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We theoretically investigate domain-wall motion in an antiferromagnetic-insulator layer caused by thermally
generated spin currents in an adjacent spin-split superconductor layer. An uncompensated antiferromagnet
interface enables the two crucial ingredients underlying the mechanism—spin splitting in the superconductor
and absorption of spin currents by the antiferromagnet. Treating the superconductor using the quasiclassical
theory and the antiferromagnet via Landau-Lifshitz-Gilbert description, we find domain-wall propagation along
the thermal gradient with relatively large velocities ∼100 m/s. Our proposal exploits the giant thermal response
of spin-split superconductors in achieving large spin torques towards driving domain wall and other spin textures
in antiferromagnets.
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I. INTRODUCTION

Recent advancements in stabilizing and manipulating tex-
tured magnetic states has led to a paradigmatic transition in
the role of magnets in futuristic solid state devices [1,2].
In addition to being passive memory storage elements, spin
textures may allow for an active participation of magnets in
data processing [3]. These continued advancements, however,
rely on realizing effective methods to manipulate these spin
textures, such as a domain wall (DW). A wide range of
methods, from external magnetic field [4] to thermal spin
transfer torque [5–11], have been considered as candidates
controlling DW motion in ferromagnets. The finite net mag-
netization in a ferromagnet turns out crucial in nearly all of
these mechanisms. On the other hand, antiferromagnet (AFs)
offer various advantages due to their fundamentally different
and faster dynamics [12–16], but lack net magnetization and
the associated easy control. In the context of DW motion, AFs
support significantly larger DW velocities thereby offering a
faster operation of devices [2,17–19].

Temperature gradient as a drive for DW motion has gained
fresh impetus on account of several novel spin-thermal ef-
fects discovered in recent years [8,9,20–22]. Thermal gradient
encompasses a broad range of mechanisms that could in-
duce DW motion such as electronic spin current generation
[9], magnonic spin currents [10,11,23], entropic spin torques
[24–27], and so on. Furthermore, there are competing pro-
cesses at play within these mechanisms resulting in a complex
interplay. For example, magnons in a ferromagnet may push
a DW away on reflection via linear momentum delivery [28].
Alternately, they may pull the DW in the direction of their
origin on transmission and angular momentum delivery [23].
This competition between pull and push forces is still more

complex for AFs due to a varying spin of the magnons [29,30].
On the other hand, entropic torques tend to drive DWs towards
the hotter end in both ferro- and antiferromagnets [25–27].
Hence, thermally induced spin torques and DW motion in (an-
tiferro)magnets constitutes a subject with intriguing physics
[22,31], in addition to a high technological relevance.

Various thermoelectric (spin) effects in normal or magnetic
metals are small because they scale as temperature divided
by the Fermi energy, with the latter being a large quantity
[8,32,33]. This smallness of thermoelectric effects can be
overcome in superconductors where the superconducting gap,
or equivalently the critical temperature, replaces the Fermi
energy as the relevant parameter [32,33]. Thus, giant thermo-
electric effects and thermal spin currents can be achieved in
hybrids comprising superconductor (S) and ferromagnet (F)
layers [32–37]. The two key ingredients in achieving such
giant effects are spin splitting of quasiparticle density of states
in the superconductor [38,39] and spin-resolved transport.
Both of these are accomplished in S/F hybrids [40,41]. As a
result, a giant thermally induced quasiparticle spin current and
DW velocities in the latter are possible and have recently been
predicted [42]. The recent prediction of spin splitting induced
in S by an adjacent AF insulator bearing an uncompensated
interface [43] raises the question if a similar thermal spin cur-
rent and DW motion can be realized in S/AF hybrids, which
constitutes the subject of this paper. Such uncompensated
moments at AF surfaces have been observed in numerous
experiments [44–52]. Furthermore, a variety of effects that are
highly sensitive to the nature of the interface with an AF have
been predicted recently [53–57].

We theoretically investigate an S/AF bilayer in which the
AF hosts a DW and bears an uncompensated interface with S
such that only one of the two sublattices in AF is exposed
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FIG. 1. System under consideration: superconductor/
antiferromagnet (S/AF) bilayer with uncompensated magnetic
moment at the S/AF interface. Blue arrows depict spin of the A
sublattice atoms, while red arrows correspond to the B sublattice.
The temperature difference Tl − Tr is applied along the x direction.

to S [43,58]. This results in a finite and spatially varying
exchange field in S. We find that subjecting the hybrid to
a thermal gradient primarily results in a large quasiparti-
cle spin current in S. The latter exerts spin torque on the
AF DW and moves it along the direction of the thermal
gradient with velocities ∼100 m/s. We evaluate the ther-
mally generated spin currents in S microscopically using
quasiclassical theory and treat the dynamics in AF using
the two-sublattice Landau-Lifshitz-Gilbert description. Be-
sides numerically analyzing the ensuing response and DW
velocities in a broad parameter space, we also derive analytic
expressions in the limit of small DW width. Our analysis fur-
ther provides guidance to experiments in optimizing the spin
splitting and thermal gradients that realize the highest DW
velocities.

II. MODEL AND OVERVIEW

The model system that we consider is shown in Fig. 1. It is
a thin film bilayer consisting of an antiferromagnetic-insulator
AF hosting a domain wall interfaced to a conventional
spin-singlet superconductor S. We assume uncompensated
magnetic moments at the S/AF interface, that is the interface
possesses finite magnetization. The hybrid is subjected to a
thermal gradient by connecting it to two thermal reservoirs
maintained at different temperatures.

Under these conditions we expect the uncompensated AF
to induce a spin splitting in the superconductor [43] via an in-
terfacial exchange interaction. The thermal gradient in such a
spin-split superconductor gives rise to a giant spin-dependent
Seebeck effect [32–34]. The ensuing spin current, constituted
largely by the quasiparticles, exerts a spin torque on the AF via
the interfacial exchange interaction resulting in domain-wall
motion.

We treat S within the quasiclassical framework and solve
the Eilenberger equation to obtain physical quantities. The
AF insulator is treated via the two-sublattice Landau-Lifshitz-
Gilbert (LLG) description. The two subsystems are coupled
due to the interfacial exchange, assumed between S and the
sublattice A. This leads to a spin-splitting term in the Eilen-

berger equation describing S and a spin torque term describing
the magnetization dynamics for the AF sublattice A. The
overall system dynamics is determined by solving the coupled
equations self-consistently.

In the first part we determine the physical observables,
such as spin current in the superconductor, via a numer-
ical solution of the Eilenberger and LLG equations. This
analysis follows a methodology similar to the recent study
of superconductor/ferromagnet bilayers [42]. In the second
part we solve Eilenberger equation analytically obtaining ex-
pression for spin torque. Following collective coordinates
approach for describing the domain wall [17], this allows us
to obtain analytic expression for the velocity. The latter result
allows a systematic analysis of physical conditions that would
optimize the domain-wall velocities.

A. Magnetization dynamics in the antiferromagnet

The Landau-Lifshitz-Gilbert (LLG) equation can be writ-
ten for each sublattice separately [59]:

∂mi

∂t
= −γ mi × H i

eff +
∑

j

αi jmi × ∂m j

∂t
+ Ni, (1)

where mi = Mi/M is the unit vector aligned with the sub-
lattice magnetization Mi, M is the sublattice saturation
magnetization, i = A, B is the sublattice index, and γ is the
gyromagnetic ratio magnitude. αi j is the 2 × 2 Gilbert dis-
sipation matrix [59,60], which can be characterized by two
real positive numbers α and αc as follows: αAA = αBB = α

and αAB = αBA = αc. The last term in Eq. (1) represents the
torque experienced by the sublattice. Hi

eff is the local effective
field:

H i
eff = Kmi,xex − K⊥mi,yey + A∂2

x mi − Jmī, (2)

where ī stands for the opposite sublattice, that is ī = B(A) for
i = A(B). The anisotropy easy (anisotropy constant K) and
hard (anisotropy constant K⊥) axes are taken along x and
y directions, respectively. A is the intrasublattice exchange
stiffness and J is the exchange coupling constant between the
sublattices.

The torque Ni can be calculated starting from the effective
exchange interaction between the spin densities on the two
sides of the S/AF interface [58]:

Hint = −
∫

d2rJexSA · s, (3)

where s is the electronic spin density operator in the S film,
SA is the localized spin operator in the AF film, belonging
to the sublattice A. We assume that only the A sublattice is
coupled to the interface, see Fig. 1. Jex is the exchange con-
stant and the integration is performed over the 2D interface.
It has been shown [43] that this exchange interaction Hamil-
tonian results in the appearance of the exchange field h(r) =
−JexMmA(r)/(2γ ds) in the S film. The assumed interfacial
interaction [Eq. (3)] conserves the total spin resulting in the
general condition that spin lost by the superconductor appears
as a spin torque exerted on the AF, as is derived rigorously
below [Eq. (19)]. However, the presence of spin-orbit inter-
action at the interface can invalidate this relation and lead to
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spin memory loss [61]. We disregard such effects here for sim-
plicity. Furthermore, our Jex is directly related to and can be
expressed in terms of the spin mixing conductance parameter
commonly used in a complementary scattering theory-based
formulation of the spin torques [43,61–63].

Applying Ehrenfest’s theorem from Eq. (3) one obtains
the additional contribution to the Landau-Lifshitz-Gilbert
equation written in the form of a torque acting on the mag-
netization:

NA = Jexδ(z − zI )mA(z) × 〈s〉, NB = 0, (4)

where the interface is located at z = zI and 〈s〉 is the quantum
mechanical averaged value of s. Furthermore, we assume that
the antiferromagnetic film is thin and its magnetization for a
given sublattice is homogeneous in the z direction. In this case
Eqs. (1) and (4) can be averaged over the thickness dAF of the
AF film. For the averaged torque we thus obtain

NA = JexmA × 〈s〉
dAF

, NB = 0. (5)

B. Microscopic calculation of the spin torque

In order to find the magnetization dynamics from Eq. (1),
we need to calculate torque (5) microscopically by consider-
ing thermally induced quantum transport mediated by Cooper
pairs and quasiparticles in the superconductor. The detailed
calculation of the spin torque for a given effective exchange
field in the superconductor can be found in Ref. [42] and is
outlined below.

The superconductor is assumed to be in the ballistic limit.
We neglect all the inelastic relaxation processes in the film
assuming that its length is shorter than the corresponding
relaxation length. As here we are dealing with the nonequi-
librium problem, we work in the framework of the Keldysh
technique for quasiclassical Green’s functions. The matrix
Green’s function ǧ(r, pF , ε, t ) is an 8 × 8 matrix in the di-
rect product of spin, particle-hole, and Keldysh spaces and
depends on the spatial vector r, quasiparticle momentum di-
rection pF , quasiparticle energy ε, and time t . In the S film it
obeys the Eilenberger equation:

ivF ∇ǧ(r, pF ) + [ετz + h(r)στz − �̌, ǧ]⊗ = 0, (6)

where [A, B]⊗ = A ⊗ B − B ⊗ A and A ⊗ B =
exp[(i/2)(∂ε1∂t2 − ∂ε2∂t1 )]A(ε1, t1)B(ε2, t2)|ε1=ε2=ε;t1=t2=t .
τx,y,z are Pauli matrices in particle-hole space with
τ± = (τx ± iτy)/2. �̂ = �(x)τ+ − �∗(x)τ− is the matrix
structure of the superconducting order parameter �(x) in the
particle-hole space.

In the ballistic limit treated here, it is convenient to use
the so-called Riccati parametrization for the Green’s function
[64,65]. In terms of the Riccati parametrization the retarded
Green’s function takes the form

ǧR,A = ±NR,A ⊗
(

1 − 	̂R,A ⊗ ˆ̃	R,A 2	̂R,A

2 ˆ̃	R,A −(1 − ˆ̃	R,A ⊗ 	̂R,A)

)
,

(7)

ǧK = 2NR ⊗

×
(

xK + 	̂R ⊗ ˆ̃xK ⊗ ˆ̃	A −(	̂R ⊗ ˆ̃xK − x̂K 	̂A)
ˆ̃	R ⊗ x̂K − ˆ̃xK ⊗ ˆ̃	A ˆ̃xK + ˆ̃	R ⊗ x̂K ⊗ 	̂A)

)
⊗ NA,

(8)

with

NR,A =
(

1 + 	̂R,A ⊗ ˆ̃	R,A 0

0 1 + ˆ̃	R,A ⊗ 	̂R,A

)−1

, (9)

where 	̂R,A, ˆ̃	R,A, x̂K , and ˆ̃xK are matrices in spin space.
Note that our parametrization differs from the definition in
the literature [64,65] by factors iσy as 	̂R,A

standard = 	̂R,Aiσy and
ˆ̃	R,A

standard = iσy
ˆ̃	R,A. The Riccati parametrization Eq. (7) obeys

the normalization condition ǧ ⊗ ǧ = 1 automatically.
The Riccati amplitude 	̂ obeys the following Riccati-type

equations:

ivF ∇	̂R + 2ε	̂R = −	̂R ⊗ �∗ ⊗ 	̂R − {hσ, 	̂R}⊗ − �(10)

and ˆ̃	 obeys the same equation with the substitution ε → −ε,
h → −h, and � → �∗.

The distribution function x̂K obeys the equation

ivF ∇ x̂K + i∂t x̂
K + 	̂R ⊗ �∗ ⊗ x̂K

+ x̂K ⊗ � ⊗ ˆ̃	A + [hσ, x̂K ]⊗ = 0, (11)

while ˆ̃xK obeys the same equation with the substitution h →
−h, � → �∗, 	̂R,A ↔ ˆ̃	R,A.

Considering a finite spatially inhomogeneous magnetic
texture like a domain wall, the Riccati amplitudes 	̂ and ˆ̃	
can be found from Eq. (10) numerically with the following
asymptotic condition:

	̂∞ = 	0∞ + h∞σ

h
	∞,

	0∞ = −1

2

[
�

ε + h + i
√

�2 − (ε + h)2

+ �

ε − h + i
√

�2 − (ε − h)2

]
,

	∞ = −1

2

[
�

ε + h + i
√

�2 − (ε + h)2

− �

ε − h + i
√

�2 − (ε − h)2

]
, (12)

and ˆ̃	∞ = −	̂∞. In Eqs. (12) h = |h| is the absolute value of
the effective exchange field, which is spatially constant. ε has
an infinitesimal imaginary part δ, where δ is positive for the
retarded functions.

Equation (10) is numerically stable if it is solved starting
from x = −∞ for right-going trajectories vx > 0 and from
x = +∞ for left-going trajectories vx < 0. On the contrary,
ˆ̃	 can be found numerically starting from x = +∞ for right-
going trajectories vx > 0 and from x = −∞ for left-going
trajectories vx < 0. The advanced Riccati amplitudes can be
found taking into account the relation [65] 	̂A = −( ˆ̃	R)†.
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If we neglect the dependence of h on time, then it follows
from Eq. (11) that the distribution function x̂K for a given bal-
listic trajectory is determined by the equilibrium distribution
function of the left (right) reservoir for vF,x > 0 (vF,x < 0) and
takes the form

x̂K
± = (1 + γ̂ R

± ⊗ ˆ̃γ A
± ) tanh

ε

2Tl,r
, (13)

where the subscript + (−) corresponds to the trajectories
vF,x > 0 (vF,x < 0). On the contrary,

ˆ̃xK
± = −(1 + ˆ̃γ R

± ⊗ γ̂ A
± ) tanh

ε

2Tr,l
. (14)

The terms ∝ ḣ in Eq. (11) can be neglected under the con-
dition (h/�)vst/lDW� 
 1, where vst is the velocity of the
rigid DW motion caused by the thermal gradient under con-
sideration, and lDW is the DW width. For realistic parameters
vst ∼ 100 m/s according to our estimates below. Therefore,
at � ∼ 1K and h/� � 1 these conditions are fulfilled to a
good accuracy for any experimentally reasonable DW width
lDW ∼ 10 nm–1 μm.

The superconducting order parameter is found self-
consistently according to

� = −λ

8

∫ �

−�

dεTr4〈τ−ǧK〉, (15)

where 〈· · · 〉 denotes averaging over the Fermi surface, λ is the
coupling constant, and � is the Debye frequency cutoff. The
spatial dependence of the superconducting order parameter
due to the localized domain wall is found to be weak [42].
On the other hand, the suppression of the order parameter
due to finite temperature and exchange field in the super-
conductor is relatively important. Therefore, in the present
study we only account for the spatially uniform temperature
and exchange field-induced suppression of superconductivity
neglecting the tiny spatial effects near the DW. In this case the
order parameter can be calculated using the bulk expressions
for the Riccati amplitudes Eqs. (12). Substituting the Riccati
amplitudes and the distribution functions (13) and (14) into
the self-consistency equation (15) we finally end up with

� = −λ

4

∫ �

0
dεRe

[
i�√

�2 − (ε + iδ + h)2

+ i�√
�2 − (ε + iδ − h)2

](
tanh

ε

2Tl
+ tanh

ε

2Tr

)
. (16)

From Eq. (6) it can be shown that 〈s〉 obeys the following
equation:

∂t 〈s〉 = −∂ jJ j − 2h × 〈s〉, (17)

where we have introduced vector J j = (Jx
j , Jy

j , Jz
j ) corre-

sponding to the spin current flowing along the j axis in the
coordinate space:

J j = −NF

16

∫ ∞

−∞
dεTr4[σ〈vF, j ǧ

K〉], (18)

where NF is the normal state density of states at the Fermi
level and vF is the Fermi velocity.

Considering the steady state of the conduction electrons,
Eq. (17) yields

NA = γ dS

MdAF
∂ jJ j . (19)

III. RESULTS

A. Numerical evaluation of thermally induced DW motion

Now we present the results of numerical simulations of the
magnetization dynamics in the AF based on LLG Eqs. (1).
The spin torque exerted by the superconductor is calculated
microscopically according to Eqs. (18) and (19). The Néel
vector in the AF n = (mA − mB)/2 can be parametrized as

n = (cos θ, sin θ sin φ, sin θ cos φ), (20)

where both angles θ and φ depend on the x coordinate. The
equilibrium shape of the DW in the absence of the supercon-
ducting film is given by cos θ = tanh(x/dDW) and φ = 0, that
is the DW is in the x-z plane.

For the numerical calculation we introduce the dimen-
sionless quantities t̃ = t (γ K ) and H̃eff = mi,xex − kmi,yey +
Ã∂2

x mi − J̃mī with Ã = A/K , J̃ = J/K , k = K⊥/K . All
lengths are measured in units of ξS = vF /�0, x̃ = x/ξS .
Here �0 is the superconducting order parameter of the S
film in the absence of the antiferromagnet at T = 0. The
dimensionless torque is ÑA = NA/γ K = ζ∂x̃J̃x, where the
dimensionless quantity ∂x̃J̃x = (2e2RNvF /�2

0)∂xJx and ζ =
ES/πEA is proportional to the ratio of the condensation energy
ES = NF �2

0dS/2 and the anisotropy energy EA = MKdAF/2.
Here and below RN = π/(2e2NF vF ) is the normal state resis-
tance of the S film. For estimates we take ES ∼ (10–103) × dS

erg/sm2 (for conventional superconductors like Al and Nb)
and assume that characteristic values of EA for antiferromag-
nets are close to the corresponding values for ferromagnets:
EA ∼ 105d erg/sm2 for Py thin films [66] or EA ∼ (10–102) ×
d erg/sm2 for YIG thin films [67]. This implies that ζ can vary
in wide range ζ ∼ (10−4–102)(dS/dAF). For our numerical
analysis we assume ζ = 0.048.

Figure 2 depicts snapshots of the spatial profiles of the
Néel vector n at several subsequent moments during the DW
motion under the applied temperature difference for the finite
value of the hard-axis anisotropy k = 1. It is seen that the DW
moves as a rigid object preserving its initial shape, that is the
motion is in the regime well below the Walker breakdown [4].
The motion is in this regime for the entire temperature range
where the superconductivity survives.

In Fig. 3 we plot the velocity of the moving DW as a
function of the left (hot) end temperature Tl . The velocity is
measured in units of v0 = ξS/t0, where t0 = (γ K )−1. Taking
typical values of the superconducting Al coherence length
ξS ∼ 200 nm and K ∼ 102 G we can roughly estimate v0 ∼
104–105 cm/s. Figure 3(a) demonstrates the DW velocity
for nearly zero temperature of the right end of the bilayer
Tr = 0.02�0. It is seen that the velocity becomes finite even
at Tl > Tc0 ≈ 0.57�0, where Tc0 is the critical temperature
of the superconductor in the absence of the antiferromagnet.
This implies that the superconductivity still survives at such
temperature differences. This existence of superconductivity
at large temperatures is a specific feature of the ballistic
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FIG. 2. Spatial profiles of the Néel vector at several subsequent
times. Tl = 0.32�0, Tr = 0.02�0, d = ξS , α = 0.01, αc = 0.009,
h = 0.3�0, the time between two subsequent curves dt = 10t0. The
DW moves from the left (hot) to the right (cold) end. The direction
of the DW motion is indicated by the arrow in (a).

limit, which results from the fact that at a given point only
a half of all the trajectories, corresponding to vx > 0 carry
hot quasiparticles distributed in accordance with Tl . The other
half of trajectories vx < 0 carry no quasiparticles because they
are not produced at the right end at T = 0. Mathematically
these arguments are expressed by Eq. (16), where the order
parameter is determined by the sum of two Fermi functions,
corresponding to the both ends of the bilayer.

At the same time Fig. 3(b) corresponds to Tr = 0.32�0.
At this value of the cold end temperature the amount of left-
moving quasiparticles from the right (cold) end is enough
to completely suppress superconductivity already at Tl =
0.82�0. As a result the DW velocity goes to zero at this
temperature.

FIG. 3. (a) DW velocity as a function of Tl at Tr = 0.02�0 for
different DW widths. (b) DW velocity as a function of Tl at Tr =
0.32�0 for different DW widths. The inset shows the DW velocity at
Tl = 0.42�0 and Tr = 0.32�0 (red) or Tr = 0 (blue) as a function of
the DW width. The parameters α, αc, and h are the same as in Fig. 2.

Different curves in Fig. 3 correspond to different values of
the DW width dDW in units of ξS . It is seen that for a given
temperature difference the DW velocity is a nonmonotonic
function of dDW exhibiting a maximum at dDW ∼ ξS/3. The
dependence of the DW velocity as a function of dDW is demon-
strated in the inset of Fig. 3(b). This can be understood via the
argument that the DW motion is driven by the nonadiabatic
torque component, which is ∝ dDW/ξS at small values of this
parameter (see analytical calculations below). Furthermore,
the spin torque vanishes at large dDW � ξS because the elec-
tron spin can trace the magnetization in this case and the
nonadiabatic torque goes to zero. Thus, the spin torque exerted
is bound to achieve a maximum value in between the two
extremes where it vanishes.

B. Analytical calculation of the DW velocity in the framework
of the collective coordinates approach

In the present section we employ the collective coordinates
approach for AFs [17] in obtaining analytic results for the
DW velocity. Furthermore, in the limit of a narrow DW, the
thermally generated spin current in S is also evaluated analyt-
ically.
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We substitute mA,B = m ± n into Eq. (1) and after some
algebra obtain

∂n
∂t

= −γ [n × Hm + m × Hn] + NA

2

+αnn × ∂m
∂t

+ αmm × ∂n
∂t

, (21)

∂m
∂t

= −γ [n × Hn + m × Hm] + NA

2

+αmm × ∂m
∂t

+ αnn × ∂n
∂t

, (22)

where Hm,n = (HA
eff ± HB

eff )/2 and αm,n = α ± αc. We further
take into account that m 
 1. Then multiplying Eq. (21) by
×n and accounting for n2 ≈ 1 and n · m = 0, we obtain the
leading order expression for m:

m = 1

2γ J

[
∂t n × n + n × NA

2

]
, (23)

where we have also neglected small terms ∼αm,n and α2
m,n.

Equation (23) is quite standard [12] except for the fact that
the torque term, in our case, stems only from one of the
sublattices.

When magnetic textures are rigid, only a few soft modes
dominate the magnetization dynamics. In this case the evo-
lution of the soft modes can be described by a finite set of
collective coordinates. This method was successfully applied
both for ferromagnetic [4,68,69] and antiferromagnetic [17]
textures. Our numerical results presented in Fig. 2 demon-
strate that the magnetization texture for the problem under
consideration is rigid and, therefore, we exploit the collective
coordinate method to analytically describe the DW motion.
We use the DW center coordinate xDW and the out-of-plane
tilt angle φ as collective coordinates. In this case the Néel
vector of the moving DW can be written in the form of
Eq. (20) with θ = θ [x − xDW(t )] and φ = φ(t ). Substituting
Eq. (23) into Eq. (22) and keeping in Eq. (22) only terms
up to the linear order with respect to NA and ẋDW ∼ NA, we
obtain

n × n̈
2γ J

− γ n × Hn + αnn × ṅ + NA

2
= 0. (24)

By projecting this equation on the y axis and substituting the
Néel vector in the form (20) we get

θ ′ẍDW

2γ J
+ αnθ

′ẋDW + N
ne
A,y

2
= 0, (25)

where θ ′ is the derivative of θ with respect to its argument
and N

ne
A,y = NA,y − N

eq
A,y is the nonequilibrium part of the

torque, which arises due to applied temperature difference.
The equilibrium contribution N

eq
A,y exists also at �T = 0 and

is compensated by a small distortion of the DW shape in
S/AF bilayer with respect to the isolated AF film [42]. By
multiplying Eq. (25) by θ ′ and integrating over x coordinate it
can be represented in the form of equation of motion [17] for
the collective coordinate xDW with the effective mass of the
DW M = (1/Jγ 2)

∫
(θ ′)2dx and the total force inducing the

DW motion F = −(1/γ )
∫

N
ne
A,yθ

′dx.

Furthermore, we consider the regime of a steady-state mo-
tion of the DW and in this case φ(t ) = φ0 and the massive
term in Eq. (25) is zero. This equation is strictly valid only
for the special shape of the torque N

ne
A,y ∝ θ ′, which coin-

cides with the phenomenological expression for nonadiabatic
torque considered in Ref. [17]. Our microscopic numerical
calculations indicate that this condition is approximately valid
at |x − xDW| < x0, where x0 � ξS . Therefore, the DW velocity
can be approximately found as

vDW = ẋDW = N
0
A,ydDW

2αn
, (26)

where N
0
A,y = NA,y(x = xDW). A slightly more accurate result

taking into account the averaging over the DW region can be
obtained by integrating Eq. (25):

vDW =
∫ x0

−x0
NA,ydx

2αn[θ (x0) − θ (−x0)]
. (27)

This integrated expression is not very useful for analytical
calculation of the DW velocity in case dDW > ξS because
the parameter x0 can only be extracted from numerical cal-
culations. At the same time here we focus on the regime
dDW 
 ξS , which is relevant for Al-based AF/S bilayers due
to the relatively large coherence length ξS in Al. In this regime
the main part of the integral in Eq. (27) comes from the region
|x − xDW| < dDW and, therefore, the exact value of x0 � dDW

is not important.
Analogously, by taking a projection of Eq. (24) on the x

axis one can find the tilt angle

φ0 =
∫ x0

−x0
NA,xdx

4dDWγ K⊥
. (28)

Comparing this result to the tilt angle for the ferromagnetic
case

φF = 1

γ K⊥dDW

[
1

2

∫ x0

−x0

dxNx − 1

πα

∫ x0

−x0

dxNz

]
, (29)

we see that due to the absence of the last term ∝ α−1 � 1
in Eq. (28) the tilt angle in antiferromagnets is much smaller
than in ferromagnets and can be considered as a hard mode, as
it has been indicated in Ref. [17]. It is a manifestation of the
qualitatively different behavior of magnetization dynamics in
ferromagnets and antiferromagnets.

The DW velocity vDW is ∝ α−1
n in agreement with our

numerical analysis (see Fig. 4). It is also ∝ ∫ x0

−x0
NA,ydx. For

a plane DW under consideration the latter quantity is nothing
but the nonadiabatic torque, integrated over the coordinate.
Contrary to the phenomenological approaches, which were
applied before to study DW motion in ferromagnetic and an-
tiferromagnetic textures, we calculate the nonadiabatic torque
microscopically. It is done numerically for a wide range of
parameters and the resulting DW motion has been discussed
in the previous section.

In the regime dDW 
 ξS we are able to obtain an approx-
imate analytical expression for the integrated nonadiabatic
torque. According to Eq. (19)

∫ x0

−x0
NA,ydx ∝ ∫ x0

−x0
dJy/dx =

Jy(x0) − Jy(−x0). The last difference is mainly determined
by the jump of the y component of the spin current �Jy at the

094506-6
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FIG. 4. Numerically calculated DW velocity as a function of Tl

at different DW widths dDW = ξS (red) and dDW = 0.05ξS (blue) and
different values of αn = 0.001 (solid) and αn = 0.005 (dashed). Tr =
0.02�0. It is seen that the DW velocity is proportional to α−1

n for any
widths of the DW.

DW. This jump can be found analytically in the framework
of the perturbation theory with respect to the small parameter
dDW/ξS 
 1. In this regime the DW can be viewed as very
narrow as compared to the superconducting coherence length
and we can find the solution of Eq. (10) at the left and right
boundaries of the DW, that is at x = ∓dDW ≈ 0, where the
zero-order contribution is continuous, while the first order
contribution to the Riccati amplitudes exhibits a jump:

	̂R
+(−dDW) = 	̂R

l,−∞, 	̂R
+(dDW) = 	̂R

l,−∞ + δ	σ̂z, (30)

	̂R
−(dDW) = 	̂R

r,+∞, 	̂R
−(−dDW) = 	̂R

r,+∞ + δ	σ̂z, (31)

ˆ̃	R
+(dDW) = −	̂R

r,+∞, ˆ̃	R
+(−dDW) = −	̂R

r,+∞ − δ	σ̂z, (32)

ˆ̃	R
−(−dDW) = −	̂R

l,−∞, ˆ̃	R
−(dDW) = −	̂R

l,−∞ − δ	σ̂z, (33)

where

δ	 =
∫ +∞

−∞
hz(x)Tr[	̂R,0(x)]dx, (34)

where due to the condition dDW/ξS 
 1 the zero order contri-
bution to the Riccati-amplitudes 	̂R,0(x) can be taken at x = 0:
	̂R,0

± (x) ≈ 	R,0
± (0) = 	̂R

l (r),∞. Accounting for this approxima-
tion the first-order contribution to the Riccati amplitudes takes
the form

δ	 = 2πdDWh

i|vF,x| 	0∞. (35)

Composing the Green’s function from the Riccati ampli-
tudes and substituting it into Eq. (18) we end up with the
following result:

�Jy = πNF dDWh

2

∫ ∞

−∞
dε

|I1|2 − |I2|2
|I1I2 − 1|2

×
[

tanh

(
ε

2Tl

)
− tanh

(
ε

2Tr

)]
, (36)

FIG. 5. (a) vDW as a function of T at small temperature dif-
ferences δT = Tl − Tr 
 T calculated according to the analytical
expression Eq. (38). (b) Maximal vDW for a given h, which can be
reached by properly adjusting the temperature difference Tl − Tr .
(c) Comparison of the numerical (red) and analytical (blue) results
for the DW velocity as a function of Tl . The cold end temperature
Tr = 0.02�0, dDW = 0.05ξS , α = 0.01, αc = 0.009.

where

I1,2 = ε + iδ ± h + i
√

�2 − (ε + iδ ± h)2

�
. (37)

Substituting this expression for �Jy into Eq. (27) we finally
obtain the following analytical expression for the DW velocity
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valid at dDW 
 ξS:

vDW = Z−1v0
h

�0

∫ ∞

−∞

dε

�0

|I1|2 − |I2|2
|I1I2 − 1|2

×
[

tanh

(
ε

2Tl

)
− tanh

(
ε

2Tr

)]
, (38)

where Z = 8αnξS/(πζdDW) is the parameter containing the
dependence of the DW velocity on all the essential quantities,
such as ζ , αn, and dDW, except for the dependence on the
exchange field h.

The DW velocity calculated according to Eq. (38) at
small temperature differences δT = Tl − Tr 
 T is shown in
Fig. 5(a) for different values of the exchange field h. It is
seen that in general vDW is higher for larger values of h, but
it also more sharply vanishes at high temperatures because
of the superconductivity suppression by the exchange field.
Figure 5(b) demonstrates the maximum value of vDW, which
can be obtained for a given h by properly adjusting the temper-
ature difference Tl − Tr , calculated according to Eq. (38). The
maximal value of the DW velocity grows with the exchange
field until the superconductivity suppression by h becomes
strong enough and dominates in the dependence of vDW on
the exchange field.

Equation (38) can be further simplified at not very small
values of the exchange field 0.1� � h � �. In this case the
integrand in Eq. (36) can be approximated as

|I1|2 − |I2|2
|I1I2 − 1|2 ≈ sgn ε

4

(
1 + 2�

h

)√
ε2 − (� − h)2 (39)

if ε ∈ ±[� − h,� + h] and it is zero beyond this energy
interval. With this approximation

vDW = Z−1v0
h

�0
[F (h, Tl ) − F (h, Tr )],

F (h, T ) =
(

1 + 2�

h

)√
2(� − h)

�0

T

�0
e− �−h

T

×
(√

π

2
−

√
2h

T
e− 2h

T

)
. (40)

Equation (40) can be further simplified at Tl,r 
 � resulting
in

vDW =
√

π

2
Z−1v0

h

�0

(
1 + 2�

h

)√
2(� − h)

�0

× (
Tle

− �−h
Tl − Tre− �−h

Tr

)
. (41)

Expressions (40) and (41) reflect the main qualitative fea-
tures observed in the exact numerical results presented in
Fig. 3. In particular, vDW is exponentially suppressed at low
temperatures Tl,r 
 (� − h), as it is seen in Fig. 3(a) and
can be qualitatively explained by the fact that the number of
quasiparticles contributing to the giant thermospin effect is
exponentially suppressed at such low temperatures. At mod-
erate temperatures T > (� − h) the DW velocity is roughly
proportional to Tl − Tr , which is also seen from the numerical
results. This behavior is changed by the velocity reduction
upon further increase of temperature when the suppression of
the superconducting gap by temperature becomes essential.

IV. CONCLUSIONS

A high-efficiency thermally induced 180◦ antiferromag-
netic domain-wall (DW) motion is predicted in thin-film
AF/S hybrid structures with uncompensated magnetization at
the AF/S interface. The surface magnetization gives rise to
an effective exchange field and a spin splitting of the DOS in
the superconductor. The physical mechanism underlying the
torque hat drives DW motion is connected to the generation
of the giant spin-dependent Seebeck effect in the spin-split
superconductor, which pumps quasiparticle spin into the su-
perconducting region in the vicinity of the DW. The resulting
DW motion is investigated both numerically and analytically.
The analyzed dependence of the DW velocity on the effective
exchange field, Gilbert damping, and the DW width offers
valuable guidance for the experimental realization and opti-
mization of the suggested mechanism. We estimate relatively
high DW velocities ∼100 m/s at small temperature differ-
ences ∼1 K applied across a length equivalent to several
domain-wall widths.
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