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Periodic Anderson model for magnetism and superconductivity in UTe2
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We provide and analyze a periodic Anderson model for studying magnetism and superconductivity in UTe2,
a recently discovered candidate for a topological spin-triplet superconductor. The 24-band tight-binding model
reproduces the band structure obtained from a DFT + U calculation consistent with an angle-resolved photoe-
mission spectroscopy. The Coulomb interaction of f -electrons enhances Ising ferromagnetic fluctuation along
the a-axis and stabilizes spin-triplet superconductivity of either B3u or Au symmetry. When effects of pressure
are taken into account in hopping integrals, the magnetic fluctuation changes to an antiferromagnetic one,
and accordingly spin-singlet superconductivity of Ag symmetry is stabilized. Based on the results, we propose
pressure-temperature and magnetic field-temperature phase diagrams revealing multiple superconducting phases
as well as an antiferromagnetic phase. In particular, a mixed-parity superconducting state with spontaneous
inversion symmetry breaking is predicted.
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I. INTRODUCTION

A recent discovery of superconductivity in UTe2 [1] pro-
vides a new platform of spin-triplet superconductivity, which
has been attracting renewed interest stimulated by the topo-
logical nature and accompanied Majorana fermion [2–4].
Indeed, identifying the spin-triplet pairing state and pairing
mechanism is one of the central topics in modern condensed
matter physics. Evidence for spin-triplet superconductivity in
UTe2 is manifested by an extremely large upper critical field
[1,5], ferromagnetic fluctuation [6,7], reentrant superconduc-
tivity near metamagnetic transition [8–12], and NMR Knight
shift revealing almost temperature-independent spin suscep-
tibility below Tc [13]. Existence of topological surface states
expected in odd-parity superconductors was indeed reported
[14,15]. Spin-triplet superconductivity is also implied by low-
energy excitations measured by specific heat [1,16], thermal
conductivity [17,18], and magnetic penetration depth [17], all
of which are consistent with nodal quasiparticles.

Despite extensive research, the symmetry of superconduc-
tivity in UTe2 still remains unsolved. Time-reversal symmetry
breaking has been reported by a scanning tunneling mi-
croscopy [14] and polar Kerr effect [19], and a nonunitary
chiral superconducting state has been proposed. However, the
proposed chiral axes are different in the two studies. Fur-
thermore, the issue of whether the time-reversal symmetry
breaking is an intrinsic property or not needs to be solved by
future studies.

Recent progress uncovered an impressive feature of this
material, namely, multiple superconducting phases under
pressure [20–25]. A superconducting transition temperature
Tc1 ∼ 1.6 K is monotonically suppressed by pressure, and an-
other superconducting phase appears with Tc2 increasing up to
3 K at P = 1.2 GPa. When the pressure is further increased,

superconductivity is suppressed, and a potentially magnetic
ordered state appears. An implication for an antiferromagnetic
state is reported [24,25] although UTe2 has been considered
to be near the ferromagnetic critical point. Furthermore, mag-
netic fields induce rich multiple superconducting phases under
pressure [22,24,25] as well as at ambient pressure [8,26,27].

From these observations, UTe2 is expected to be a
superconducting analog of superfluid 3He [28] with multi-
component order parameters. However, different from 3He
and another multicomponent superconductor UPt3 [29,30],
the orthorhombic crystal structure of UTe2 prohibits degen-
erate order parameters with the same Tc [31]. Thus, accidental
degeneracy not ensured by symmetry is required, and then
phenomenological theories [32,33] implementing symmetry
constraint are less useful. On the other hand, the presence of
the multiple superconducting phases is expected to be closely
related to the magnetic phases, and therefore, theoretical stud-
ies linking superconductivity with magnetism are desired. For
this purpose, a microscopic model for correlated electrons
is needed. However, an effective Hamiltonian for UTe2 has
not been constructed. In order not only to clarify the pairing
mechanism but also to identify the symmetry of multiple
superconducting phases, the construction and analysis of a
microscopic model for UTe2 are highly awaited. Such a the-
ory is also useful for uncovering topological superconducting
phases because they can be specified by pairing symmetry,
crystal structures, and Fermi surfaces (FSs) [3,4,34–38].

A difficulty for theories of heavy fermion systems is a
complex electronic structure. For this, first-principles calcu-
lations combined with experiments are informative. Density
functional theory plus Hubbard U (DFT + U ) [27,39,40] and
DFT combined with dynamical mean-field theory (DFT +
DMFT) [40,41] consistently predicted rectangular quasi-two-
dimensional (2D) FSs for a large Coulomb interaction. Then
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FIG. 1. (a) Crystal structure and hopping integrals. (b) First BZ
of original unit cell (Immm) and primitive unit cell (Pmmm).

the FSs are formed by light electrons similar to ThTe2 [41,42].
On the other hand, for an intermediate Coulomb interac-
tion U we predicted an additional heavy FS around k =
(0, 0, 2π ) [27], and it was indicated by angle-resolved pho-
toemission spectroscopy (ARPES) [41]. This case realizes
topological superconductivity [27]. Another ARPES study
observed electron bands far below the Fermi level consistent
with first-principles calculations [43]. A large carrier density
is also compatible with thermoelectric power [44].

In this paper, we provide a minimal tight-binding model
for UTe2 based on the first-principles calculation for an
intermediate U and investigate magnetic fluctuation and
superconductivity. Although we can successfully derive a re-
alistic 72-orbital model using the first-principles downfolding
method, it is hard to study many-body effects in such a
complicated model. Therefore, we here construct a 24-band
periodic Anderson model, which appropriately reproduces not
only the topology of FSs but also the weight of U 5 f , U
6d , and Te 5p electrons obtained from DFT + U calculations.
The model predicts a reasonable pressure-temperature (P-T )
phase diagram revealing spin-triplet superconductivity due
to ferromagnetic fluctuation with the easy a-axis as well as
spin-singlet superconductivity by antiferromagnetic fluctua-
tions. From the result, we propose a mixed even-/odd-parity
superconducting phase with spontaneous inversion symmetry
breaking under pressure.

II. MODEL

The DFT + U calculations clarified hole and electron FSs,
indicating a rather simple electronic structure near the Fermi
level [27,40]. Therefore, we can construct a model including
minimal hopping parameters [see Fig. 1(a)] which reproduces
the low-energy electronic band structures in UTe2. We adopt
an original unit cell of the Immm space group to illustrate FSs
(Fig. 2), while a primitive unit cell (Pmmm) with a folded
Brillouin zone (BZ) [Fig. 1(b)] is adopted for convenience
to calculate magnetic fluctuation and superconductivity. The
resultant model is a 12- or 24-band periodic Anderson model,
when we take into account on-site Coulomb interaction of
f -electrons. In addition, a sublattice-dependent antisymmetric
spin-orbit coupling (sASOC) [45–48] is introduced in accor-
dance with the local inversion symmetry breaking at uranium
atoms. Since uranium atoms form a ladder structure with local

FIG. 2. Electron and hole FSs for (a–b) p = 1.0 and (c–d) p =
3.0. The blue, green, and red represent the weight of Te2 5p, U 6d ,
and U 5 f orbitals, respectively.

site symmetry C2v , a Rashba-type sASOC appears with oppo-
site coupling constants ±α. This sASOC induces magnetic
anisotropy consistent with experiments [1,5]. Here and here-
after, we set sASOC as α = 0.1. Details of the tight-binding
model are given in Appendix A. We study the pressure effect
by introducing an enhancement factor p of hopping integrals.
Hopping integrals of f -electrons and hybridization between
f and other orbitals are multiplied by p � 1, while p = 1 at
ambient pressure. To translate p into a real pressure, DFT
calculations for UTe2 under pressure are required. However,
the lattice parameters under pressure have not been reported,
and thus, we left it for a future study.

The band structure and FSs are shown in Figs. S1 and 2.
The weight of Te2 5p-, U 6d-, and U 5 f -electrons is illus-
trated by color. The band structure exhibits flat 5 f -electron
bands and one-dimensional dispersive 6d- and 5p-electron
bands, each of which contributes to the FSs. For a range of
1 � p � 3.5, the topology of FS is consistent with ARPES
[41] and DFT + U calculations with intermediate U [27].
Conducting directions of 5p- and 6d-electrons are orthogo-
nal, and quasi-2D rectangular FSs are formed. Owing to the
contribution of itinerant f -electrons the hole FS is bent and
encloses (0, 0, 2π ) (X -point) as shown in Figs. 2(b) and 2(d).
For p = 1.0 [Fig. 2(b)], a large f -orbital component is found
near the X -point. When the factor p is increased by pressure,
the orbital character on FSs is largely changed, although FSs
are only slightly changed. For p = 3.0 [Fig. 2(d)] we see a
sizable f -electron component in a broad region on FSs. The
change in orbital character results in a peculiar magnetic and
superconducting phase diagram as we show below.

III. MAGNETIC FLUCTUATION

We apply the random phase approximation for the
Coulomb interaction U of f -electrons. Diagonal magnetic
susceptibilities, χa, χb, and χc, are calculated from the
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FIG. 3. Magnetic susceptibility χa(q, 0) (a–f), χb(q, 0) (g–l), and χc(q, 0) (m–r). Momentum dependence on the qx-qy plane at qz = 0 is
drawn for p = 1.0, 2.0, and 3.0 with T = 0.003. We set U = 1.5 for p = 1.0 and U = 1.9 for others.

susceptibility matrix of f -electrons (see Appendix B), and the
momentum dependence is shown in Fig. 3. For p = 1.0, we
see a ferromagnetic fluctuation with Ising anisotropy along
the a-axis [Figs. 3(a), 3(g), and 3(m)]; χa � 10 at maximum
is much larger than χb � 2.5 and χc � 2.25. This is in good
agreement with experiments at ambient pressure [1,5]. On
the other hand, with increasing p, ferromagnetic fluctuation
gradually changes to the antiferromagnetic fluctuation. This
result implies that the magnetically ordered phase observed
under pressure [20,23–25] is an antiferromagnetic phase. The
magnetic anisotropy at the ordering vector is reduced by pres-
sure; for instance, (χa, χb, χc) � (5, 4, 4.5) at q = (π, 0, 0)
for p = 3.0.

Growth of antiferromagnetic fluctuation originates from
the change in orbital characters. Although the FSs show
nesting property irrespective of the factor p, the f -electron

FIG. 4. (a) Eigenvalues λ of the Eliashberg equation for various
irreducible representations of the D2h point group. The parameter
p > 1 indicates applied pressure. We set T = 0.003. The Coulomb
interaction U is set so that the Stoner factor is αsf = 0.98. (b) Transi-
tion temperatures of the Au, B3u, and Ag superconducting states with
a fixed U = 1.9.

component is negligible on the nested part of FSs for p =
1.0. Therefore, f -electrons around the X -point enhance the
ferromagnetic fluctuation rather than antiferromagnetic one.
However, for p = 3.0 the f -electron component is sizable on
the nested FSs, and therefore, antiferromagnetic fluctuation
develops around a nesting vector q = (π, 0, 0). The q-vector
corresponds to antiparallel alignment of the magnetic moment
along Uranium chains. As for an intra-unit-cell structure, par-
allel alignment of magnetic moment between sublattices is
favored. This means that, from the view point of augmented
cluster multipole [49,50], the obtained magnetic fluctuation
is classified as even-parity magnetic dipole fluctuation, and
the odd-parity magnetic fluctuation [51] is not pronounced in
UTe2.

IV. SUPERCONDUCTIVITY

Now we clarify superconducting instability by solving the
linearized Eliashberg equation (see Appendix C). In the D2h

point group symmetry, the order parameter of superconductiv-
ity is classified as one of the eight irreducible representations.
In general, the Eliashberg equation is separable for each rep-
resentation, and thus we obtain eight eigenvalues for each
parameter set. Superconductivity occurs when the maximum

TABLE I. Maximum magnitudes of intrasublattice components
of gap function dμ(k) obtained from the linearlized Eliashberg equa-
tion. The B3u, Au, and Ag states for p = 1.0, 2.0, and 3.0 are shown.
Predominant components are labeled with a star �.

d0 dx dy dz

B3u 1.8 × 10−5 2.5 × 10−6 1.0 × 10−4 �4.3 × 10−3

Au 1.0 × 10−3 4.0 × 10−4 �1.7 × 10−3 3.8 × 10−5

Ag
�1.1 × 10−3 2.5 × 10−5 1.0 × 10−4 7.4 × 10−9
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TABLE II. Basis functions for the B3u, Au, and Ag representations.

d0 dx dy dz

B3u δkxkz αkxkykzx̂ βkzŷ γ kyẑ
Au δkxky αkxx̂ βkyŷ γ kzẑ
Ag δk2

x αkyx̂ βkxŷ γ kxkykzẑ

eigenvalue is unity. Thus, we can determine what is the most
stable superconducting state by comparing the eigenvalues.

The p dependence of eigenvalues is shown in Fig. 4(a). We
see that the B3u pairing state is most stable at p = 1.0, indicat-
ing that the spin-triplet superconductivity is stabilized by the
ferromagnetic fluctuation with Ising anisotropy. For p = 1.5
and 2.0, another spin-triplet pairing state with Au symmetry
is stabilized by incommensurate magnetic fluctuations. The
B3u and Au states are almost degenerate, and a more realistic
model taking into account j = 5/2 multiplet of f -electrons
should be analyzed to compare the two states. Both B3u and
Au states are monotonically suppressed by increasing p, and
finally the Ag state becomes predominant. Thus, our results
not only predict the odd-parity spin-triplet superconductivity
of UTe2 at ambient pressure but also indicate the spin-singlet
superconductivity under pressure. The latter is natural since
the antiferromagnetic fluctuation usually stabilizes a d-wave
or s-wave superconductivity, as widely believed for cuprates
[52] and iron-based superconductors [53].

We also evaluate the critical temperature of superconduct-
ing instability based on the criterion λ = 1 and show the
results in Fig. 4(b). The B3u, Au, and Ag states may be stabi-
lized below Tc. The pairing symmetry for each p is consistent
with Fig. 4(a). The transition temperature is highest at p = 1,
in contrast to the experiment. We need further study for
quantifying the transition temperature and the pressure de-
pendence, for instance, by conducting DFT calculations under
pressure.

To clarify the B3u, Au, and Ag states, we here discuss the or-
der parameter of superconductivity. In a standard manner, it is

described as 
(k, iπT ) = ∑
μ dμ(k)[σμiσ y]ss′ , with σμ the

Pauli matrix for spin degree of freedom. Although we omitted
indices of sublattices for simplicity, intrasublattice and inter-
sublattice components have similar structures (see Appendix
C). Thus, we show the maximum magnitude of intrasublat-
tice components dμ(k) in whole momentum space (Table I).
To be precise, all the states possess mixed spin-singlet and
spin-triplet components since a sublattice-dependent parity
mixing generally occurs in locally noncentrosymmetric sys-
tems [46,47]. What kind of the parity mixing occurs is
understood from the compatibility relation, and the basis func-
tions are given in Table II. According to Tables I and II,
the predominant component for the B3u state is dz(k) � γ ky,
while for the Au state it is dy(k) � βky. Because these states
are almost degenerate, the d-vector can rotate in the crystal-
lographic b-c plane. Thus, the Knight shift would be almost
unchanged irrespective of the field direction, consistent with
experimental results [13,54]. For the Ag state, a spin-singlet
s-wave component with sign change, d0(k) � δ cos kx, is pre-
dominant. The subdominant spin-triplet component, dy(k) �
βkx, is considerably small.

Transforming to the band basis, we obtain superconducting
gap structures illustrated in Fig. 5. As we considered the
Coulomb interaction of f -electrons for superconductivity, the
gap amplitudes are large on a part of FSs having a sizable
contribution from f -electrons. Therefore, the gap structure
is highly anisotropic in all the superconducting states. In
accordance with group theories [27,55], we see symmetry-
protected point nodes along the kx axis in the B3u state, while
the line node is absent in agreement with Blount’s theorem.
However, the gap minima, where the gap amplitude is not
exactly zero, appears as a pseudoline node on the ky = 0 plane
[Fig. 5(b)] because |dy(k)| � |dz(k)|. Similarly, the Au state
shows a pseudoline node on ky = 0, while it is a full-gap state
in an exact sense. It needs further investigations for the pseu-
doline node in comparison with experiments proposing point
nodal gap [1,17] because the gap structure is significantly
band dependent.

FIG. 5. Superconducting gap structures on the electron and hole FSs obtained by the Eliashberg equation for T = 0.003. The B3u (a–d),
Au (e–h), and Ag (i–l) states stabilized at p = 1.0, 2.0, and 3.0 are shown. Since we adopt the primitive unit cell with folded BZ, the FSs are
folded from those in the original BZ (Fig. 2).
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FIG. 6. Proposed phase diagrams (a) in the P-T plane and (b) in
the T -Ha plane.

V. MULTIPLE SUPERCONDUCTING PHASES

Based on the superconducting instability evaluated in
Fig. 4(b), we illustrate our interpretation of the experimentally
observed multiple superconducting phases in UTe2 [20–25].
In Fig. 6(a) we draw a superconducting phase transition from
the odd-parity B3u or Au state to the even-parity Ag state under
the applied pressure, coinciding with crossover in magnetic
fluctuations from ferromagnetic to antiferromagnetic. When
the transition temperatures of the two states are close to each
other, the coexistent phase is naturally expected, that is, either
the B3u(Au) + Ag or B3u(Au) + iAg state with mixed even/odd
parity, and the space inversion symmetry is spontaneously
broken. The time-reversal symmetry is preserved in the for-
mer, while the latter is PT symmetric.

We also propose superconducting phases in the magnetic
field H ‖ a under pressure [Fig. 6(b)]. In this magnetic field,
B3u and Au representations are reduced to the same repre-
sentation, and therefore, the Au + B3u state is possible. This
state almost avoids the paramagnetic depairing effect because
the equal spin pairing along the a-axis is dominant. Thus,
the upper critical field is naturally higher than that of the
spin-singlet A1g state, and the superconducting phase diagram
with a tricritical point is expected. Indeed, multiple supercon-
ducting phases as in Fig. 6(b) have been reported in recent
experiments [23,24].

VI. CONCLUSION

In this paper, we constructed a 24-band periodic Anderson
model as a reasonably realistic and easy-handled model for
UTe2. The model reveals not only the ferromagnetic fluctu-
ation with the easy a-axis at ambient pressure but also the

antiferromagnetic fluctuation under pressure. Accordingly,
spin-triplet superconductivity of either B3u or Au represen-
tation is stabilized by the ferromagnetic fluctuation, while
spin-singlet superconductivity of Ag representation is favored
by the antiferromagnetic fluctuation.

These results enable us to draw phase diagrams in reason-
able agreement with experiments. As a consequence, a mixed
even-/odd-parity superconducting state with spontaneous in-
version symmetry breaking is predicted. Such a phase was
referred to in a review article [28] forty years ago published
with the comment “there seems at present no experimental
evidence.” Even at present, spontaneous ordering of mixed
even-/odd-parity superconductivity has not been reported.
UTe2 may be the first material. Exploration of exotic super-
conducting properties will be the next issue.
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APPENDIX A: TIGHT-BINDING MODEL

A periodic Anderson model is given by H = Ht + HI,
where Ht is the tight-binding model for a noninteracting
part and HI represents the on-site Coulomb interaction of
f -electrons. Here, we introduce details of the tight-binding
model for UTe2,

Ht = H0 + HASOC, (A1)

which contains a kinetic energy term H0 and sublattice-
dependent antisymmetric spin-orbit coupling (sASOC) term
HASOC.

The Hamiltonian of the kinetic energy term is given by

H0 =
∑
k,s

â†
ks

[
HU(k) HU-Te(k)
H.c. HTe(k)

]
âks, (A2)

where

HU(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
f
AA(k) ε

f d
AA(k) ε

f
AB(k) ε

f d
AB(k) ε

f
AD(k) ε

f d
AD(k)

εd
AA(k) ε

f d
AB(k) εd

AB(k) ε
f d
AD(k) εd

AD(k)

ε
f
BB(k) ε

f d
BB(k) ε

f
BC(k) ε

f d
BC(k)

εd
BB(k) ε

f d
BC(k) εd

BC(k)

ε
f
CC(k) ε

f d
CC(k) ε

f
CD(k) ε

f d
CD(k)

εd
CC(k) ε

f d
CD(k) εd

CD(k)

H.c. ε
f
DD(k) ε

f d
DD(k)

εd
DD(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A3)
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TABLE III. Tight-binding parameters for the f -d-p Hamiltonian.

f d p f d f p d p

Onsite ε
f
0 0.33 εd

0 0.7 ε
p
0 −2.2

Nearest t f
1 −0.1 t d

1 −0.6 t p
1 1.65 t f d

1 −0.05 t f p 0.125 t d p −0.3

2nd Nearest t f
2 −0.075 t d

2 −0.3 t f d
2 −0.1

3rd Nearest t f
3 0.025 t d

3 0.1 t f d
3 −0.025

HU-Te(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
f p
AE(k) ε

f p
AF(k)

ε
d p
AE(k) ε

d p
AF(k)

ε
f p
BE(k) ε

f p
BF(k)

ε
d p
BE(k) ε

d p
BF(k)

ε
f p
CG(k) ε

f p
CH(k)

ε
d p
CG(k) ε

d p
CH(k)

ε
f p
DG(k) ε

f p
DH(k)

ε
d p
DG(k) ε

d p
DH(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A4)

HTe(k) =

⎡
⎢⎣

ε
p
0 ε

p
EF(k)

H.c. ε
p
0

ε
p
0 ε

p
GH(k)

H.c. ε
p
0

⎤
⎥⎦, (A5)

and

â†
ks = (

f †
kAs, d†

kAs, f †
kBs, d†

kBs, f †
kCs, d†

kCs, f †
kDs, d†

kDs,

p†
kEs, p†

kFs, p†
kGs, p†

kHs

)
(A6)

with the primitive unit cell {ax̂, bŷ, cẑ}. The annihilation
(creation) operators of U 5 f , U 6d , and Te2 5p electrons
with pseudospin s on a sublattice m = (A, B, C, D) and m̄ =
(E, F, G, H) are represented by f (†)

kms, d (†)
kms, and p(†)

km̄s, respec-
tively. The single-electron kinetic energy is described by
taking into account the hopping integrals up to the third order
shown in Fig. 1 of the main text,

ε
f (d )( f d )
AA (k) = ε

f (d )( f d )
BB (k) = ε

f (d )( f d )
CC (k) = ε

f (d )( f d )
DD (k) (A7)

= ε
f (d )
0 + t f (d )( f d )

2 (eikxa + e−ikxa), (A8)

ε
f (d )( f d )
AB (k) = t f (d )( f d )

1 eikzc, (A9)

ε
f (d )( f d )
CD (k) = t f (d )( f d )

1 ,

ε
f (d )( f d )
AD (k) = ε

f (d )( f d )
BC (k)

= t f (d )( f d )
3 (1 + eikxa + eikyb + eikxa+ikyb), (A10)

ε
f p(d p)
AE (k) = t f p(d p)(1 + eikxa)eikyb, (A11)

ε
f p(d p)
AF (k) = −t f p(d p)(1 + eikxa), (A12)

ε
f p(d p)
BE (k) = −t f p(d p)(1 + eikxa)eikybe−ikzc, (A13)

FIG. 7. (Upper panel) Band structure of the f -d-p tight-binding model described in Eq. (A1). (Lower panel) Band structure obtained from
a DFT+U calculation for U = 1.5 eV.
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FIG. 8. Fermi surfaces obtained from a DFT+U calculation for
U = 1.5 eV.

ε
f p(d p)
BF (k) = t f p(d p)(1 + eikxa)e−ikzc, (A14)

ε
f p(d p)
CG (k) = ε

f p(d p)
DH (k) = t f p(d p)(1 + e−ikxa), (A15)

ε
f p(d p)
CH (k) = ε

f p(d p)
DG (k) = −t f p(d p)(1 + e−ikxa), (A16)

ε
p
EF(k) = t p(1 + e−ikyb), (A17)

ε
p
GH(k) = t p(1 + eikyb). (A18)

The tight-binding parameters in Table III reproduce the Fermi
surfaces (FSs) observed in an ARPES experiment [41] and
DFT+U calculations [27]. As shown in the main text, the
model for this parameter set shows enhanced ferromagnetic
fluctuation with the easy a-axis in agreement with experi-
ments at ambient pressure [1,5]. To investigate effects of pres-
sure, we introduce an enhancement factor p for the hopping
integrals concerned with the f electrons. The correspond-
ing tight-binding parameters {t f

1 , t f
2 , t f

3 , t f d
1 , t f d

2 , t f d
3 , t f p} are

multiplied by p with 1 < p < 3.5, while p = 1 at ambient
pressure.

The sASOC term is written as

HASOC =(α1 sin kyσ̂x − α2 sin kxσ̂y) ⊗ τ̂ (intra)
z ⊗ τ̂

(inter)
0 ,

(A19)

where σ̂i, τ̂
(intra)
i , and τ̂

(inter)
i are the Pauli matrices representing

the spin, intra-ladder sublattice, and inter-ladder sublattice
degrees of freedom, respectively. We set α1 = α2 = 0.1 for
simplicity.

In Fig. 7 we compare the band structure obtained from the
tight-binding Hamiltonian Eq. (A1) with that from a DFT+U

FIG. 9. (a) U dependence of the magnetic susceptibility,
χ xx

AA(0, 0), χ
yy
AA(0, 0), and χ zz

AA(0, 0) for p = 1, α = 0.1, and T =
0.003. (b) The same plot for the intersublattice susceptibility,
χ

xx(yy)(zz)
AB (0, 0).

TABLE IV. Parameters of the Coulomb interaction U used in
drawing Fig. 4(a).

p 1.0 1.5 2.0 2.5 3.0 3.5
U 1.52 1.92 2.14 2.12 2.05 1.99

calculation with an intermediate Coulomb interaction U =
1.5 eV. Although the number of bands is different because
we neglect orbital degeneracy in the tight-binding model, flat
U 5 f band and dispersive U 6d and Te 5p bands are reason-
ably described. In particular, the low-energy band structure
is appropriately reproduced. The FSs (see Fig. 2 in the main
text and Fig. 8) as well as the weight of U 5 f , U 6d and Te
5p electrons on the FSs are similar between the tight-binding
model and the DFT+U calculation.

APPENDIX B: MAGNETIC SUSCEPTIBILITY

The susceptibility matrix in the f -orbital subspace is cal-
culated by the random phase approximation (RPA) as

χ̂ (q) = χ̂0(q)[1̂ − �̂0χ̂0(q)]−1, (B1)

where the irreducible susceptibility is defined as χ̂0(q) =
−(T/N )

∑
k Ĝ(k + q)Ĝ(k). Ĝ(k) and �̂0 are the f -orbital

Green’s function and the bare irreducible vertex, respectively.
Here we introduce site-resolved magnetic susceptibilities

χ
μν

mm′ (q) =
∑

s1s2s3s4

σμ
s1s2

χms1ms2,m′s3m′s4 (q)σ ν
s4s3

, (B2)

for μ, ν = x, y, z. We calculate the magnetic susceptibility on
Uranium atoms by

χa(b)(c)(q) = 1/NU

∑
m

χ xx(yy)(zz)
mm (q), (B3)

where NU represents the number of Uranium atoms. Figure 9
shows the U dependence of the magnetic susceptibility. The
magnetic susceptibility and its anisotropy grow with U be-
cause the susceptibility is divergent at the magnetic critical
point. The larger U (lower T ) enhances the anisotropy leading
to the spin-triplet B3u and Au superconductivity.

TABLE V. Maximum magnitudes of intersublattice (A-B sub-
lattice) components of the gap function dμ(k) obtained from the
linearlized Eliashberg equation. The B3u, Au, and Ag states for p =
1.0, 2.0, and 3.0 are shown. Predominant components are labeled
with a star �.

d0 dx dy dz

B3u × 1.5 × 10−4 1.6 × 10−3 �4.9 × 10−3

Au × 1.6 × 10−4 �1.6 × 10−3 8.7 × 10−4

Ag
�8.9 × 10−4 × × ×
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JUN ISHIZUKA AND YOUICHI YANASE PHYSICAL REVIEW B 103, 094504 (2021)

APPENDIX C: ELIASHBERG EQUATION AND
GAP FUNCTION

Superconductivity is investigated by solving the linearized
Eliashberg equation formulated as

λ
ξξ ′ (k) = − T

N

∑
k′

∑
ξ1ξ2ξ3ξ4

Vξξ1,ξ2ξ ′ (k − k′)

× Gξ3ξ1 (−k′)
ξ3ξ4 (k′)Gξ4ξ2 (k′), (C1)

with ξ = (m, s). The effective pairing interaction is described
by the RPA susceptibility as

V̂ (q) = −�̂0χ̂ (q)�̂0 − �̂0. (C2)

Solving the Eliashberg equation, we obtain an eigenvalue λ

and a gap function 
ξξ ′ (k) for each irreducible representation.
Eigenvalues at a fixed temperature T = 0.003 are shown in
Fig. 4(a) in the main text, where the Coulomb interaction is
set as Table IV so that sizable eigenvalues are obtained. A
similar result is obtained for a fixed U . We actually show
the p-dependence of transition temperatures for a fixed U in
Fig. 4(b). The maximum magnitudes of each spin component
in the intrasublattice gap function are shown in the main text
(Table I), while those of the intersublattice gap function are
shown in Table V.
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