIII. SENSITIVITY TO THE ACCURACY OF
THE INPUT DATA

The convergence and accuracy of our method are sensitive
to the quality of the static structure factor. Here we discuss
two typical issues that might be present in S(p) at (i) low and
(i) high momenta.

The low-momentum part of the static structure factor is
defined by linear phonons. Unfortunately, it is quite com-
mon that the signal from low-energy Bragg scattering can
be hardly measured in experiments. Also, numerical calcula-
tion of small momenta requires resource-intensive simulations
of large system sizes at low temperatures. In addition to
the need for simulation with large numbers of particles, the
zero-temperature algorithms which are based on projection
techniques (diffusion Monte Carlo, path-integral ground-state
methods, etc.) have the worst convergence for the low-energy
modes. That is, even if the energy is converged, the low-
momentum part of the S(p) still might require an additional
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effort to be correctly simulated. There are different possible
ways of dealing with this problem. One method is to impose
a proper linear dependence S(p) = p/(2mc) where c is the
speed of sound (which can be directly measured or related to
the compressibility). Another method is to remove the lowest
momentum “troublesome” points and verify the stability of
the output. Once the remaining points lie on the proper linear
phononic part, the prediction of our method for the condensate
fraction becomes stable. For example, using the experimental
data of the helium static structure factor from Ref. [36] the
condensate fraction decreases from 6.6% to 6.2% when the
first 1,2, ..., 6 points are eliminated. Instead, when the next
one or several points are removed, the fraction of condensate
essentially does not change, remaining equal to 6.2%, that is
the structure factor has reached the proper phonon behavior.
The main differences in static structure factor between zero
temperature and a finite but low one affect the momenta with
pc < T. Thus for practical purposes, the zero-temperature
S(p) can be approximately obtained from S(p) by substitution
of the low-momentum part by the proper linear phononic
behavior.

At large momenta, the static structure factor converges to
a unit value. Any noise in S(p) in this asymptotic regime
leads to an artificial lowering of the condensate fraction. The
reason for that is that Eq. (19) depends on |1 — S(p)| thus
fluctuations around 1 contribute to the result. A possible way
out is to use a high-frequency filter or perform any other type
of smoothing and to impose S(p) =1 for all points where
the difference from the asymptotic value is smaller than the
error bars. For example, for the experimental data of Ref. [36]
for the lowest temperature, the noisy structure factor gives
the fraction of condensate ny/n = 0.054 that is very different
from its fraction ny/n = 0.062 after the noise is removed.

IX. CONCLUSIONS

In conclusion, we have developed a new quantum hy-
drodynamic theory for superfluid systems. Using our phe-
nomenological approach for the interaction potential and the
ultraviolet cutoff factor, we arrive to both finite-size and
macroscopic expressions for the one-body density matrix
gi(r) that rely only on previous knowledge of the static
structure factor at zero temperature. In this way, we provide
access to a nondiagonal property starting from a diagonal
one. In contrast to standard perturbation theories, which rely
on a large condensate fraction and fail for a small one, the

hydrodynamic method used requires a large superfluid frac-
tion (collisionless regime) and it can be applied for large
condensate depletion as well. We have verified that the val-
ues of the condensate fraction, derived from the long-range
behavior of g;(r), match closely the ones obtained from ab
initio QMC simulations. Our approach provides an enhanced
convergence of the condensate fraction to its thermodynamic-
limit value because it is based on the static structure factor,
which typically has reduced finite-size effects. Using the static
structure factor S(p), obtained in a QMC calculation, we
reproduce experimental results for the condensate fraction in
superfluid “*He for a wide range of densities. Moreover, using
experimental measurements of S(p) we obtain predictions for
the condensate fraction that are statistically indistinguishable
from the ones obtained by deep inelastic neutron scattering at
large momentum transfer. Our method applies even to cases
in which the two-body interaction potential is not exactly
known (for example, for dense excitons or Rydberg gas), thus
impeding a direct simulation of the system, whereas S(p) is
experimentally accessible. It is worth noticing that recently
there have been experimental measures of S(p) to characterize
the supersolid phase in dilute dipolar systems, which can be
used within our formalism to extract easily the one-body den-
sity matrix of this intriguing phase [47,48]. The present theory
is addressed to both experimentalists and theoreticians and it
provides an alternative procedure to the usual and difficult
estimation of the condensate fraction in strongly correlated
quantum superfluids.
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