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Ginzburg-Landau theory for impure superconductors of polar symmetry
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A diagrammatic derivation of the Ginzburg-Landau equations for impure bulk superconductors, whose
symmetry group includes the polar axis c, is presented. The results obtained are valid at an arbitrary relationship
between the critical temperature kBTC , the inverse impurity scattering time h̄/τ , and the spin-orbit energy
(α/h̄)pF , where α is the value of the spin-orbit coupling of current carriers, which is inherent in such compounds.
The magnetoelectric effect (the spin polarization induced by the supercurrent) is also evaluated under the same
conditions. Analogous results for two-dimensional asymmetric superconductors are presented too.
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I. INTRODUCTION

Superconductors with broken central symmetry have re-
cently attracted much interest [1,2]. Because of the absence
of severe constraints on physical processes imposed on con-
ventional superconductors by the invariance with respect to
space parity, such compounds may possess unusual physical
properties. One of first examples was the magnetoelectric
effect (MEE) [3]—the emergence of the spin magnetization
M ∼ c × Js of the current carriers due to the current Js in a su-
perconductor whose symmetry group possesses the polar axis
c. Recently, quite a number of other extraordinary physical
effects of the magnetoelectric nature have been predicted and
partly observed (see as reviews Refs. [4,5]).

It is known that the behavior of conventional supercon-
ductors in the neighborhood of the critical temperature under
equilibrium conditions is satisfactorily described within the
framework of the Ginzburg-Landau (GL) theory [6]. One can
expect that the same holds true for polar superconductors. A
connection between the phenomenological GL approach and
the microscopic BCS theory established for the case of clean
conventional superconductors [7] was extended to the case
of clean polar superconductors as well [8]. It has been re-
vealed an additional parity-odd term in the GL free-energy
functional. However, compounds with destroyed mirror sym-
metry are inevitably many-component ones and already for
this reason the amount of lattice imperfections can be large.
In addition, some of them are prepared by the arc-melting
method or by the method of solid-state reaction. Effects
of impurity scattering were also considered for the case of
conventional s-wave superconductors [9]. Although the GL
theory is intended to describe equilibrium states [6], it turned
out that some terms of the GL functional are sensitive to a pure
kinetic characteristics—the time of the electron momentum
relaxation τ . Later, that theory was extended to the case of
singlet d-wave superconductors [10].

The present paper is aimed to derive the GL functional for
the case of impure three-dimensional (3D) superconductors of
polar symmetry by means of the Feynman diagram technique.

It will be shown that the elastic impurity scattering under
the broken space parity condition makes the functional addi-
tionally dependent on another kinetic characteristic—the time
of the electron spin relaxation τS . The mechanism [11–13]
behind this relaxation consists of the following. The polar
symmetry enters physics of a conductor through the spin-orbit
(SO) term in the one-particle Hamiltonian [14–16],

HSO = α (p × c) · σ, (1)

where p is the electron momentum, σ is the Pauli spin matrix-
vector, the unit vector c shows the polar axes, and α is the
SO constant. (Here and hereafter, we use units in which h̄ and
Boltzmann’s constant kB are unity.) The SO energy Eq. (1)
can be considered the Zeeman energy in a fictitious magnetic
field B f (p) = α(p × c)/μB. This field stochastically changes
its direction by impurity scattering, effectively giving rise to
the spin relaxation. If the impurity broadening 1/τ is much
larger than the SO energy αpF at the Fermi momentum pF , the
mechanism described results in the spin relaxation time τ−1

S
∼=

τ−1η2, where η = 2αpF τ . Note that the SO constant α enters
the problem also through the parameter δ = α m/pF , which is
assumed to be very small so all powers of δ in equations in
excess of the first will be ignored. The parameter η is allowed
below to take any value.

The diagrammatic approach employed markedly differs
from the usual one [9] in some points. First, we treat the elec-
tromagnetic interaction by means of the perturbation theory
rather then through an eikonal (phase-integral) approxima-
tion because it proves to be inconvenient to deal with the
SO coupling in coordinate space. This approach, though it
requires evaluating quite a few Feynman’s diagrams, allows
one to take account of the SO coupling in a fully control-
lable way. Another difference is that due to the SO coupling
all the constituents of the diagram technique (propagators,
vertices, and, what is more important, the so-called impurity
ladders) acquire a specific spin structure like that in quantum
electrodynamics [17]. Just as in quantum electrodynamics,
a technical tool which makes it possible to go from spin-
matrix equations into ordinary scalar equations without any
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approximations is Fierz identities [18] in a form suited for
the particular form of the SO coupling [13,19]. An aspect of
impurity scattering should also be noted. The fact is that the
SO coupling by lifting the spin degeneracy of the conduction
electrons forms two energy branches with positive and nega-
tive helicities (the projection of the spin of an electron with
momentum p on the direction c × p) with energies which, on
the assumption of the isotropic electron mass, are ε±(p, θ ) =
p2

2m ± αp sinθ , where θ is the angle of the momentum p with
the polar axis c. The gap separating the two branches �SO =
2αp sinθ is not a constant function on the old Fermi surface
(i.e., at p = pF ≡ √

2mεF ); it turns zero in the points θ = 0, π

and reaches a maximum value εSO = 2αpF on the circle θ =
π/2. The scattering of an electron on a single impurity may
result in a transition between the branches. Although the one-
particle Green’s function averaged over impurity positions is
diagonal in the helicity index, explicit calculations show that
all possible scattering channels contribute comparably into
the impurity ladder. Our approach takes account of inter- and
intrabranch electron transitions on equal footing.

In impure superconductors, the form of the GL functional
found is the same as it is in clean superconductors—in addi-
tion to the conventional terms,

Fc =
∫

r
[A|�|2 + B|�|4 + C|��|2], (2)

the functional also has an anomalous parity-odd term,

Fan = D

2

∫
r
(B × c) · (�∗�� + ��∗�∗), (3)

where
∫

r = ∫
d3r and � = −i∇ + 2 e

c A. The difference is
in a dependence of the coefficients A, B, C, and D on τ in
addition to TC and εSO. Below, all these coefficients will be
obtained in an analytical form, which is valid at any values
of TCτ and εSOτ . The conventional part of the GL functional
weakly depends on the SO coupling, provided that δ � 1,
whereas the coefficient D at the anomalous term, being pro-
portional to δ, is also controlled by TCτ and TCτS . The MEE in
3D dirty superconductors, which has the same physical origin
as the anomalous term in the GL functional and can be treated
by the same means, is considered as well.

Notice that effects of impurity scattering on the GL func-
tional were recently touched upon [20] as a part of the problem
about the upper critical magnetic field in bulk impure noncen-
trosymmetric superconductors. Above all, that and the present
paper differ by models considered. That paper is about a crys-
tal of a cubic symmetry where the SO coupling has the form
H̃SO(p) = γ0p · σ. Accordingly, the SO splitting of the elec-
tron band, �̃SO(p) = 2γ0 p, is isotropic. Thus, the necessity to
deal with the anisotropic SO splitting, �SO = 2αp sinθ , which
is the main difficulty overcome in the present paper, is absent
in Ref. [20]. In this respect, the model considered in Ref.
[20] is similar to two-dimensional (2D) models. In addition,
main calculations of that paper were performed under the
assumption that the contributions of the impurity scattering
with change of the sign of the helicity may be disregarded
if the value of the SO coupling 2γ0 pF substantially exceeds
both the elastic scattering rate 1/τ and a cutoff energy (in the
BCS self-consistency equation) given by the Debye energy
ωD. As opposed to that, in the present paper it is supposed a

gt

r
gΔ(r1)

gtΔ∗(r2)

gΔ(r3)

gt

r

gΔ(r1)

= λsgβκ

Δβκ(r)
+

FIG. 1. The diagrammatic equation for �βκ (r). Here a thick
clockwise fermion line denotes G(11)(iεn|r1, r2 ), while an anticlock-
wise line denotes G(22)(iεn|r1, r2) defined by Eqs. (4) and (5).

relatively weak SO coupling 2αpF < ωD and it is explicitly
demonstrated that the interbranch scattering can be taken into
account at any relationship between 2αpF , 1/τ , and TC .

The case of a 2D asymmetric impure superconductor,
which is more amenable to theoretical treatment, is considered
too (Appendix I) by the same method that has been applied
in the main part of this paper to the case of a bulk super-
conductor. Recently, this case was discussed by means of the
quasiclassical method [21] in the limit of a strong SO coupling
εSOτ � 1. We agree with that result.

The paper is organized as follows. In Sec. II, basic equa-
tions of the BCS theory and the traditional way [9] to derive
the GL expansion is briefly outlined by paying attention to
the spin structure of all constituents of the theory. In Sec. III,
which is the main part of the paper, the anomalous term in
the GL functional is evaluated. Conventional terms are treated
more briefly in Sec. IV. The electric current is considered
in Sec. V. In Sec. VI, the approach developed in previous
sections is applied to the MEE. Section VIII concludes the
paper. Details of all calculations are placed in the Appen-
dices. Results for the 2D superconductors are presented in
Appendix I.

II. MODEL AND BASIC RELATIONS

We start from the usual expansion [7,9,22,23] of the BCS
self-consistency equation in powers of the order parameter,
which on the assumption of the s-wave pairing has the form
�γρ (r) = gγ ρ�(r), g = iσy. By cutting off the series on the
third term, one gets an equation presented in Fig. 1. The thick
fermion lines in the diagrams are components of the Green’s
matrix function,

Ĝαβ (iεn|r1, r2) =
(

G(11)(iεn|r1, r2) 0

0 G(22)(iεn|r1, r2)

)
αβ

,

(4)

which refers to the system in the normal state subject to
both the applied magnetic field and the stochastic impurity
potential. It obeys the Dyson equation:

Ĝ(iεn|r1, r2) = Ĝ(0)(iεn|r1 − r2) +
∫

r
Ĝ(0)(iεn|r1 − r)

× [
M̂ (imp)(r) + M̂ (e f )(r)

]
Ĝ(iεn|r, r2). (5)

Here Ĝ(0)(iεn|r1 − r2) is the Green’s matrix function of the
clean system without the external field, which can be found
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gtΔ∗(r3)

gΔ(r4)

gtΔ∗(r1)

gΔ(r2)

Φ2 = ,

FIG. 2. Loop diagrams for the GL functional.

from the equation of motion(
iεn − H(0)(−i∇1) 0

0 iεn − Ht
(0)(i∇1)

)
βκ

× Ĝ(0)
κρ (iεn|r1 − r2) =

(
1 0
0 1

)
δ(r1 − r2)δβρ, (6)

with the Hamiltonian

H (0)
γ β (−i∇) = − ∇2

2m
δβγ + α(−i∇ × c) · σβγ . (7)

Here εn = πT (2n + 1) are fermion frequencies and the super-
script t denotes transposition. Also, in Eq. (5),

M̂ (imp)
αβ (r) =

(
U (imp)

αβ (r) 0

0 −Ut (imp)
αβ (r)

)
(8)

stands for the interaction with the impurity potential and

M̂ (ef)
αβ (r) =

(
V (ef)

αβ (−i∇; r) 0

0 −V t (ef)
αβ (i∇; r)

)
(9)

accounts for the interaction with the applied magnetic field.
Here

V (ef)
γ ρ (−i∇; r) = V (par)

γ ρ (r) + V (dia)
γ ρ (−i∇; r),

V (par)
γ ρ (r) = μBσγ ρ · B(r), (10)

V (dia)
γ ρ (−i∇; r) = e

c
vγ ρ (r) · A(r),

where

vγ ρ (r) = −i
∇
m

δγρ + α(c × σ)γ ρ (11)

is the velocity operator and −e is the electron charge. The
equation of Fig. 1 is nothing but the stationary condition

δF

δ�∗(r)
= 0 (12)

for the functional

F = 1

λs

∫
r
|�(r)|2 + �2 + 1

2
�4, (13)

where �2 and �4 are quadratic and quartic in �(r), respec-
tively. The corresponding diagrams are depicted in Fig. 2.
The next step is an expansion of �2 in powers of the Hef.
As a result, the functional �2 transforms into a sum of the
conventional term �2.c presented by diagrams in Fig. 3 and
the anomalous term �2.an presented by diagrams in Fig. 4.
Unlike Fig. 2, thin solid lines in Figs. 3 and 4 correspond to
the normal system subject to the field of nonaveraged impurity
potential but without the electron-field interaction. Just as in

gtΔ∗(r1)

gΔ(r2)

V (dia)(−i∇3; r3)

gtΔ∗(r1)

gΔ(r2)

−V t
(dia)(i∇3; r3)

FIG. 3. Diagrammatic representation for �2.c. Here the black
circle denotes V (dia)(−i∇; r), when it is placed on a clock-wise solid
line, but it denotes −V t (dia)(i∇; r) being placed on an anticlockwise
line.

the case of conventional superconductors, an effect of the
applied field on �4 can be disregarded.

We assume the potential of randomly distributed impu-
rities of concentration nimp to be short ranged: U (imp)

βγ (r) =∑
i Uδ(r − Ri )δβγ (then the elastic scattering time τ is given

by τ−1 = 2πN (0)nimp|U |2, where N (0) = mpF /2π2 is the
density of states on the Fermi level). As is known [24], the av-
eraging over the impurity positions restoring the translational
invariance leads to the appearance in diagrams of impurity
lines. An impurity line (which is depicted by a dashed line
with a cross), contributes nimp|U |2 if it joins two clockwise
or two anticlockwise fermion lines, whereas its contribution
is −nimp|U |2 when it joins a clockwise fermion line to an
anticlockwise fermion line. In the case of a conventional
superconductor, the sum of impurity insertions (without in-
tersections) into a particular solid line is known [24] to lead
to the impurity renormalization of the frequency of the corre-
sponding Green’s function,

iεn → iε̃n = iεns(εn),

s(εn) = 1 + (2τ |εn|)−1. (14)

gtΔ∗(r1)

gΔ(r2)

V (par)(r3)

gtΔ∗(r1)

gΔ(r2)

−V t
(par)(r3)

FIG. 4. Diagrammatic representation for �2.an. The black square
denotes V (par)(r) if it is placed on a clockwise solid line, whereas
being placed on an anticlockwise line it denotes −V t (par)(r). Black
circles mean the same as in Fig. 3.
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If one neglects corrections quadratic in δ, this result, i.e., the
independence of the decay time of an electron state on its
helicity, remains valid for our model.

The relation between the momentum and coordinate repre-
sentations in the presence of the SO coupling has the form

Ĝ(0)
κρ (iε̃n, r − r′) =

∫
p

eip·(r−r′ )
(

G(iε̃n, p) 0

0 −Gt (−iε̃n,−p)

)
κρ

,

Gκρ (iε̃n, p) =
∑
ν=±

�(ν)
κρ (p)G(ν)(iε̃n, p, θ ), (15)

�(±)(p) = 1

2

(
σ0 ± (p × c) · σ

|p × c|
)

.

Here
∫

p = ∫ d3 p
(2π )3 , �(±)(p) is the operator of projection onto

states with a definite helicity,

G(ν)(iε̃n, p, θ ) = [iε̃n − ξ(ν)(p, θ )]−1, (16)

and ξ(±)(p, θ ) = ε±(p, θ ) − μ. For the following, it is con-
venient to also introduce the reversed Green’s function,
G(rev)

κρ (iεn, p) via the equation

−Gt
κρ (−iε̃n,−p) = gt

κγ G(rev)
γ β (iε̃n, p)gβρ. (17)

Then

G(rev)
κρ (iε̃n, p) =

∑
ν=±

�(ν)
κρ (p)G(rev)

(ν) (iε̃n, p, θ ),

G(rev)
(ν) (iε̃n, p, θ ) = [iε̃n + ξ(ν)(p, θ )]−1. (18)

In deriving Eqs. (18), use has been made of the equality

g�t (±)(−p)gt = �(±)(p), (19)

which is a consequence of the easy verified identity gσt gt =
−σ. Equations (10) in momentum space take the form

V (par)
βγ (r) → V (par)

βγ (q) = μBσβγ · B(q),

V (dia)
βγ (−i∇; r) → V (dia)

βγ (p; q) = e

c
vβγ (p) · A(q). (20)

with

vβγ (p) = p
m

δβγ + α(c × σ)βγ . (21)

Also in the momentum representation, clockwise-directed
fermion lines of a diagram become Gβγ (iε̃n, p) while
anticlockwise-directed lines become −Gt

ρζ (−iε̃n,−p).

III. ANOMALOUS PART OF THE GL FUNCTIONAL

A. Contribution of gap gradient

Without regard to the diamagnetism, only diagrams on the
upper line in Fig. 4 are in action. Their form in the momentum
representation is shown in Fig. 5. Because �(r), A(r), and
B(r) are slowly varying compared to the inverse of the Fermi
momentum, the Green’s functions can be expanded into a
series on small parameters q/pF and q′/pF as

G(0)(iεn, p + q)

= G(0)(iεn, p) + G(0)(iεn, p)[q · v(p)]G(0)(iεn, p) + · · · ,

(22)

gtΔ∗(q − q/2)

gΔ(q + q/2)

V(par)(−q) −p + q′

p + q/2

p − q/2

gtΔ∗(q − q/2)

gΔ(q + q/2)

−V t
(par)(−q)p + q′

−p + q/2

−p− q/2

FIG. 5. Diagrams of the upper line in Fig. 4 in the momentum
space representation.

or in the diagram language as shown in Fig. 6. Terms of the
expansion linear in q can be shown to cancel themselves while
terms linear in q′ transform the diagrams in Fig. 5, first, into
the diagrams in Fig. 7 and, further, on account of the impurity
scattering, into the diagrams in Fig. 8. The latter diagrams, in
addition to elements already defined, also include the impurity
ladders (the thick dashed lines defined diagrammatically in
Fig. 9) and the impurity dressed gap functions (the gray circles
defined by the equation in Fig. 10). The diagrams of Fig. 8 add
up to (Appendix C)

�2.an = D
∫

r
B(r) · [c × V(r)], (23)

where

V(r) = �∗(r)
∇
2i

�(r) −
(∇

2i
�∗(r)

)
�(r). (24)

and the coefficient D in its general form is given by Eq. (C21).
In the dirty limit (TCτ � 1 and εSOτ � 1), when the main
contribution stems from the diagrams with the impurity lad-
der, from Eqs. (C21)–(23), it follows:

D � 32αη2
(mpF

3π

)
μB

TCτ

(2πTc)2

×
∑
n�0

(
1

2n + 1

)2 1

2πTcτ |2n + 1| + 1
3η2

. (25)

B. Contribution of vector potential

In the presence of the magnetic field, six diagrams of the
second and third lines in Fig. 4 come into play. After impurity
averaging, they turn into 14 diagrams. Half of them, in which
the vertex corresponding to V(par) enters the clockwise fermion
line, are depicted in Fig. 11. Another half, in which the Zee-
man interaction enters the anticlockwise fermion line in the
form of −V t

(par), are shown in Fig. 12. For short, momenta
of fermion lines are not shown in those figures. They can be
restored by means of the momentum conservation law at each
vertex, for example, as shown for some chosen diagrams in
Appendix D. The total result of evaluation of the diagrams in
Figs. 11 and 12 (Appendix D) has the form

D
∫

r
[B(r) × c] · 2e

c
A(r)|�(r)|2. (26)

FIG. 6. Diagrammatic representation of Eq. (22).
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gtΔ∗(q − q/2)

gΔ(q + q/2)

V(par)(−q) −q vt(−p)

p

p

−p

−p

gtΔ∗(q − q/2)

gΔ(q + q/2)

q′v(p) −V t
(par)(−q)

−pp

−pp

FIG. 7. The result of expansion of the diagrams of Fig. 5 over the
small parameter q′/pF .

Thus, their effect is to replace V(r) in Eq. (23) with a gauge-
invariant combination:

V(r) + 2e

c
A(r)|�(r)|2

≡ 1

2
[�∗(r)�(r)�(r) + �(r)�∗(r)�∗(r)]. (27)

IV. CONVENTIONAL TERMS

Diagrams responsible for the conventional part of the
GL functional fall into four groups. The first three present
�2.c; their evaluation (Appendix E) shows how the pertur-
bation treatment of the electron-field interaction leads to the
gauge-invariant form of the GL functional and also why the
conventional part appears to be insensitive to the SO coupling,
provided that corrections of the order of δ2 may be omitted.
The forth group is responsible for �4. The first group con-
sists of diagrams which do not include in the diamagnetic
interaction with the magnetic field. Initially, there is one such
diagram whose skeleton form is shown on the upper line in

μBσmBm(−q)

p

−p

(1v)

gΔ(q + q/2)s( n)

p′

−p

(2v)

−p′

p

−qjv
t
j(−p )

(3v)

qjvj(p)

p

−p

(4v)

gtΔ∗(q − q/2)s( n)

p′

−p

(5v)

−μBσt
mBm(−q)

−p′
p

(6v)

FIG. 8. The diagrams in Fig. 7 with impurity scattering allowed
for. The large gray circles denote the impurity-dressed gap function.
The thick dashed line in the diagrams (2v), (3v), (5v), and (6v)
denotes the impurity ladder.

δβ̄ᾱ

δζκ

× × ×= + . . .+
κ ζ

β̄ ᾱ

κ ζ

β̄ ᾱ

Gβ̄ᾱ(i ñ,p)

−Gt
ζκ(−i ñ,−p)

= −nimp|U |2gβκTβ̄β|αᾱ( n)g
t
ζα

FIG. 9. The impurity ladder. Spin indices on the upper fermion
line should be read from left to right, whereas on the lower line they
should be read from right to left.

Fig. 13. The q expansion converts this diagram into the four
ones shown on the second and third lines in Fig. 13. The full
form of these diagrams for an impure superconductor is shown
in Fig. 26. The sum of the integral term in Eq. (13) and the
upper diagram in Fig. 26, just as in the case of a conventional
superconductor [9,23], yields the first term in Eq. (2),

A
∫

r
|�(r)|2, A = mpF

π2

(T − TC

TC

)
, (28)

where TC , upon neglecting corrections proportional to δ2, de-
pends neither on τ nor on α. Other diagrams in Fig. 26, also
just as in the case of an impure conventional superconductor
[9], yield

C
∫

r
|∇�(r)|2,

C = p3
F τ

3mπ3TC

∑
n�0

(
1

2n + 1

)2 1

1 + 2πTCτ (2n + 1)]
. (29)

The second group consists of diagrams linear in V(dia). They
are shown in Fig. 14 in the skeleton form and in Fig. 28 in full
form. Their contribution is

C
4e

c

∫
r

A(r) · V(r). (30)

The skeleton form of diagrams of the third group, which
are quadratic in V(dia), are shown in Fig. 15. Their full form is

=
β

κ
gβκΔ +

β

κ
κ

β γ

φ
gρζΔ

= gβκΔs( n)

FIG. 10. The equation for the impurity-dressed gap function.
Spin indices should be read everywhere following a clockwise way
beginning from β and ending in κ . The argument of the gap function
is dropped here; it depends on the form of a diagram in which the
�-vertex locates. The method used allows one to deal finally with
diagrams in which arguments (momenta) of the fermion lines joined
to a given �-vertex are opposite to each other and do not depend on
the momentum of the gap function corresponding to this vertex; just
as it is shown in this figure.
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V(par)(−q1)

(1a)

V(dia) p + q1+q2

2 ;−q2

(2a)

(3a)

gΔ(q + q1+q2

2 )s( n)

(4a)

(5a)

gtΔ∗(q − q1+q2

2 )s( n)

(6a)

(7a)

FIG. 11. The result of the impurity averaging of the diagrams of
the second line in Fig. 4, which are responsible for a half of Fan linear
in the vector potential. Their calculation is presented in Appendix D.
Arguments of slowly varying (in coordinate space) functions are only
pointed out.

shown in Fig. 29. They contribute (Appendix E)

C
∫

r

[
2e

c
A(r)

]2

|�(r)|2. (31)

Equations (29)–(31) add up to

�2.c = C
∫

r

∣∣∣∣(∇
i

+ 2e

c
A(r)

)
�(r)

∣∣∣∣2

. (32)

(1b)

−V t
(par)(−q1)

(2b)

(3b) (4b)

gΔ(q + q1+q2

2 )s( n)

(5b)

(6b)

(7b)

V(dia) p + q1+q2

2 ;−q2

gtΔ∗(q − q1+q2

2 )s( n)

FIG. 12. The diagrams of the third line of Fig. 4 after the aver-
aging over impurity positions. They are responsible for another half
of Fan linear in A(r). Contribution of Figs. 12(1b)–(7b) are equal to
that of Figs. 11(1a)–(7a) respectively.

gtΔ∗(q)

gΔ(q)

p + q
2

−p + q
2

gtΔ∗(q)

gΔ(q)

p −p

1
2qv(p)

1
2qv(p)

gΔ(q)

gtΔ∗(q)

−p

p

p

p

gtΔ∗(q)

gΔ(q)

1
2qv(p) −1

2qvt(−p)

p

p

−p

−p

gΔ(q)

gtΔ∗(q)

−1
2
qvt(−p)

−1
2
qvt(−p)

−p

−p

−p

p

FIG. 13. The contribution to �2.c of zero order in the magnetic
field.

Diagrams of the fourth order in �(r), which are shown in
Fig. 16 in the skeleton form and in Fig. 31 in the full form,
yield (Appendix E)

�4 = 2B
∫

r
|�(r)|4, B = mpF

2π4T 2
c

∑
n�0

(2n + 1)−3, (33)

i.e., the same result which holds for a clean superconductor
without the SO coupling.

V. ELECTRIC CURRENT

The Fourier transform of the current density is given by

J(q) = (−e)T
∑

n

∫
p

Tr
{

v(p)G(11)
(

iεn|p + q
2
, p − q

2

)}
.

(34)

An anomalous term in the supercurrent, which is induced by
the Zeeman interaction, is depicted in Fig. 17 in skeleton form
and in Fig. 18 in the full form due to the impurity scattering.
They yield (Appendix F)

Jan(r) = −e D[B(r) × c]|�(r)|2. (35)

A conventional part of the current, which is due to the
gradient of the gap function, is shown in Fig. 19 in the skeleton

gtΔ∗(q − q/2)

gΔ(q + q/2)

V(dia)(p;−q)
−p + q′

p + q/2

p− q/2

gtΔ∗(q − q/2)

gΔ(q + q/2)

−V t
(dia)(−p;−q)

p + q′

−p + q/2

−p− q/2

gtΔ∗(q − q/2)

gΔ(q + q/2)

V(dia)(p;−q) −q vt(−p)

p

p

−p

−p
gtΔ∗(q − q/2)

gΔ(q + q/2)

q′v(p) −V t
(dia)(−p;−q)

−pp

−p

FIG. 14. The diagrams for the term in �2.c linear in the vector
potential.
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V(dia)(p;−q1)

V(dia)(p + q1+q2

2 ;−q2)

gΔ(q + q1+q2

2 )

gtΔ∗(q − q1+q2

2 )

gΔ(q + q1+q2

2 )

gtΔ∗(q − q1+q2

2 )

−V t
(dia)(−p + q;−q2)V(dia)(p;−q1)

gΔ(q + q1+q2

2 )

gtΔ∗(q − q1+q2

2 )

−V t
(dia)(−p;−q1)

−V t
(dia)(−p − q1+q2

2 ;−q2)

FIG. 15. The contribution to �2.c quadratic in the vector potential.

form and in Fig. 33 (Appendix F) in the full form. The total
contribution of diagrams in Fig. 33 is (Appendix F)

J(1)
c (r) = −2eCV(r). (36)

An effect of diagrams linear in the vector potential A(r),
which are shown in Fig. 20 in the skeleton form and in Fig. 34
(Appendix F) in the full form, is to replace V(r) in Eq. (36)
with a combination V(r) + 2e

c A(r)|�(r)|2.

VI. MAGNETOELECTRIC EFFECT

It has been observed [3] that the spin magnetization of a
mirror-odd superconductor should be finite if the supercon-
ductor is in the current-carrying state. This MEE was first
predicted for a 2D superconductor with destroyed up-down
symmetry [3]. Later [25], that theory was extended to cover
the case of an impure 2D superconductor. Here we consider
this effect for a bulk superconductor of polar symmetry within
the frame of the model adopted. The Fourier transform of the
magnetization density defined by expression

M(q) = −μBT
∑
εn

∫
p

Tr
{
σG(11)

(
iεn|p + q

2
, p − q

2

)}
(37)

can be obtained directly by comparing diagrams for the MEE
with analogous diagrams for Fan.

At no magnetic field, diagrams for the MEE are shown in
Fig. 21. The diagrams in the lower line in Fig. 21 are similar
to diagrams in the upper line in Fig. 8; namely, Figs. 21(3u),

gtΔ∗( − q1 + q + q2)

gtΔ∗(q1)

gΔ(q) gΔ(q2)

−p + q

p

p + q1 − q

−p + q− q1 + q2

FIG. 16. The skeleton form of the diagram for �4.

gtΔ∗(q1 − q+q2

2
)

V(par)(−q2)

−ev(p) gΔ(q1 + q+q2

2
)

−p + q1 − q2/2p − q/2

p + q/2 p + q2 + q/2

gtΔ∗(q1 − q+q2

2
)

gΔ(q1 + q+q2

2
)

−ev(p) −V t
(par)(−q2)

−p + q1 − q2/2p − q/2

p + q/2 −p + q1 + q2/2

V(par)(−q2)

gΔ(q1 + q+q2

2
)

−ev(p) gtΔ∗(q1 − q+q2

2
)

p − q2 − q1/2p − q/2

p + q/2 −p + q1 + q2/2

FIG. 17. The skeleton diagrams for the anomalous contribution
to the current.

(4u), and (5u) correspond to Figs. 8(2v), (1v), and (3v),
respectively. Hence

M(r) = − 1
2 D[c × V(r)]. (38)

The applied magnetic field, due to the diamagnetic part of
the electron-field interaction, results in the change V(r) →
V(r) + 2e

c A(r)|�(r)|2 in Eq. (38). This follows from the
comparison of diagrams in Fig. 22 with those in Fig. 11.
In addition, due to the paramagnetic part of the interaction,
the field also gives rise to a conventional component of the
magnetization M (c)

i = χi jB j (Appendix G).

−e vj(p)

(1s)

μBσmBm(−q2)

(2s)

−e vj(p)

(3s)

gΔ(q1 + q+q2

2 )s( n)

(4s)

−e vj(p)

(5s)

gtΔ∗(q1 − q+q2

2 )s( n)

(6s)

(7s)

FIG. 18. The contributions to the anomalous part of the current in
an impure superconductor. An analysis of the diagrams is presented
in Appendix F.
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gtΔ∗(q − q/2)

gΔ(q + q/2)

−p + q′−ev(p)

p + q
2

p− q
2

gtΔ∗(q − q/2)

gΔ(q + q/2)

−q′vt(−p)−ev(p)

p

p

−p

−p

FIG. 19. The conventional contribution to the current due to the
gradient of the phase of the gap function in the skeleton form. In the
full form, the contribution is presented in Fig. 33.

VII. CONCLUDING REMARKS

In this paper, we have considered two aspects of su-
perconductivity in impure polar symmetry crystals: the GL
functional and the MEE near TC . The results have been ob-
tained in an analytic form and are valid at any relationship
between the value of the SO coupling α, the momentum
relaxation time τ , and the critical temperature TC , provided
that αpF � εF . Several conclusions follow from the analysis
presented. The first is that the canonical formalism offers a
manageable method to derive the GL functional irrespective
of the space dimensionality; both the 3D and 2D cases can
be treated by the same means. The second is that no phys-
ically justified reason is seen for different considerations of
the intrabranch and interbranch electron scattering—both the
scattering channels are equally important and can be con-
sidered on the equal footing. We have also observed that at
strong disorder the anomalous terms in the free energy and
the spin magnetization are dominated by diagrams containing
the impurity ladder.

The physical conclusion is that characteristics of polar
superconductors with τ−1

S � TC � τ−1 differ from those
with TC � τ−1

S � τ−1. This means that even equilibrium
properties of mirror-odd superconductors are subject to the
D’yakonov-Perel’ mechanism [11,12] of the spin relaxation.

V (dia)(p− q+q2
2 ;−q2)

gΔ(q1 + q+q2
2 )

−ev(p) gtΔ∗(q1 − q+q2
2 )

p + q/2

p− q/2

−p + q1 + q2/2

p − q2 − q1/2

gtΔ∗(q1 − q+q2
2 )

gΔ(q1 + q+q2
2 )

−ev(p) −V t
(dia)(−p + q1;−q2)

−p + q1 − q2/2p − q/2

p + q/2 −p + q1 + q2/2

gtΔ∗(q1 − q+q2

2
)

V (dia)(p + q+q2
2 ;−q2)

−ev(p) gΔ(q1 + q+q2
2 )

−p + q1 − q2/2p − q/2

p + q/2 p + q2 + q/2

FIG. 20. The conventional contribution to the current due to the
vector potential.

gtΔ∗(q − q/2)

gΔ(q + q/2)

−p + q′
μBσm

p + q
2

p− q
2

(1u)

gtΔ∗(q − q/2)

gΔ(q + q/2)

−qjv
t
j(−p)

p

p

−p

−p

(2u)

−p′
μBσm

p

(3u)

gtΔ∗(q − q/2)s( n)

(4u)

p

−qjv
t
j(−p )

−p′

(5u)

FIG. 21. The skeleton diagram (1u) shows the contribution to the
MEE due to space variance of the gap function. The diagram (2u) is
a result of the expansion of (1u) into a series of q′/pF . The diagrams
(3u)–(5u) are the final form of the diagram (2u) on account of the
impurity scattering.

The distinguished role of the mechanism in various spin-
dependent kinetic and optic phenomena in noncentrosymmet-
ric semiconductors is now widely recognized [26]; one may
expect the same in noncentrosymmetric superconductors. The
approach employed is not confined to equilibrium problems;
it can be readily generalized to cover dynamic processes.

Note that the polar symmetry also permits a term in the
GL functional of the form F (2)

an ∼ B · (c × ∇)|�|2 (and a cor-
responding term in the magnetization M (2) ∼ (c × ∇)|�|2).
Albeit the expansion of diagrams in Fig. 5 in q/pF does
give rise to terms of the form, those terms cancel each other
within the frame of the microscopic model considered. The
symmetry also allows for the average value of the operator
of the spin flow Smi = 1

2 (σmvi + viσm) to be proportional to
cm[c × V(r)]i. However, an analysis (Appendix H) shows that
this average value vanishes.

p + q/2

p − q/2

μBσ

(1k)

p′ + q2 + q/2

−p′ + q1 − q2/2

e
cv(p)A(−q2)

(2k)

μBσ

(3k)

gΔ(q1 + q+q2

2 )s( n)

(4k)

(5k)

gtΔ∗(q1 − q+q2

2 )s( n)

(6k)

(7k)

FIG. 22. The diagrams for the contribution to the MEE due to
the vector potential A(r) in the dirty case. Figures 22(1k)–(7k) are
analogous to Figs. 11(1a)–(7a)
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APPENDIX A: AUXILIARY EQUALITIES

In this Appendix, we list some equalities to be used in the
following dealing with diagrams. Let θ be the angle of the
momentum p with the polar axis c. Then

p⊥
def= p − c(c · p) = p̂⊥ p sin θ,

v(p) = c
( p

m
cos θ

)
+ p̂⊥

( p

m
sin θ

)
+ α(c × σ ). (A1)

The following are some angle integrals:

B(μν)
m

def=
∫

d p̂⊥
2π

[
�(μ)(p)σ m�(ν)(p)

]
κγ

= 1

4

(
σm − cm(cσ) σm + cm(cσ)

σm + cm(cσ) σm − cm(cσ)

)(μν)

κγ

, (A2)

U (μν)
i j

def=
∫

d p̂⊥
2π

Tr
[
σi�

(μ)(p)σ j�
(ν)(p)

]
= 1

2

(
δi j − cic j δi j + cic j

δi j + cic j δi j − cic j

)
(μν)

, (A3)

V (μν)
j (θ )

def=
∫

d p̂⊥
2π

[
�(μ)(p)v j (p)�(ν)(p)

]
κγ

= 1

2
c j

( p

m
cos θ

)(
1 0

0 1

)
(μν)

δκγ + 1

4
(c × σ) j

κγ

×
( p

m sin θ + α α

α −( p
m sin θ − α

))
(μν)

, (A4)

S(μν)
m j (θ )

def=
∫

d p̂⊥
2π

Tr
{
σm�(μ)(p)v j (p)�(ν)(p)

}
= 1

2
em jsc

s

( p
m sin θ + α α

α − p
m sin θ + α

)
(μν)

,

(A5)

P(μν)
i j (θ )

def=
∫

d p̂⊥
2π

Tr
{
vi(p)�(μ)(p)v j (p)�(ν)(p)

}
= cic j

( p

m
cos θ

)2
(

1 0
0 1

)(μν)

+ 1

2
(δi j − cic j )

×
(( p

m sin θ + α
)2

α2

α2
( p

m sin θ − α
)2

)
(μν)

.

(A6)

Below are radial integrals whose values should be evaluated
with the accuracy up to terms linear in δ = α/vF . Because
energy bands of electrons with positive and negative helicities

are different, ξ(±)(p, θ ) = ξ ± αp sin θ (ξ = p2

2m − μ), there
are two Fermi momenta at a given θ , whose values with the
adopted accuracy are

p±(θ ) ∼= pF [1 ∓ δ(θ )]. (A7)

Near these momenta, the energy branches behave as

ξ(±)(p, θ ) ∼= ξ [1 ± δ(θ )] ± α(θ )pF , (A8)

where

α(θ ) = α sin θ, δ(θ ) = α(θ )

vF
. (A9)

Also, with the adopted accuracy,

p(ξ )

pF

∼=
{

1 − δ(θ ) + ξ(+)

vF pF
, |p − p+(θ )| � pF

1 + δ(θ ) + ξ(−)

vF pF
, |p − p−(θ )| � pF

(A10)

and
dξ

dξ(±)

∼= [1 ∓ δ(θ )]. (A11)

The above allows one to show the validity of the following
equalities:

I3.1(+,−)
def=

∫
dξ

2π

[
G2

(+)G
(rev)
(+)

]
G(−)

= i

[2εns(εn)]2

{
[2i|εn|s(εn) − γ (θ )]−1, εn > 0

[2i|εn|s(εn) + γ (θ )]−1, εn < 0,

(A12)

I3.1(−,+)
def=

∫
dξ

2π

[
G2

(−)G
(rev)
(−)

]
G(+)

= i

[2εns(εn)]2

{
[2i|εn|s(εn) + γ (θ )]−1, εn > 0

[2i|εn|s(εn) − γ (θ )]−1, εn < 0,

(A13)

where

γ (θ ) = 2α(θ )pF . (A14)

Hence

I3.1(+,−) + I3.1(−,+) = 2

[2|εn|s(εn)]Z (εn, θ )
, (A15)

where

Z (εn, θ ) = [2|εn|s(εn)]2 + γ 2(θ ). (A16)

Also

I2.2(+,−)
def=

∫
dξ

2π

[
G(+)G

(rev)
(+)

][
G(−)G

(rev)
(−)

]
= 2

[2|εn|s(εn)]Z (εn, θ )
. (A17)

Further, for integrals

I2.1(μ)
def=

∫
dξ

2π

p(ξ )

pF
[G(μ)]

2G(rev)
(μ) , (A18)

I1.2(μ)
def=

∫
dξ

2π

p(ξ )

pF
G(μ)

[
G(rev)

(μ)

]2
, (A19)
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we have

I2.1(μ) = I1.2(μ) = [1 − 2δ(θ ) sgn μ]
i sgn εn

[2|εn|s(εn)]2
. (A20)

Hence

I2.1(+) + I2.1(−) = 2i sgn εn

[2|εn|s(εn)]2
, (A21)

I2.1(+) − I2.1(−) = −4δ(θ )
i sgn εn

[2|εn|s(εn)]2
. (A22)

It is also valid that

I2.1(+,−)
def=

∫
dξ

2π

[
G(+)G

(rev)
(+)

]
G(−)

= i sgn εn

[2εns(εn)]2 − 2iεns(εn)γ (θ )
, (A23)

I2.1(−,+)
def=

∫
dξ

2π

[
G(−)G

(rev)
(−)

]
G(+)

= i sgn εn

[2εns(εn)]2 + 2iεns(εn)γ (θ )
. (A24)

From here, it follows that

I2.1(+,−) + I2.1(−,+) = 2i sgn εn

[2|εn|s(εn)]2 + γ 2(θ )
(A25)

is an odd function of εn, whereas

I2.1(+,−) − I2.1(−,+) = −2γ (θ )

[2|εn|s(εn)Z (εn, θ )
(A26)

is an even function of εn. Also with the adopted accuracy

I2.2(μ)
def=

∫
dξ

2π

[
G(μ)G

(rev)
(μ)

]2

= 2
1 − δ(θ )sgn μ

[2|εn|s(εn)]3
, (A27)

J3
def=

∫
dξ

2π

p(ξ )

pF

{( p

m
sin θ + α

)[
G(rev)

(+)

]2
G(+)

−
( p

m
sin θ − α

)[
G(rev)

(−)

]2
G(−)

}
∼= 2α[1 − 3 sin2 θ ]

i sgn εn

[2|εn|s(εn)]2
, (A28)

and

J4
def=

∫
dξ

2π

(
p

pF

){( p

m
sin θ + α

)2[
G(rev)

(+) G(+)
]2

+
( p

m
sin θ − α

)2[
G(rev)

(−) G(−)
]2

}
∼= 8

3

v2
F

[2|εn|s(εn)]3
. (A29)

It is also valid that

In
def=

∫
dξ

2π

1

[iεns(εn) − ξ ]2−n[iεns(εn) + ξ ]2+n

= 21−|n|

[(2|εn|s(εn)]3
, n = −1, 0, 1. (A30)

δβ̄ᾱ

δβα

gβκ gt
ζα

×
β α

β̄ ᾱ

×
β̄ ᾱ

×
gβκ gt

ζα

+ . . .+
β α

Gβ̄ᾱ(i ñ,p)

G
(rev)
αβ (i ñ,p)

= (−nimp|U |2)gβκTβ̄β|αᾱ( n)gt
ζα

FIG. 23. An equivalent form of the equation for the impurity
ladder shown in Fig. 9. Here also spin indices on the upper fermion
line should be read from left to right, whereas on the lower line they
should be read from right to left.

APPENDIX B: IMPURITY LADDER

In this Appendix, the sum of ladder diagrams is derived
and, with its help, an expression for the impurity-dressed gap
function is obtained. Diagrams forming the impurity ladder
are depicted in Fig. 9. The first term, i.e., the impurity field
correlator (−nimp|U |2)δβ̄ᾱδζκ , may be represented in the form

(−nimp|U |2)gβκ [δβ̄ᾱδαβ]gt
ζα. (B1)

The second term

(−nimp|U |2)2
∫

p
Gβ̄ᾱ (iε̃, p)Gt

ζκ (−iε̃, −p), (B2)

by virtue of Eqs. (15)–(18), also admits an analogous repre-
sentation,

(−nimp|U |2)gβκt (1)
β̄β|αᾱ

gt
ζα, (B3)

with

t (1)
β̄β|αᾱ

(εn) = (−nimp|U |2)
∫

p
Gβ̄ᾱG(rev)

αβ . (B4)

Note that here

nimp|U |2
∫

p
=

∫ π

0

1

2
sinθdθ

∫
d p̂⊥
2π

∫
dξ

2πτ

p

pF
. (B5)

The forms of Eqs. (B1) and (B3) are tempting us to expect that
all terms of the ladder have the same spin structure, that is, the
sum of all the diagrams have the form

(−nimp|U |2)gβκTβ̄β|αᾱ (εn)gt
ζα, (B6)

as shown in Fig. 23. The matrices g and gt augmenting the
spin-matrix T in Eq. (B6) play an auxiliary role; the reduced
impurity ladder, the matrix T , is of importance. According to
Fig. 23, the first and second terms of Tβ̄β|αᾱ are δβ̄ᾱδαβ and
t (1)(β̄β|αᾱ), consequently. They both, just as the whole T
matrix, are objects with four spin indices. Such objects admit
two types of representations differing by relative position of
spin indices. Consider, for example, the second term of the T
matrix. In the first representation,

t (1)
β̄β|αᾱ

=
∑

i

Ai
β̄ᾱ

Bi
αβ

def=
∑

i

Ai⊗Bi, (B7)
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while in the second representation

t (1)
β̄β|αᾱ

=
∑

i

Ci
β̄β

Di
αᾱ

def=
∑

i

Ci ⊗ Di, (B8)

where Ai, Bi, Ci, and Di are some combinations of Pauli
matrices. The transition from one representation to the other
can be achieved by means of the Fierz identities [13,19]:

1⊗1 = 1
2 [1 ⊗ 1 + (c · σ) ⊗ (c · σ )

+ (c × σ )n ⊗ (c × σ )n],

(c × σ )n⊗(c × σ )n = 1 ⊗ 1 − (c · σ ) ⊗ (c · σ). (B9)

The usefulness of the second representation is that it makes
easy both the summation of diagrams forming the impurity
ladder and an evaluation of a diagram with the impurity ladder.
In its first appearance, t (1)(β̄β|αᾱ) has the first type form.
Indeed, according to Eq. (B4),

t (1)(β̄β | αᾱ) =
∑

μ,ν=±
R(μν)Q(μν), (B10)

where

R(μν) =
∫

d p̂⊥
2π

�
(μ)
β̄ᾱ

(p)�(ν)
αβ (p),

Q(μν) = 1

2

∫ π

0
sinθQ(μν)(θ )dθ, (B11)

with

Q(μν)(θ ) = −
∫

dξ

2πτ

p

pF
G(μ)G

(rev)
ν . (B12)

From Eqs. (15), it follows that

R(++) = R(−−) = 1
4

[
1⊗1 + 1

2 (c × σ )i⊗(c × σ )i
]
,

R(+−) = R(−+) = 1
4

[
1⊗1 − 1

2 (c × σ )i⊗(c × σ )i
]
. (B13)

By means of Eq. (B9), one can obtain the second-type form of
R(μν):

R(++) = R(−−) = 1
4

[
1 ⊗ 1 + 1

2 (c × σ)i ⊗ (c × σ )i
]
,

R(+−) = R(−+) = 1
4

[
(c · σ) ⊗ (c · σ ) + 1

2 (c × σ )i

⊗(c × σ)i
]
. (B14)

Further, by dropping terms of the order of δ2, we have

Q(++)(θ ) = 1 − 2δ(θ )

2τ |εn|s(εn)
,

Q(−−)(θ ) = 1 + 2δ(θ )

2τ |εn|s(εn)
, (B15)

so

Q(++)(θ ) + Q(−−)(θ ) = 2

2τ |εn|s(εn)
(B16)

does not depend on θ . With the same accuracy,

Q(+−)(θ ) + Q(−+)(θ ) = 4|εn|s(εn)

τ Z (εn, θ )
. (B17)

Thus, we get

t (1)(εn) = 1
2 [w(εn) 1 ⊗ 1 + u(εn) (c · σ ) ⊗ (c · σ)

+ v(εn) (c × σ )i ⊗ (c × σ)i], (B18)

with

w(εn) = 1

2τ |εn|s(εn)
,

u(εn) = 1

2

∫ π

0

2τ |εn|s(εn)sinθ dθ

[2τ |εn|s(εn)]2 + (2αpF τ )2 sin2 θ
, (B19)

v(εn) = 1

2
[w(εn) + u(εn)].

Note that although the θ integral in all equations of this paper
where it is present can be expressed as elementary functions,
the integral form is more convenient to deal with. It is easy
to verify that the third term of the reduced ladder has the
form

t (2)
β̄β|αᾱ

(εn) = t (1)
β̄β|γ γ̄

(εn)t (1)
γ̄ γ |αᾱ (εn). (B20)

From Eq. (B18), it follows that

t (2)(εn) = 1
2 [w2(εn) 1 ⊗ 1 + u2(εn) (c · σ) ⊗ (c · σ)

+v2(εn) (c × σ )i ⊗ (c × σ)i]. (B21)

Now it is seen that

T (εn) = t (1)(εn) + t (2)(εn) + . . . (B22)

is the sum of three independent geometrical progressions:

T (εn) = 1

2

[
1 ⊗ 1

1 − w(εn)
+ (c · σ ) ⊗ (c · σ)

1 − u(εn)

+ (c × σ )i ⊗ (c × σ )i

1 − v(εn)

]
. (B23)

It is this form of the impurity ladder which will be used
everywhere below. In the dirty limit, i.e., at TCτ � 1 and
η = 2αpF τ � 1, it follows from Eqs. (B19) that

w(εn) ∼= 1 − 2τ |εn|,
u(εn) ∼= 1 − 2τ |εn| − 2

3
η2. (B24)

1 − v(εn) ∼= 2τ |εn| + 1

3
η2.

Now consider the impurity renormalization of the gap func-
tion. The second term on the right-hand side of the equation
depicted in the upper line in Fig. 10 in view of Eq. (B6) has
the form

gβ̄κTββ̄|γ̄ γ gt
φγ (−nimp|U |2)

×
∫

p
G(0)

γ ζ (iε̃, p)gζ ξ�
[
gt G(rev)(iε̃n, p)g

]
ξφ

, (B25)

which, subject to Eq. (B23), takes the form

gβ̄κ

1

2

δββ̄δγ̄ γ

1 − w(εn)
(−nimp|U |2)

×
∫

p
G(0)

γ ζ (iε̃n, p)G(rev)
ζ γ̄ (iε̃n, p)�. (B26)
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Here, with the adapted accuracy, we have

(nimp|U |2)
∫

p
G(0)

γ ζ (iε̃n, p)G(rev)
ζ γ̄ (iε̃n, p) ∼= δγ γ̄

2|εn|τ s(εn)
.

(B27)

Further, from Eqs. (B19) and (14), it follows that

1

1 − w(εn)
= s(εn). (B28)

From Eqs. (B26)–(B28), we see the validity of the equation
on the lower line in Fig. 10.

APPENDIX C: DIAGRAMS IN FIG. 8

In this Appendix, we evaluate the part of Fan represented by
diagrams in Fig. 8. Each of the diagrams can be represented as
a product of two factors. The first of these S (it will be called
the slow factor) stems from the integration of functions that
slowly vary in coordinate space: the vector potential A(q), the
magnetic field B(q), and the gap function �(q). Arguments
of these functions in momentum space will be called slow
variables. The second factor Q (it will be called the quick
factor) appears as a result of integration over the momentum
p (or p and p′) of the fermion lines, taking a trace (in the
clockwise direction) over spin variables of all entities entering
an electron loop and summing over the fermion frequency εn.
The slow factor San common to all the diagrams in Fig. 8 is
given by

San =
∫

q,q′
Bm(−q)�

(
q′ + q

2

)
�∗

(
q′ − q

2

)
q′

j

=
∫

r
Bm(r)Vj (r), (C1)

where V(r) was defined by Eq. (24). Consider the diagram
Fig. 8(1v), which does not contain the impurity ladder. It is a
symmetric bubble in the sense that it contains an equal num-
ber, namely, two, of the direct G and reversed G(rev) Green’s
functions. Its quick factor, on account of the equality

gt [−vt (−p)]g = v(p), (C2)

has the form

Q(1v) = T
∑

n

s2(εn)
∫

p
Tr

{
σmG(iε̃n, p)

×G(rev)(iε̃n, p)v j (p)G(rev)(iε̃n, p)G(iε̃n, p)
}
, (C3)

where ∫
p

=
∫ (mp

π

) dξ

2π

∫
d p̂⊥
2π

∫ π

0
sin θ

dθ

2
. (C4)

The main component of Eq. (C3) is the function

I1(θ )
def=

∫ (mp

π

) dξ

2π

∫
d p̂⊥
2π

{
σmG(iε̃, p)

×G(rev)(iε̃, p)v j (p)G(rev)(iε̃, p)G(iε̃, p)
}
.

=
∫

dξ

π

(mp

π

) ∑
μν

S(μν)
m j (θ )P(μν)(θ ) , (C5)

gtΔ∗(q − q/2)s( n)

gΔ(q + q/2)s( n)

V(par)(−q) −q vt(−p )

p

=
−p′

γ
β

κ
ρρ

β γ

κ

FIG. 24. The split form of Fig. 8(2v).

where S(μν)
m j (θ ) was defined by Eq. (A5) and

P(μν)(θ ) = [
G(0)

(μ)G
(rev)
(μ)

][
G(0)

(ν)G
(rev)
(ν)

]
. (C6)

Elements of S(μν)
m j diagonal in indices μ and ν contribute to

I1(θ )

1

2
em jsc

s
(mpF

π

)
(1 − 3 sin2 θ )

4α

[2|εn|s(εn)]3 , (C7)

while the nondiagonal elements contribute

1

2
em jsc

s
(mpF

π

) 4α

2|εn|s(εn)Z (εn, θ )
. (C8)

Since 1 − 3 sin2 θ = −1 + (2 − 3 sin2 θ ) and∫ π

0
d θ sin θ (2 − 3 sin2 θ ) = 0 , (C9)

Eq. (C7), if it is under the sign of the θ integral, can be
substituted by

1

2
em jsc

s
(mpF

π

) −4α

[2εns(εn)]3 .

As a result,∫ π

0
I1(θ )

sin θ

2
dθ

= −4α em jsc
s
(mpF

π

) ∫ π

0
dθ

sin θ

2

γ 2(θ )

[2|εn|s(εn)]3Z (εn, θ )
.

(C10)

Thus we obtain

Q(1v) = e jmsc
sQ(sy),

Q(sy) = T
∑

n

s2(εn)2α
(mpF

π

)
×

∫ π

0
dθ

sin θ

2

γ 2(θ )

[2|εn|s(εn)]3Z (εn, θ )
. (C11)

Now consider the diagram Fig. 8(2v). It can be represented
in a split form as is shown in Fig. 24. Accordingly,

Q(2v) = (−nimp|U |2)T
∑
εn

s2(εn)

×Tr{L(εn) ◦ T (εn) ◦ R(εn)}. (C12)
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Here the left fragment of the diagram,

Lρβ (εn) =
∫

p

{
G(0)(iε̃n, p)σmG(0)(iε̃n, p)G(rev)(iε̃n, p)

}
ρβ

=
∫

p

∑
μν

G(ν)G(μ)G
(rev)
(μ)

{
�(ν)σm�(μ)

}
ρβ

, (C13)

on account of Eq. (A2), takes the form

Lρβ (εn) =
∫

dθ
sin θ

2

∫
dξ

2π

(mp

π

)
×

{[
G(rev)

(+) G2
(+) + G(rev)

(−) G2
(−)

]1

4
[σm − cm(cσ )]

+G(+)G(−)
[
G(rev)

(−) + G(rev)
(+)

]1

4
[σm + cm(cσ)]

}
ρβ

(C14)

and further can be transformed to

Lρβ (εn) = − i sgn εn

2

(mpF

π

) ∫
dθ

sin θ

2

×
[
σm − cm(cσ)

[2|εn|s(εn)]2
+ σm + cm(cσ )

Z (εn, θ )

]
ρβ

. (C15)

Analogously, the right fragment of the diagram,

Rγ κ (εn)

=
∫

p

{
G(rev)(iε̃n, p)v j (p)G(rev)(iε̃n, p)G(iε̃n, p)

}
γ κ

=
∫

p

∑
μν

G(rev)
(ν) G(rev)

(μ) G(μ)
{
�(ν)v j (p)�(μ)

}
γ κ

, (C16)

first, on account of Eq. (A4), takes the form

R(εn) = 1

4
(c × σ) j

γ κ

(mpF

π

) ∫
dθ

sin θ

2

∫
dξ

2π

(
p

pF

)
×

{( p

m
sin θ + α

)
[G(rev)

(+) ]2G(+)

−
( p

m
sin θ − α

)
[G(rev)

(−) ]2G(−)

+α
[
G(rev)

(+) G(rev)
(−) G(−) + G(rev)

(−) G(rev)
(+) G(+)

]}
(C17)

and then, on account of Eq. (A28), takes the form

R(εn) = − i

2
sgn εn

(mpF

π

)
α(c × σ ) j

×
∫

dθ
sin θ

2

γ 2(θ )

[2|εn|s(εn)]2Z (εn, θ )
. (C18)

In the middle part given by Eq. (B23), one can retain only the
term

1

2

(c × σ )t
βρ (c × σ)t

κγ

1 − v(εn)
. (C19)

As a result, the quick factor of Fig. 8(2v) takes the form

Q(2v) = e jmic
iQ(l ),

Q(l ) = α

2τ

(mpF

π

)
T

∑
εn

s2(εn)

1 − v(εn)

FIG. 25. The detailed form of the left diagram on the first line in
Fig. 11.

×
∫ π

0
dθ

sin θ

2

∫ π

0
dθ ′ sin θ ′

2

×
[

[2|εn|s(εn)]2 + Z (εn, θ )

[2|εn|s(εn)]2Z (εn, θ )

]

×
[

γ 2(θ )

[2|εn|s(εn)]2Z (εn, θ ′)

]
. (C20)

Furthermore, one can verify that Q(3v) = Q(2v) and also that
the sum of contributions of all the diagrams of the lower line
in Fig. 8 is equal to that of the upper line. Thus, the diagrams
of Fig. 8 form a linear functional:

F{B(r), V(r)} = D
∫

r
V(r) · B(r) × c,

D = [2Q(sy) + 4Q(l )]μB. (C21)

In the dirty limit, TCτ � 1 and η � 1, Eq. (C11) yields

Q(sy)
∼= α

4η2

3

(mpF

π

)
TCτ

∑
n

1

(2|εn|)2
, (C22)

while Eqs. (C20) yield

Q(l )
∼= α

4η2

3

(mpF

π

)
TCτ

∑
n

1

(2|εn|)2

1

2τ |εn| + η2/3
. (C23)

It is seen that the contribution of the diagrams with the impu-
rity ladder dominates.

APPENDIX D: DIAGRAMS IN FIGS. 11 AND 12

Here we evaluate the part of Fan which is linear in the
vector potential A(r). The corresponding diagrams are shown
in Figs. 11 and 12. Consider Fig. 11(1a). Its complete form is
shown in the upper part of Fig. 25. This is an asymmetrical
diagram in the sense that it contains three direct Green’s
functions G and one reversed Green’s function G(rev). By
dropping the small momenta q, q1, q2 from arguments of the
fermion lines, we come to the diagram shown in the lower
part of Fig. 25. The slow factor of the latter diagram, which is
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common to all the diagrams in Figs. 11 and 12, has the form

μB
e

c

∫
q,q1,q2

�
(

q + q1 + q2

2

)
�∗

(
q − q1 + q2

2

)
×Bm(−q1)Aj (−q2) =

∫
r
μBBm(r)

e

c
Aj (r)|�(r)|2. (D1)

Its quick factor is

Q1a = T
∑

n

s2(εn)
∫

p
Tr

{
σmG(iε̃n, p)v j (p)

×G(iε̃n, p)G(rev)(iε̃n, p)G(iε̃n, p)
}

= T
∑

n

s2(εn)
∫

dθ
sin θ

2

∫
dξ

2π

(mp

π

)
×

∑
μ,ν

S(μν)
m j (θ )(μ)G2

(ν)G
(rev)
(ν) , (D2)

where S(μν)
m j (θ ) is defined by Eq. (A5). Now one can follow

the same way as was used in Appendix C to get

Q1a = e jmsc
sQ(asy) ,

Q(asy) = T
∑

n

s2(εn)
∫

dθ
sin θ

2

×
(mpF

π

) α

[2|εn|s(εn)]3

η2(θ )

[2|εn|s(εn)]2 + γ 2(θ )
. (D3)

From Eqs. (D3) and (C11), it is seen that

Q(asy) = 1
2 Q(sy) . (D4)

Figure 11(2a) can be evaluated just in the same way as in
Fig. 8(2v) with the same result for the quick factor Q2a = Q2v.
It is also true that Q2a = Q4a = Q5a = Q7a, while Q3a = Q1a

and Q6a = 2Q1a. Thus, all the diagrams in Fig. 11 yield

[
2Q(sy) + 4Q(l )

]
μB

∫
r

[B(r) × c] · e

c
A(r)|�(r)|2 . (D5)

An account of the diagrams in Fig. 12 doubles this result.
Now it is seen that the functional defined by the diagrams
in Figs. 11 and 12 has the same form as that defined by
Eq. (C21), namely,

F
{

B(r), 2
e

c
A(r)

}
, (D6)

and, being added to C21, forms the gauge-invariant functional

Fan = F
{

B(r), V(r) + 2
e

c
A(r)

}
. (D7)

APPENDIX E: CONVENTIONAL TERMS

In an impure system, diagrams in Fig. 13 take the form
shown in Fig. 26. Consider Fig. 26(1p). Its slow factor is

S1p =
∫

q
�∗(q)�(q) =

∫
r
|�(r)|2, (E1)

gtΔ∗(q)

gΔ(q)s( n)

p −p(1p)

1
2qv(p)

1
2qv(p)

(2p)

gΔ(q)s( n)

gtΔ∗(q)s( n)

(3p)

gΔ(q)s( n)

gtΔ∗(q)s( n)

(4p)

−1
2
qvt(−p )

−1
2
qvt(−p)

(5p)

(6p) (7p) (8p)

FIG. 26. The diagrams in Fig. 13 with the impurity scattering
taken into account. They yield the contribution to �2.c of zero order
in the magnetic field in an impure superconductor.

while its quick factor is given by

S1p = T
∑

n

s(εn)
∫

p
Tr

{
G(iε̃n, p)G(rev)(iε̃n, p)

}
=

∫ ′ (mp

2π

) dξ

2π

∫ π

0
dθ sin θ

∑
μ

T
∑

n

s(εn)G(μ)G
(rev)
(μ) ,

(E2)

where the prime on the ξ -integral restricts the ξ values to
the region |ξ | � ωD (ωD is the Debye frequency, which is as-
sumed to be much greater than TC). Here the sum T

∑
n s(εn)

can be transformed into the integral∫ ∞

−∞

dz

4π i
tanh

z

2T

[
K

(
z, ξ(μ),

i

τ

)
− K

(
z, ξ(μ),− i

τ

)]
,

(E3)

with

K
(

z, ξ(μ),± i

τ

)
= 1 ± i/2zτ

(z − ξ(μ) ± i/2τ )(z + ξ(μ) ± i/2τ )
.

(E4)

To see the independence of Eq. (E2) on τ , note that the
difference between the value of the diagram in dirty and clean
cases is proportional to the fast converging integral∫ ′

dξ
p(ξ )

pF

∫ ∞

−∞

dz

4π i
tanh

z

2T

×
{[

K
(

z, ξ(μ),
i

τ

)
− K (z, ξ(μ), i0)

]
−

[
K

(
z, ξ(μ),− i

τ

)
− K (z, ξ(μ),−i0)

]}
, (E5)
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where one may lift the constrain. After that, the ξ integration
makes the integral vanish. In its turn, in the clean case, one
may drop the SO coupling by neglecting corrections of the
order of δ2. Thus, just as in the conventional case [7,23],
Fig. 26(1p) taken together with the first integral term in
Eq. (13) leads to the standard first term in the GL functional
given by Eq. (28).

Consider Fig. 26(2p). Its slow factor, which is common to
Figs. 26(2p)–26(7p), has the form

S2p =
∫

q
qiq j�

∗(q)�(q) =
∫

r
(∇i�∗(r))(∇ j�(r)). (E6)

Its quick factor is given by

Q2p = 1

4
T

∑
n

s2(εn)
∫

p
Tr

{
G(iε̃n, p)vi(p)

× G(iε̃n, p)v j (p)G(iε̃n, p)G(rev)(iε̃n, p)
}

= 1

4
T

∑
n

s2(εn)
∫ (mp

2π

) dξ

2π

∫ π

0
dθ sin θ

×
∑
μν

P(μν)
i j (θ )G2

(μ)G(ν)G
(rev)
(μ) , (E7)

where P(μν)
i j (θ ) was defined by Eq. (A6). The first term of

P(μν)
i j (θ ) [see Eq. (A6)] contributes to Eq. (E7):

1

4
T

∑
εn

s2(εn)
∫

dξ

2π

(mp

2π

)
cic j

( p

m

)2

×
∫ π

0
dθ sin θ cos2 θ

[
G3

(+)G
(rev)
(+) + G3

(−)G
(rev)
(−)

]
. (E8)

By using results of Appendix A, Eq. (E8) can be transformed
to

cic j 1

4
T

∑
εn

s2(εn)
(mpF

π

)2

3
v2

F

1

[2|εn|s(εn)]3 . (E9)

Among contributions of the second term of P(μν)
i j (θ ) to

Eq. (E8), only components with μ = ν are important; they
yield

δ
i j
⊥

1

4
T

∑
εn

s2(εn)
(mpF

π

)2

3
v2

F [2|εn|s(εn)]−3. (E10)

Thus,

Q2p = δi j 1

4
D2p,

D2p = 2v2
F

3

(mpF

π

)
T

∑
εn

s2(εn)[2|εn|s(εn)]−3. (E11)

It is easy to see that Q4p = Q2p.
Turn to the diagram (7p). Its quick factor has the form

Q7p = 1

4
T

∑
εn

s2(εn)
∫

p
Tr

{
G(iε̃n, p)vi(p)

×G(iε̃n, p)G(rev)(iε̃n, p)v j (p)G(rev)(iε̃n, p)
}
. (E12)

vj(p ) gΔ(q)s( n)

vi(p) gtΔ∗(q)s( n)

=

p′

κ β

p

γ ρ

ρ

βκ

γ

FIG. 27. The split form of Fig. 26(3p).

Just as in the case of Fig. 26(2p), one can show that the first
term of P(μν)

i j (θ ) contributes to Eq. (E12),

cic j v
2
F

3

(mpF

π

)
T

∑
εn

s2(εn)[2|εn|s(εn)]−3 , (E13)

while the second term of P(μν)
i j (θ ) gives

(δi j − cic j )
v2

F

3

(mpF

π

)
T

∑
εn

s2(εn)[2|εn|s(εn)]−3. (E14)

Thus, Q7p = 2Q2p.
A contribution of a conventional diagram with the impurity

ladder contains an additional small factor δ2 as against the di-
agram without the ladder. Consider, for example, Fig. 26(3p)
shown in a split form in Fig. 27. Its quick factor, according to
Fig. 27, is

Q3p = (−nimp|U |2)T
∑
εn

s2(εn)Tr{T3p ◦ T (εn) ◦ B3p},
(E15)

where the top T3p and bottom B3p parts are

T3p =
∫

p
G(rev)(iε̃n, p)G(iεn, p)vi(p)G(iε̃n, p) (E16)

and

B3p =
∫

p
G(iε̃n, p)v j (p)G(iε̃n, p)G(rev)(iε̃n, p), (E17)

respectively. For the top part, we have

T3p =
∫ (mp

2π

) dξ

2π

∫ π

0
dθ sin θ

×
∑
μν

V (μν)
i (θ )G(rev)

(μ) G(μ)G(ν), (E18)

where V (μν)
i (θ ) was defined by Eq. (A4). The first term in

V (μν)
i (θ ) [see Eq. (A4)] contributes zero to T3p because the in-

tegral
∫ π

0 sin θ cos θ f (θ ) = 0 for any function f (θ ). Elements
with μ = ν of the second term in V (μν)

i (θ ) contribute to T3p

(nimp|U |2)α(c × σ)i
(mpF

2π

) i sgnεn

[2εns(εn)]2 , (E19)

while the elements with μ = −ν contribute

(nimp|U |2)α(c × σ )i
(mpF

2π

) ∫ π

0
dθ

sin θ

2

i sgnεn

Z (εn, θ )
.

(E20)
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v(p)e
cA(−q)

(1q)

p

−p′

gΔ(q + q
2 )s( n)

(2q) −q vt(−p )

(3q)

−p′

p

q v(p)

(4q)

gtΔ∗(q − q
2 )s( n)

(5q) −vt(−p )e
cA(−q)

(6q)

FIG. 28. The diagrams in Fig. 14 with allowance for the impurity
scattering. They yield the contribution to �2.c linear in the vector
potential in an impure superconductor.

In all,

T3p = −i sgnεn
α

2
(c × σ)i

(mpF

2π

)
×

∫ π

0
dθ sin θ

γ 2(θ )

[2εns(εn)]2Z (εn, θ )
. (E21)

By following the same way, one can show that B3p = T3p.
Since

Tr{(c × σ )i ◦ T (εn) ◦ (c × σ ) j} = δi j − cic j

1 − v(εn)
, (E22)

we get

Q3p = α2(δi j − cic j )
(mpF

2π

) 1

τ

×
{∫ π

0
dθ

sin θ

2

γ 2(θ )

[2|εn|s(εn)]2Z (εn, θ )

}2

. (E23)

We see that Q3p is smaller than Q2p by a factor of
(α/vF )2. This estimate also refers to Figs. 26(5p), 26(6p),
and 26(8p). Thus the major part of the sum of the quick fac-
tors of Figs. 26(2p)–26(8p) is Q2p + Q4p + Q7p = D2p. Thus,
Figs. 26(2p)–26(8p) contribute to �2

D2p

∫
r
|∇�(r)|2. (E24)

Consider diagrams in Fig. 14, whose contribution to �2.c is
linear in the vector potential A(r). In an impure system, they
take the form shown in Fig. 28. The slow factor of each of the
diagrams has the form

Sq =
∫

q,q′

e

c
Ai(−q)q′

j�
∗
(

q′ − 1

2
q
)

�

(
q′ + 1

2
q
)

= e

c

∫
r

Ai(r)Vj (r). (E25)

Here also the major contributions to quick factor come from
Figs. 28(2q) and 28(5q) without the impurity ladder and
Q2q = Q5q = Q7p. Thus, for the sum of the diagrams we get

D2p

∫
r

2e

c
A(r)

[
�∗(r)

∇
i

�(r) + �(r)
∇
−i

�∗(r)

]
. (E26)

Now turn to term of �2c, which is quadratic in A(r).
The corresponding skeleton diagrams are depicted in Fig. 15;

e
c
A(−q1)v(p)

e
c
A(−q2)v(p)

(1r)

gΔ(q + q1+q2

2
)s( n)

gtΔ∗(q − q1+q2

2
)s( n)

(2r)

gΔ(q + q1+q2

2
)s( n)

gtΔ∗(q − q1+q2

2
)s( n)

(3r)

−vt(−p ) e
c
A(−q1)

−vt(−p) e
c
A(−q2)

(4r)

(5r) (6r) (7r)

FIG. 29. The diagrams in Fig. 15 with due account of disorder.
They yield the contribution to �2.c quadratic in the vector potential
in an impure superconductor.

Fig. 29 shows their form on account of impurity scattering.
As usual, the boson momenta q, q1, q2 may be eliminated
from arguments of the fermion lines [for the particular case
of Fig. 29(1r), this is shown in Fig. 30] in view of q/pF � 1.
Then the common slow factor of the diagrams becomes

Sr =
∫

q,q1,q2

(e

c

)2
Am(−q1)Aj (−q2)

×�
(

q + q1 + q2

2

)
�∗

(
q − q1 + q2

2

)
=

(e

c

)2
∫

r
Am(r)Aj (r)|�(r)|2. (E27)

Here once again, the quick factors of diagrams with the impu-
rity ladder are negligible in comparison with diagrams without
the ladder and Q6r = 2Q1r = 2Q3r. Thus, the A-quadratic term
in �2c is

D2p

∫
r
|�(r)|2

[
2e

c
A(r)

]2

. (E28)

As a result, Eqs. (24), (26), and (28) add up to

D2p

∫
r

∣∣∣∣(−i∇ + 2e

c
A(r)

)
�(r)

∣∣∣∣2

. (E29)

FIG. 30. The detailed representation of Fig. 29(1r).
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− p

p

p

−p

(1t)

−p′

p′
p

p
p′

−p
×
(2t)

−p
−p′

p′

p

−p
−p′

(3t)

×

FIG. 31. The result of the impurity averaging of the diagram in
Fig. 16. They are responsible for �4 in an impure superconductor.

Finally, consider the |�(r)|4 term in Fc. For an impure
system, diagrams for the term are shown in Fig. 31. The
common slow factor of the diagrams is

S4 =
∫

q,q1,q2

�(q)�∗(q1)�(q2)�∗(q + q2 − q1)

=
∫

r
|�(r)|4. (E30)

The quick factor of Fig. 31(1t) is given by

Q1t = T
∑

n

s4(εn)
∫

p
Tr

[
G(iε̃n, p)G(rev)(iε̃n, p)

]2

= T
∑

n

s4(εn)
∫ (mp

2π

)
× dξ

2π

∫ π

0
dθ sin θ

∑
μ

[
GμG(rev)

μ

]2
. (E31)

Here, just as in any other diagrams for Fc, one can ignore the
SO coupling by dropping corrections of the order of δ2. Then
one gets

Q1t =
(mpF

2π

)
T

∑
n

s(εn)

2|εn|3 . (E32)

Figures 31(2t) and 31(3t) can also be evaluated by neglecting
the SO coupling. Consider Fig. 31(2t). Its split form is shown
in Fig. 32. Here the left fragment is

L2t,κρ (εn) = s2(εn)
∫

p

{
G(rev)(iε̃n, p)[G(iε̃n, p)]2

}
κρ

= δκρN (εn), (E33)

N (εn) = s2(εn)
(mpF

π

) i sgn εn

[2εns(εn)]2
,

while the right fragment is R2t,ζγ (εn) = δζγ N (εn). Thus, we
get

Q2t = (nimp|U |2)T
∑

n

Tr{L2t ◦ R2t}

= −
(mpF

2π

)
T

∑
n

1

4τ |εn|4 . (E34)

×
κ

ρ−p

=
ζ

γ −p′
×

ζ
ρ

γ
κ

FIG. 32. The split form of Fig. 31(2t).

−p′
−ev(p)

p

p

−q′vt(−p′)
−p′

FIG. 33. The conventional contribution to the current due to the
gradient of the phase in a dirty superconductor.

It is evident that Q3t = Q2t. From here it follows that

Q1t + Q2t + Q3t =
(mpF

2π

)
T

∑
n

1

|εn|3 , (E35)

which proves Eq. (33) of the main text.

APPENDIX F: ELECTRIC CURRENT

In this Appendix, we outline the derivation of the results
Eqs. (35) and (36). Diagrams for the anomalous part of the
supercurrent are shown in Fig. 18. Here one can also exclude
the slow variables q, q1, q2 from arguments of fermion lines.
Then the slow factor of each of the diagrams becomes

S18 =
∫

q1,q2

�∗
(

q1 − q + q2

2

)
�

(
q1 + q + q2

2

)
Bm(−q2)

=
∫

r
|�(r)|2Bm(r)e−iq·r. (F1)

An analysis of quick factors of the diagrams can be performed
following the lines of Appendix C. In particular, it can be
shown that the contributions of the diagrams Fig. 18(1s) and
(3s) are equal and the contribution of the diagram Fig. 18(6s)
is twice as large as that of (1s). Also one can show that the
contributions of the diagrams Fig. 18(2s), (4s), (5s), and (7s)
are equal. As a result, the sum of all quick factors of diagrams
in Fig. 18 is the same as the analogous sum of diagrams
in Fig. 8, namely, 2Q(sy) + 4Q(l ), where Q(sy) and Q(l ) were
defined by Eqs. (C11) and (C20), respectively. Thus

Jan(q) = −eμB
[
2Q(sy) + 4Q(l )

]
×

∫
r

e−iq·r[B(r) × c]|�(r)|2. (F2)

Conventional part of the current consists of two terms.
The first one is defined by the gradient of the gap function;
diagrams responsible for the term are shown in Fig. 33. The
second part of the conventional current which is due to the
presence of the applied magnetic field is depicted in Fig. 34.
The slow factor of each diagram in Fig. 33 is

S33 =
∫

q′
q′�∗

(
q′ − q

2

)
�

(
q′ + q

2

)
=

∫
r

e−iq·rV(r). (F3)

The sum of the quick factors of the diagrams in Fig. 33 is the
same as the analogous sum of diagrams of the upper line in
Fig. 28. Thus, we get

J(1)
c (q) = −e2D2p

∫
r

e−iq·rV(r). (F4)
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−e vj(p)

(1w)

e
cv(p)A(−q2)

(2w)

−e vj(p)

(3w)

gΔ(q1 + q+q2

2 )

(4w)

−e vj(p)

(5w)

gtΔ∗(q1 − q+q2

2 )

(6w)

(7w)

FIG. 34. The diagrams in Fig. 20 with allowance for the impurity
scattering. They yield the conventional contribution to the current
due to the vector potential in an impure superconductor.

The slow factor of each diagram in Fig. 34 is

S34 =
∫

q1,q2

�∗
(

q1 − q + q2

2

)
�

(
q1 + q + q2

2

)
Aj (−q2)

=
∫

r
e−iq·r|�(r)|2Aj (r). (F5)

The sum of the quick factors of the diagrams in Fig. 34 is the
same as the analogous sum of diagrams in Fig. 29. Thus, we
get

J(2)
c (q) = −2eD2p

∫
r

e−iq·r 2e

c
A(r)|�(r)|2 (F6)

so the total conventional current has the form

Jc(r) = −2e D2p

[
V(r) + 2e

c
A(r)|�(r)|2

]
. (F7)

APPENDIX G: SPIN SUSCEPTIBILITY

The spin susceptibility χ(s) near TC has the form

χ
(s)
i j = χN

(
δi j − �2

T 2
c

fi j (TCτ, εsoτ )

)
, (G1)

where χN = μ2
B( mpF

π2 ) is the spin susceptibility in the normal
state. In the dirty limit,

fi j = 4

π
TCτ

∑
n�0

1

(2n + 1)2

×
[

cic j

2πTCτ (2n + 1) + 2
3η2

+ δi j − cic j

2πTCτ (2n + 1) + 1
3η2

]
.

(G2)

Although this result directly follows from a general expression
derived earlier [27], in the random phase approximation for
any temperatures T < TC , it doesn’t seem out of place to
derive it here by using the approach adopted in other parts of

σi

(1z)

σj

(2z)

(3z) (4z)

(5z)

−σt
jσi

(6z)

(7z)

FIG. 35. The diagrams for a correction to χN N quadratic in �.

the paper. Diagrams responsible for the deviation of χ
(s)
i j − χN

are shown in Fig. 35.
The gap functions are considered here as space indepen-

dent. The quick factor of Fig. 35(1z),

Q1z = T
∑
εn

s2(εn)
∑
μν

∫
p

Tr{σi�
μσ j�

ν}G2
(μ)G

(rev)
(μ) G(ν)

= T
∑
εn

s2(εn)
∫

dξ

2π

mp

π

∫ π

0

dθ

2
sin θ

×
∑
μν

U (μν)
i j G2

(μ)G
(rev)
(μ) G(ν), (G3)

can be transformed to the form

Q1z =
(mpF

π

)
Tc

∑
εn

s2(εn)
∫ π

0

dθ

2
sin θ

×
{

2cic j

[2|εn|s(εn)]Z (εn, θ )
+ (δi j − cic j )

×
[

1

[2|εn|s(εn)]3
+ 1

[2|εn|s(εn)]Z (εn, θ )

]}
. (G4)

Figure 35(2z) can be represented in the split form as shown in
Fig. 36. Its quick factor is

Q2z = (−nimp|U |2)T
∑
εn

s2(εn)

×Tr{L(εn) ◦ T (εn) ◦ R(εn)}. (G5)

γ

β

σi

γ

β

ρ

κ

ρ

κ

σj

FIG. 36. The split form of Fig. 35(2z).
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−p′
Smi

p

(b)

gΔ(q + q/2)s( n)

gtΔ∗(q − q/2)s( n)

(a)

p

−qjv
t
j(−p )

−p′

(c)

FIG. 37. The diagrams contributing to the spin flow.

Here the left fragment is

Lβγ (εn) =
(mpF

π

) ∫ π

0

dθ

2
sin θ

( i sgnεn

2

)
×

{
σi − ci(cσ)

[2εns(εn)]2
+ σi + ci(cσ)

Z (εn, θ )

}
βγ

, (G6)

the right fragment Rρκ (εn) has the same form, the impurity
ladder T (εn) was defined by Eq. (B23); as a result,

Q2z =
(mpF

π

)
TC

∑
εn

s2(εn)

{
2cic j

τ [1 − u(εn)]

×
[∫ π

0

dθ

2
sin θ

1

Z (εn, θ )

]2

+ δi j − cic j

2τ [1 − v(εn)]

×
[∫ π

0

dθ

2
sin θ

(
1

[[2|εn|s(εn)]2
+ 1

Z (εn, θ )

)]2}
.

(G7)

One can verify that Q(3z) = Q(1z), Q(6z) = 2Q(1z), and Q(4z) =
Q(5z) = Q(5z). Thus, the sum of all the diagrams in Fig. 35
gives rise to

χ
(s)
i j − χNδi j = −4[Q(1z) + Q(2z)]μ

2
B�2. (G8)

This equation is valid at any relationship between TC, τ , and
εSO; in the dirty limit, it yields Eq. (G2).

APPENDIX H: ABOUT SPIN FLOWS

Diagrams for (the Fourier transform of) the average value
of the spin flow operator,

Smi
def= 1

2
(σmvi + viσm)

= σm
pi

m
+ αemisc

s, (H1)

shown in Fig. 37 can be obtained and evaluated following the
same way used in the case of the MEE in Sec. VI. Just as
in Eq. (F3), by excluding the slow variables q, q′ from the
fermion lines, for the slow factor of each of the diagrams we
get

S37 =
∫

r
e−iq·rV j (r). (H2)

The quick factor of the diagram (a) has the form

Q(a) = T
∑

n

s2(εn)
∫

p
Tr

{
Smi(p)G(iε̃n, p)

×G(rev)(iε̃n, p)v j (p)G(rev)(iε̃n, p)G(iε̃n, p)
}
. (H3)

gtΔ∗(q − q/2)s( n)

gΔ(q + q/2)s( n)

Smi −q vt(−p )

p

=
−p′

γ
β

κ
ρρ

β γ

κ

FIG. 38. The split form of the diagram (b) in Fig. 37.

The contribution of the second, scalar term of Smi contains the
expression

αemisc
sδ(μν)

∫
d p̂⊥
2π

Tr
{
v j�

(μ)
}

= αemisc
sc jδ(μν)

p

m
cos θ (H4)

proportional to cos θ , whereas all Green’s functions depend
on θ through sin θ . Since the integral

∫ π

0 sin θ cos θ f (θ ) = 0
for any function f (θ ), the contribution of this term vanishes.
The contribution of the first, spin term of Smi contains the
expression

H (μν)
mi| j

def=
∫

d p̂⊥
2π

p̂i
⊥

m
Tr

{
σm�(μ)v j�

(ν)
}
. (H5)

With the help of Eq. (A3) and the equality∫
d p̂⊥
2π

p̂i
⊥Tr

{
�(μ)(p)(σB)�(ν)(p)(σD)

}
= i

2

(
0 Bi(cD) − Di(cB)

−Bi(cD) + Di(cB) 0

)
(μν)

, (H6)

which is valid for any 3D vectors B and D, one can show that

H (μν)
mi| j = δ(μν)sign μ

p2

2m2
cos θ sin θ

(
emisc

j + em jsc
i
)

+αe jsmcsci p

2m
cos θ

(
1 1
1 1

)
(μν)

+ i

2
αe jsic

scm p

m
sin θ

(
0 1

−1 0

)
(μν)

. (H7)

Here contributions of first two terms proportional to cos θ

vanish by making the θ integration, while the third term turns
zero by taking the summation with respect of the helicity
states.

Now consider the quick factor of the diagram (b). Figure 38
shows this diagram in the split form. The right fragment of the
diagram, which had already been found [see Eq. (C18),

Rγ κ (εn) = − i sgn εn

2τ
(c × σ ) j

γ καs(εn)

×
∫

dθ ′ sin θ ′

2

γ 2(θ ′)
[2|εn|s(εn)]2Z (εn, θ ′)

, (H8)
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is linear in Pauli matrices. The left fragment is

Lρβ (εn) =
∫

p

[
G(iε̃n, p)Smi(p)

×G(iε̃n, p)G(rev)(iε̃n, p)
]
ρβ

. (H9)

By making use of the equality∫
d p̂⊥
2π

�
(μ)
ρβ (p) = 1

2
δρβ, (H10)

the contribution of the second, scalar part of Smi to Lρβ (εn)
can be put in the form

α emisc
sδρβ

∫ (mp

π

) dξ

2π

1

2

∫ π

0
sin θ

dθ

2

∑
μ

G2
(μ)G

(rev)
(μ) ,

(H11)

which is a unit matrix in the spin state and, for this rea-
son, vanishes at the convolution with the impurity ladder
and Rγ κ (εn). The contribution of the first spin part of Smi to
Lρβ (εn) contains the expression∫ d p̂⊥

2π

pi

m

[
�(μ)σm�(ν)

]
ρβ

= ci
p

4m
cos θ

(
σm − cm(cσ) σm + cm(cσ)
σm + cm(cσ) σm − cm(cσ)

)(μν)

ρβ

+ p

4m
sin θ

[
emisc

sδρβ

(
1 0
0 −1

)(μν)

−i[cmσi − δmi(cσ)]ρβ

(
0 1

−1 0

)(μν)]
. (H12)

This is the sum of tree terms. The first term of Eq. (H12),
being proportional to cos θ , vanishes by making the following
θ integration. The second term is a unit matrix in the spin state,
and hence vanishes at the convolution with the impurity ladder
and Rγ κ (εn). The contribution of the third term of Eq. (H12)
to Lρβ (εn) is proportional to

G(+)G
(rev)
(+) G(−) − G(−)G

(rev)
(−) G(+)

= ξ(−) − ξ(+)[
(iεns(εn))2 − ξ 2

(+)][iεns(εn))2 − ξ 2
(−)

] . (H13)

This is an even function of εn, whereas Rγ κ (εn) defined by
Eq. (H8) is an εn-odd function. Therefore the third term of
Eq. (H12) vanishes at summation with respect to εn. Thus all
the contributions to the diagram (b) vanishes. The diagram (c)
vanishes due to the same reasons.

APPENDIX I: 2D SUPERCONDUCTOR

A 2D asymmetric superconductor can be dealt by follow-
ing the same approach as before. A great simplicity of the 2D
case as against the 3D case comes from the fact that the SO
splitting of the 2D Fermi surface (the Fermi circle) does not
depend on the direction of the electron momentum. Below we
present only final results. The coefficients of the GL functional
have the following form:

A(2D) = m

π

(T − TC

TC

)
, (I1)

B(2D) = m

2
TC

∑
εn>0

1

|εn|3 , (I2)

C(2D) = mv2
F

4
TC

∑
εn>0

1

s(εn)|εn|3 , (I3)

D(2D) = [
2Q(2D)

(sy) + 4Q(2D)
(l )

]
μB, (I4)

where

Q(2D)
(sy) = 2mαT

∑
εn

s2(εn)(2αpF )2

[2εns(εn)]3Z(2D)(εn)
,

Q(2D)
(l ) = mα

2τ
T

∑
εn

s2(εn)(2αpF )2

1 − v(2D)(εn)

[2εns(εn)]2 + Z(2D)(εn)

{[2εns(εn)]2Z(2D)(εn)}2 ,

(I5)

and

Z(2D)(εn) = [(2εns(εn))2 + (2αpF )2],

v(2D)(εn) = 1

2
(w(2D)(εn) + u(2D)(εn)), (I6)

w(2D)(εn) = 1

2τ |εn|s(εn)
,

u(2D)(εn) = 1

τ

2τ |εn|s(εn)

Z(2D)(εn)
.

The electric current is given by

J2D(r) = −e D(2D)[B(r) × c]|�(r)|2

−2eC(2D)

[
V(r) + 2e

c
|�(r)|2

]
. (I7)

From Eqs. (I4) and (I5), it follows that in the clean limit,

D(2D) = αmμB

∑
εn>0

(αpF )2

|εn|3[ε2
n + (αpF )2

, (I8)

in the dirty limit, when TCτ � 1 and εSOτ � 1,

D(2D)
∼= 2αmμB Tcτ

∑
εn>0

1

ε2
n

(2αpF τ )2

2τ |εn| + 2(αpF τ )2
, (I9)

and at TCτ � 1 but εSOτ � 1,

D(2D)
∼= 2αm μBT

∑
εn>0

1

ε2
n

(
2εn + 1

2τ

) . (I10)

The latter expression agrees with an analogous result obtained
earlier [21] by the quasiclassical method.

It should be noted that in Ref. [21] it is erroneously stated
that Ref. [8] concerned 2D systems; the derivation of the GL
functional for 3D polar superconductors in the clean limit was
really the subject of that work.
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