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Phonon-mode specific contributions to room-temperature superconductivity
in atomic hydrogen at high pressures
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We investigate the role of specific phonon mode symmetries for the room-temperature superconductivity in
atomic hydrogen under large pressure. Using anisotropic Migdal-Eliashberg theory with ab initio input from
density functional theory, we show that the E, phonon modes are the dominant driving force for obtaining
such high critical temperatures. When going from 400 to 600 GPa, we find an increased transition temperature;
however, the total electron-phonon coupling strength is counterintuitively reduced. Our analysis reveals that this
is due to an enhanced contribution to the coupling strength by the £, phonon mode. We furthermore compute the
momentum anisotropy of the superconducting gap which we find to be relatively small, about 7% of the mean

gap value at 100 K.
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I. INTRODUCTION

Reaching superconductivity at room temperature has been
the focus of intense research activities in the last few years
(see [1,2] for recent surveys). Especially promising results
have been achieved for superhydrides, such as H3S, with a
transition temperature of 203 K at a pressure of 155 GPa [3],
LaH;y with a T, around 250 K at a pressure of 170 GPa or
higher [4-6], and YH¢ with 7, >~ 220 K at 166-237 GPa [7,8].
Very recent studies report room-temperature superconductiv-
ity (287 K) in a carbonaceous sulfur hydride at 267 GPa [9],
and possibly even a higher critical temperature in a La super-
hydride mixed with ammonia borane [10]. A unifying aspect
of these recently discovered high-temperature superconduc-
tors is the prevalent conventional electron-phonon mechanism
that is responsible for the record high critical temperatures [2].

The quest for room-temperature superconductivity in hy-
drides goes back to a proposal by Ashcroft [11], stating that
dense atomic hydrogen metal could exhibit superconductivity
at a very high critical temperature. The existence of a metallic
phase of atomic hydrogen was first conceived by Wigner and
Huntington in 1935 [12]. Since these seeding works, massive
efforts have been devoted to experimentally confirm such pre-
dictions at high pressures (see [13,14]), eventually aiming for
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the final demonstration of high-temperature superconductivity
in this material. However, the formation of atomic hydro-
gen metal at high pressure has been difficult to establish in
diamond-anvil pressure cells. So far, some evidence for a
metallic phase has been presented at various pressures, from
250 to 495 GPa [15-20], but the findings of these works
are not yet unambiguously accepted by the entire scientific
community.

To better understand the formation of superconductivity in
hydrides at high transition temperatures, theory can provide
valuable insight. It is widely accepted that the conventional
electron-phonon mechanism is at play, being enhanced by
the small ionic mass of hydrogen, the large electron-ion
Coulomb interaction, and relatively weak electron-electron
interaction. Although the appearance of superconductivity
has not yet been reported, first-principles crystal structure
investigations have determined that atomic hydrogen will
adopt the 74;/amd structure for a large pressure interval of
500-1000 GPa [21-23]. Advanced quantum Monte Carlo cal-
culations estimated the transition pressure of 374 GPa for the
transition from the molecular phase to the atomic /4;/amd
phase [24]. Superconductivity in the latter phase has been
investigated using first-principles electronic structure calcu-
lations of the electron and phonon bands and their coupling,
using the semiempirical McMillan and Allen-Dynes equation
[22,25,26] or by solving the isotropic Eliashberg equations
[27,28]. The obtained transition temperatures 7, are around
room temperature for a Coulomb pseudopotential value u* =
0.10. While anisotropic calculations of the superconducting
state have been carried out for the molecular phase of hydro-
gen [29-31], such a study is yet elusive for atomic hydrogen
in the 14, /amd structure.

In this work we present a phonon-mode resolved analysis
of metallic hydrogen in the superconducting state at pressures
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of 400 and 600 GPa, where the 14;/amd phase is prevalent.
Our calculations are carried out with the Uppsala Supercon-
ductivity (UPPSC) code [32-38]. Specifically, we solve here the
anisotropic Migdal-Eliashberg equations using first-principles
electron energies, phonon frequencies, and electron-phonon
couplings as input. The total electron-phonon coupling con-
stant A >~ 2.32 at 400 GPa contains dominant contributions
from the B, phonon mode, while the A,, mode has the small-
est impact. The remaining E, and E, modes both contribute
with comparable and substantial magnitude to A. We find 7,
approximately as room temperature for a reasonable range
of Coulomb pseudopotential values ©*, which is consistent
with previous investigations [25,27,28]. Selectively investi-
gating each of the phonon modes reveals that the E, mode
contributes most to the 7, despite having a subdominant
role concerning the electron-phonon coupling strength. We
provide a further proof of this observation by increasing the
pressure to 600 GPa, where the critical temperature slightly
increases, despite a reduction in electron-phonon coupling
strength A >~ 2.09. In accordance with the just described pic-
ture, our mode-resolved Eliashberg calculations reveal that
this stems from an enhanced contribution from the E, mode.

II. METHODOLOGY
A. First-principles calculations

We perform first-principles calculations within the den-
sity functional theory (DFT) framework using the QUANTUM
ESPRESSO package [39]. We adopt the /4, /amd crystal struc-
ture of atomic hydrogen that was predicted to be the stable
structure over a large pressure range of 400-1000 GPa [22].
The exchange-correlation energy functional is treated within
the generalized gradient corrected scheme of Perdew-Burke-
Ernzerhof [40]. The interactions between valence electrons
and core are treated within the projector-augmented-wave
(PAW) approach and the plane-wave basis set is con-
structed using an energy cutoff of 80 Ry. The Brillouin
zone (BZ) integrations are carried out using a uniform dense
24 x 24 x 24 Monkhorst-Pack k-point grid. The phonon disper-
sions and electron-phonon couplings are calculated on a dense
12x12x 12 q-point grid using density functional perturbation
theory. All free parameters of the crystal lattice are optimized
at 400 and 600 GPa. Since anharmonicity shows a minor
effect on the critical temperature [28], these effects are not
considered in the present calculations.

B. Eliashberg theory calculations

From ab initio calculations we obtain branch v and wave
vector q dependent phonon frequencies wgq., as well as
electron-phonon coupling constants A4, and quasiparticle
lifetimes yq,,. By defining bosonic Matsubara frequencies
q =2nTl, [ € Z, at temperature T we obtain the dynamic
electron-phonon couplings via

w2,
Mgt =Y gy ——— (1)

5.
v wqu + ql

In the above we use the notation g(q, ig;) = g4, for any
function g for the sake of brevity. The couplings calculated

from Eq. (1) serve as input for the self-consistent anisotropic
Eliashberg equations

mT 5~ 3G, Oy

Zkm=1+— N K e (2)
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describing the electron mass renormalization Zy , and su-
perconducting gap function Ak, [33]. Again we write
fK,iwy) = fx.m, now with fermion Matsubara frequencies
wy =nT(2m+ 1), m € Z. We use u* as Anderson-Morel
Coulomb pseudopotential, which enters Eq. (3) with a Mat-
subara frequency cutoff w.. The critical temperature 7, is
defined as the smallest 7" at which the self-consistent solution
to Egs. (2) and (3) yields a vanishing superconducting gap.
The electron density of states Ny at the Fermi level is
calculated via the adaptive smearing method, namely,

11 Een
No = —— ——exp (— : ), 4
kX,n: A/ 2 Wk,n 2Wk2n

where the broadening tensor is defined as

8“;:k,n
ok

in combination with the Methfessel-Paxton scheme [41]. In
Eq. (5), Ak is the momentum resolution and a can be chosen
O(1) [42]. Furthermore, & , is the electron dispersion as com-
puted from DFT, with k a BZ momentum and 7 a band index.
We consider here only electronic states at the Fermi level,
hence our calculations are carried out for the two partially
occupied energy bands (shown further below).

We obtain a more simplified estimate of T, by employing
the semiempirical McMillan equation [43], including a modi-
fication due to Allen and Dynes [44],

Wk.n = alk , 5)

—1.04(1 + A
1. = Blog exp (d+4) . (6)
1.2 A1 —0.62u*) — u*
Here A is the total electron-phonon coupling constant,
A= Ao @)
q,v
o 2

F
=2 / CF@) 4, ®)

0 w

and «’F () is the real-frequency w dependent Eliashberg
function, given as

1 V.
2 q.v
Fw)= ——— 8(w — wq.v . 9
o F(w) N qEv (0 — wq, )wq,v ©)
The characteristic phonon energy scale wiog is defined as
2 [Cdo ,
Wiog = €Xp | — —a‘F(w)log(w) | . (10)
A 0 w

As stated in the Introduction, atomic hydrogen metal gives
rise to four different irreducible representations of the phonon
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modes. In the following Sec. III we present numerical results
that partially correspond to only subsets of all these repre-
sentations. This means that for an irreducible representation
p € {Big, E,, Ay, E,}, any sum over branch index v is to be
understood as ZVE o [compare Eqgs. (1), (7), and (9)]. The
Eliashberg or McMillan equations are then solved for the
resulting “partial” inputs.

III. RESULTS

We begin by calculating the electronic properties of metal-
lic hydrogen in the optimized 74, /amd structure. The results
of our electronic structure calculations at a pressure of
400 GPa are presented in Fig. 1. Figure 1(a) shows the com-
puted electronic band structure plotted along high-symmetry
directions in the BZ. The electronic states are highly dis-
persive forming very wide bands which reflects their nearly
free electron nature. Two bands cross the Fermi level and are
responsible for metallicity. One band corresponds to the bond-
ing s orbital and the other one to the antibonding s orbital. The
antibonding state is mostly unoccupied and crosses along the
I'-Z direction. Our calculated electron band structure agrees
well with previously reported results [23,28,45].

The electronic density of states (DOS), shown in Fig. 1(b)
with the orange color, is also consistent with the free electron
behavior, being nearly parabolic below to Fermi level. Note
that the DOS value at the Fermi level is higher than that of
metallic molecular hydrogen in the Cmca-8 phase [21], shown
in green. Figure 1(c) shows the calculated three-dimensional
Fermi surface of atomic hydrogen metal at 400 GPa, which
consists of two sheets corresponding to the bonding and an-
tibonding states. The bonding state leads to ribbonlike hole
Fermi-surface sheets and the antibonding state leads to a con-
cave lens shaped electron Fermi sheet at Z (the Fermi surfaces
were rendered using FERMISURFER software [46]). The sheets
in Fig. 1(c) are colored according to the values of the Fermi
velocities; the high Fermi velocities correspond to the free
electron nature. The covalent character of the H-H bonds
is investigated by calculating the crystal orbital Hamiltonian
population (COHP) functions [47-51] which counts the pop-
ulation of wave functions on two atomic orbitals of a pair of
atoms [shown in Fig. 1(d)]. In a given energy window, nega-
tive values of COHP describe bonding interactions, whereas
positive values of COHP describe antibonding interactions.
This analysis shows that the overlap of nearest hydrogen states
below the Fermi level are bonding states. The H-H bond
in molecular phase (gray shaded area) has stronger covalent
character than that of atomic phase. The integrated COHP
values (computed with the code of Ref. [50]) are 1.30 and
3.27 eV /H-H for atomic and molecular phases, respectively.

The computed phonon dispersions of metallic hydrogen
at 400 GPa (not shown) are very similar to the previously
reported phonon dispersions [28].

After this we turn our attention to the superconducting
properties of metallic atomic hydrogen. In Fig. 2(a) we show
our convergence study of the global electron-phonon coupling
strength A, as obtained from Eq. (7), as a function of smearing
o, which is used by QUANTUM ESPRESSO to compute the
electron-phonon coupling coefficients A4 ,. The results show

N [/ ]

DOS (states/eV/H)
o o
S b

0.00

—~
o
N—

FIG. 1. Ab initio calculated electronic properties of metallic hy-
drogen at 400 GPa. (a) Electronic band structure along the high
symmetry directions of the BZ. (b) Electronic density of states
(DOS) function, shown in orange color. The light-green curve shows
the DOS results of the Cmca-8 phase of molecular hydrogen [21].
(c) Computed Fermi-surface sheets, colored according to the Fermi
velocity values, starting with blue (lowest velocities)-light-green
(medium range velocities)-red colors (highest velocities). (d) The
COHP functions. The orange shaded area shows the result for atomic
hydrogen and the blue curve (gray shaded) shows the result for
the Cmca-8 phase of molecular hydrogen. Negative COHP values
represent bonding interactions and positive COHP values represent
antibonding interactions.
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FIG. 2. (a) Global coupling constant as a function of broadening.
(b) Frequency dependent Eliashberg function for a broadening value
of 0.04 Ry (blue curve). The red curve shows the cumulative coupling
strength calculated from Eq. (8). The purple dashed line represents A
as obtained from Eq. (7).

good convergence for o 2 0.04 Ry, and therefore this value
of o will be used from here on. The converged value of A
is 2.32, which is compatible with the A = 2.08 computed for
molecular hydrogen at 450 GPa [29]. The coupling coefficient
is also consistent with values for H3S at 200 GPa (2.19) [52],
LaH;y at 250 GPa (2.29) [4], and YH,( at 400 GPa (2.41)
[53]. Additionally, we have carefully checked that our results
are properly converged in the electron and phonon momentum
grids.

Now we turn to the analysis of how individual phonon
modes contribute to the electron-phonon couplings. For this
we calculate the Eliashberg function o’F(w), shown in
Fig. 2(b) in blue. The most prominent contributions appear at
o ~ 100 meV and w ~ 250 meV. This is further emphasized
by the red curve representing the cumulative electron-phonon
coupling as calculated from Eq. (8). The aforementioned
frequencies lead to the steepest increase in A with w. As
crosscheck, we calculated the total electron-phonon coupling
using Eq. (7), shown in dashed purple. Both calculations yield
identical, i.e., converged values of A.

Next we solve the Eliashberg equations as a function of
T and pseudopotential w*, using the first-principles input
computed for o = 0.04 Ry. We show the result for the maxi-
mum superconducting gap A = maxg Ak ,—o in Fig. 3(a). In
solid red we indicate the onset of superconductivity, hence
the critical temperatures. Above we mention another recipe
of calculating 7, by means of the modified McMillan equa-
tion; the outcome is plotted as a dashed black line, using
wiog >~ 124 meV. We make the u* dependence of T;. explicit in
Fig. 3(b), where we show the 7, corresponding to room tem-
perature in solid blue. As apparent, when using the modified

meV

200
T (K) (c)
(b)
200 \ RT
< 00
&~ - —McMillan
100 —— Eliashbergp

0 0.25 0.5

63 64 65 66 67
,U* AkF (meV)

FIG. 3. (a) Self-consistently computed maximum superconduct-
ing gap for atomic hydrogen at 400 GPa as a function of 7 and
screened Coulomb potential p*. The critical temperatures according
to Eliashberg theory and the modified McMillan equation are drawn
in solid red and dashed black lines, respectively. (b) Calculated
critical temperature 7. plotted against u*. (c) Computed momentum
distribution of the gap Ay, (=Ag—k;,m=0) at 100 K.

McMillan equation we underestimate the critical temperature,
in comparison to the solution of the more accurate Eliashberg
equations, for all values of p*. The dashed black line stays
below room temperature even in the complete absence of
pair-breaking Coulomb repulsion. The red solid line, on the
other hand, predicts room-temperature superconductivity for
values of u* up to ~0.14. The underestimation of 7, by the
modified McMillan equation stems mainly from the strong
electron-phonon coupling in atomic hydrogen. As has been
reported in Ref. [44], estimating the critical temperature via
the modified McMillan equation (6) becomes inaccurate as A
exceeds 2, because the semiempirical equation (6) has been
constructed for weak-coupling superconductors. The devia-
tions in 7, values computed with the McMillan equation can
thus be significant, nearly 100 K [see Fig. 3(b) and Table I].
Here we model the superconducting state in metallic hy-
drogen via anisotropic Eliashberg theory, hence we have
access to the momentum dependence of the superconducting
gap. Analyzing our self-consistent solutions across the whole

TABLE I. Calculated transition temperatures for atomic hy-
drogen, using the modified McMillan equation, and isotropic and
anisotropic Eliashberg theory.

T. (w=0.1) T. (w=02)
Modified McMillan 228 K 183K
Isotropic Eliashberg 306 K 250 K
Anisotropic Eliashberg 321K 260 K

094505-4



PHONON-MODE SPECIFIC CONTRIBUTIONS TO ...

PHYSICAL REVIEW B 103, 094505 (2021)

2 : : .
1.5} -
3
= 1} ]
i
0.5} 1
0
0 100 200 300
w (meV)

FIG. 4. Frequency dependent Eliashberg function of atomic hy-
drogen at 400 GPa produced by the four different irreducible
representations. The inset shows the contributions of By, E,, Az,
and E, to the global electron-phonon coupling constant. The same
colors are used for the main graph and the inset.

parameter ranges of u* and T [compare Fig. 3(a)] reveals that
Ay (=Ag=ky.m=0) is rather isotropic. As an explicit example,
we show the momentum distribution of Ay, in Fig. 3(c) for
T =100 K and p* = 0.1. We find that the superconducting
gap has a maximal variation of ~5 meV on the Fermi surface,
which corresponds to an anisotropy of only around 7% of the
mean gap value. As a direct comparison we also computed 7
for u* = 0.1 and pu* = 0.2 with isotropic Eliashberg theory,
the results of which are listed in Table I. As mentioned before,
the strong electron-phonon coupling leads to a drastic under-
estimate of T, by the modified McMillan equation. Moreover,
including the full BZ anisotropy leads to an additional in-
crease in transition temperatures.

We now turn to the question about the most significant
phonon branches. The irreducible representations in this sys-
tem are By, (one mode), E, (two modes), A, (one mode), and
E, (two modes). We split Aq ., Vq.v, and wq,, according to
these subsets, and repeat the calculation of A and o>F (), re-
spectively, via Egs. (7) and (9). The relative contribution to the
electron-phonon coupling due to the different phonon modes
is shown as the inset in Fig. 4. In the main graph, we plot
the partial Eliashberg functions arising from each irreducible
representation. Concerning a>F (w), we clearly see that each
subset of phonon modes contributes mainly in a respective
characteristic frequency range. As for the magnitude of A, the
largest (smallest) contributions are due to By, (A2,), while E,
and E, are on a comparable intermediate level.

We want to examine how the different phonon modes affect
the superconducting transition temperature. The u* dependent
result for 7, as obtained from the full calculation is shown in
Fig. 5(a) as a thick, light-red curve. The calculations are now
repeated by selectively leaving out one particular subset of
phonon modes, each corresponding to one of the irreducible
representations. For example, the blue line in Fig. 5(a) is
found by taking into account only the E,, A,,, and E, irre-
ducible representations, i.e., neglecting any influence due to

Full calc.
——w/o By,
——w/o E,
_W/O Agﬂ
—w/o E,

FIG. 5. Calculated transition temperatures as a function of the
Coulomb pseudopotential. (a) The thick red line represents our result
for including all modes in the system. The remaining four solid
lines are found by neglecting one subset of phonon modes at a time
(see legend). (b) Results computed for each individual irreducible
representation.

Bi,. From this we observe that the smallest decrease in T
is found when leaving out either the B, or the A, modes,
hence their significance for superconductivity is compara-
tively minor. The largest loss in 7, is found when excluding
the E,, modes (see the dark-red curve). Hence we conclude that
phonon modes belonging to the E, representation are most
important for the high-temperature superconducting state.

To investigate the branch dependence in more detail, we
also performed calculations for each individual representa-
tion, the results of which are shown in Fig. 5(b) as dotted
curves. The colors are chosen correspondingly to panel (a). In
accordance to the discussion above, the largest critical temper-
atures are found for E,, modes for u* < 0.1, with a maximum
value of 7. ~ 140 K. For this particular representation the
decrease in T, as a function of u* is fastest, which we find
to be due to the very isotropic nature of the corresponding
partial coupling. On the other extreme, the decay in critical
temperature when considering only the B, mode is relatively
slow, which stems conversely from its rather anisotropic con-
tribution to the electron-phonon coupling. Due to the highly
nonlinear nature of Eliashberg theory, the total 7, in atomic
hydrogen is not simply the sum of critical temperatures as
obtained by considering each irreducible representation in
an isolated way. This can be easily seen by comparing the
full calculation in Fig. 5(a) for large values of u* with the
corresponding curves in Fig. 5(b).

We performed similar calculations for atomic hydrogen
at 600 GPa. As shown in Fig. 6(a), we find a slight de-
crease in the value of electron-phonon coupling, A = 2.09,
but overall, as can be seen in Fig. 6(b), T, increases slightly.
Similarly, a higher critical temperature than for 400 GPa is
found when considering the modified McMillan equation,
where the characteristic phonon energy scale for 600 GPa
iS wie >~ 141 meV. Although this behavior may seem

094505-5



ASHOK K. VERMA et al.

PHYSICAL REVIEW B 103, 094505 (2021)

@
A 4r | '
e/?_e\e‘hﬂ#—;—e—g_
0.01 0.02 0.03 0.04 0.05
(b) - o (Ry) ] (c)
RT T =100K
Agoox\\ /1*:01
\Mg 200} >
= = =McMillan
100 ——Eliashbergph o
0 0.25 0.5 70 72
) pr Ay (meV)
d . ;
(d) B,
1.5} 1
3
5 1} '
RS
0.5} T
0 4 "
0 100 200 300 400
w (meV)

FIG. 6. (a) Computed global coupling constant A as a function of
broadening for atomic hydrogen at a pressure of 600 GPa. (b) The
critical temperature versus Coulomb pseudopotential u* computed
with Eliashberg theory and with the modified McMillan equation.
(c) Momentum distribution of the superconducting gap on the Fermi
surface. (d) As Fig. 4, but for atomic hydrogen at a pressure of
600 GPa.

counterintuitive, it can be explained by the way different
phonon modes contribute to superconductivity. Despite the
small decrease in the total electron-phonon coupling, we now

find an increased coupling to E, symmetry modes, as illus-
trated in the inset of Fig. 6(d), which leads to an increase in
wiog and therefore to the increase in transition temperature.
Hence, this underlines the dominant contribution stemming
from the E, phonon modes. Similarly as before, we show the
computed momentum distribution of Ay, for T = 100 K and
w* = 0.1 in Fig. 6(c). As can be recognized, with a range of
approximately 4 meV, the superconducting gap becomes even
more isotropic at increasing pressures.

IV. CONCLUSIONS

In summary, we have reported a detailed analysis of
the superconducting properties of metallic atomic hydro-
gen under high pressure conditions. To this end, we solved
the anisotropic Migdal-Eliashberg equations, in combination
with first-principles input results for the electron energies,
phonons, and electron-phonon couplings. Our calculations
show that, although the H-H covalent bond has weakened
in atomic hydrogen metal as compared to the molecular hy-
drogen phase, it still has a substantial amount of covalent
character. Further, we find that metallic atomic hydrogen
exhibits above room-temperature superconductivity for rea-
sonable values of the screened Coulomb pseudopotential p*.
Analyzing which modes contribute most, we find that the
high transition temperature is mainly due to the E, phonon
modes. The critical transition temperature shows only a slight
increase with pressure. Computing explicitly the momentum
anisotropy of the superconducting gap, we obtain a relatively
small anisotropy of about 7% at 100 K and 400 GPa.
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