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Electron-phonon interaction plays an important role in metals and can lead to superconductivity and other
instabilities. Previous theoretical studies on superconductivity are largely based on the Migdal-Eliashberg theory,
which neglects all the vertex corrections to electron-phonon coupling and breaks down in many unconventional
superconductors. Here, we go beyond the Migdal-Eliashberg approximation and develop a nonperturbative
Dyson-Schwinger equation approach to deal with the superconducting transition. Remarkably, we take into
account all the vertex corrections by solving two coupled Ward-Takahashi identities derived from two global
U(1) symmetries and rigorously prove that the fully renormalized electron propagator satisfies a self-closed
integral equation that is directly amenable to numerical computations. Our approach works equally well in the
weak and strong coupling regimes and provides an efficient method to determine superconducting Tc and other
quantities. As an application, our approach is used to investigate the high-Tc superconductivity in one-unit-cell
FeSe/SrTiO3.
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I. INTRODUCTION

In crystalline solids, atoms are arranged in a highly ordered
pattern, forming periodic lattices. Phonons, the quanta of col-
lective vibrating modes of atoms, interact with the mobile
electrons of metals. The electron-phonon interaction (EPI)
plays a major role in all metals [1–3] and governs many
thermodynamic and transport properties. Under proper condi-
tions, EPI may induce a number of possible phase-transition
instabilities, such as superconductivity and charge density
wave (CDW). Metals cannot be thoroughly understood with-
out detailed knowledge of EPI. Finding a reliable method to
efficiently treat the EPI-induced quantum many-body effects
is one of the greatest challenges in condensed-matter physics.

A remarkable consequence of EPI is the realization of
superconductivity. Comparing to CDW and other phases, su-
perconductivity is more universal, of broader interest, and
also has much more technical and industrial applications. We
believe that superconductivity provides an ideal framework
to develop new nonperturbative quantum many-body meth-
ods. According to Bardeen-Cooper-Schrieffer (BCS) theory
[1], a sufficiently strong EPI triggers Cooper pairing (see
Fig. 1 for a schematic illustration) and then leads to super-
conductivity. It has been established that EPI is responsible
for the onset of superconductivity in a large number of con-
ventional [1–8] and unconventional [9–14] superconductors.
To understand the properties of these superconductors, it is
important to find a quantitatively reliable tool to accurately
compute the superconducting transition temperature Tc and
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other relevant quantities. Without such a tool, it would be
hard to predict and apply realistic superconducting materi-
als. While the BCS theory identifies the correct microscopic
mechanism of superconductivity, it is a mean-field theory and
cannot compute the accurate value of Tc in most superconduc-
tors. The oversimplified BCS theory can be improved by the
Migdal-Eliashberg (ME) theory [4,5], which incorporates the
retardation of phonon propagation, electron mass renormal-
ization, and Cooper pairing in a self-consistent manner.

In the past sixty years, the ME theory has been extensively
adopted to investigate EPI-induced effects in numerous super-
conductors [1–3,6–8], and is widely regarded as the standard
theory of conventional superconductivity. Specifically, it plays
an overwhelmingly dominant role [6] in the computation of
superconducting Tc. The reliability of ME theory depends
heavily on the validity of Migdal theorem [4], which states
that all the quantum corrections to the EPI vertex function
�v(q, p) are suppressed by the small factor λ(ωD/EF ), where
λ is a dimensionless coupling constant, ωD is the phonon
frequency, and EF is the Fermi energy, and therefore can
be completely ignored if λ(ωD/EF ) � 1. The ME results
are expected to be reliable as long as the ratio ωD/EF is
sufficiently small and/or the EPI is sufficiently weak. How-
ever, it has long been recognized that the Migdal theorem
is not always valid [15–17]. There exist several classes of
superconductors in which λ(ωD/EF ) is not small. Notable
examples include low carrier-density superconductors such as
SrTiO3 [18,19] and Moiré superconductor [14,20], fulleride
superconductors [21,22], cuprate superconductors [7,23], and
one-unit-cell (1UC) FeSe/SrTiO3 system [9–13]. The ME re-
sults become especially unreliable when EPI gets strong. This
fact has already been discussed [15,16,21,22] for decades, and
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FIG. 1. Schematic illustration of electron-phonon interaction.
A mobile electron attracts another mobile electron by exchanging
phonons. Two electrons with opposite momenta and spin directions
are combined to form a Cooper pair, which is a composite boson.
Superconductivity is realized as Cooper pairs condensate at low
temperatures.

recently was reconfirmed by a determinant quantum Monte
Carlo (DQMC) study [17]. To describe EPI systems in which
the Migdal theorem breaks down, it is necessary to develop
a more powerful approach that can take into account all the
potentially important contributions omitted in the ME theory
and meanwhile is valid in both the weak and strong regimes
of EPI.

Dyson-Schwinger (DS) equations refer to an infinite num-
ber of self-consistently coupled integral equations of n-point
(n � 2) correlation functions. All the interaction-induced ef-
fects are embodied in these equations. The DS equation
approach treats the interacting electrons and phonons on an
equal footing at the outset, and is much more generic than ME
formalism. Unfortunately, the full set of DS equations are usu-
ally not closed. This seriously hinders their applicability. To
make the DS equations closed, one might invoke a hard trun-
cation (e.g., choosing some special Feynman diagrams), or
introduce an Ansatz for the vertex function �v(q, p). However,
such treatments are actually based on unjustified assumptions
and cannot be trusted.

In this paper, we will go beyond the traditional ME theory
and develop an efficient DS equation approach to accurately
treat EPI. In particular, we prove that the DS integral equa-
tion of the fully renormalized electron propagator, denoted by
G(p), is indeed self-closed. It is well known that, the main dif-
ficulty in acquiring a more general theoretical description than
the ME one is the extreme complexity of the full vertex func-
tion �v(q, p). The full �v(q, p) contains an infinite number of
Feynman diagrams. Calculating all of such diagrams seems to
be a mission impossible. Actually, it is already very difficult to
compute the simplest one-loop diagram of �v(q, p), let alone
those multiloop diagrams. Remarkably, in this paper, we find
it possible to take all the EPI vertex corrections into account
without ignoring any Feynman diagram. This is achieved by
properly utilizing several symmetry-imposed constraints on
two- and three-point correlation functions. In particular, we
derive two coupled Ward-Takahashi identities (WTIs) from
the global U(1) symmetries of the system and then incorporate
all the vertex corrections after solving these two WTIs. Based
on these results, we can prove that the DS equation of G(p) is
decoupled entirely from the DS equations of the full phonon

propagator F (q) and other correlation functions. After solving
the self-closed integral equation of G(p), one can calculate
the superconducting Tc and other physical quantities with
high precision. Our approach is strictly nonperturbative and
does not involve any small expansion parameter. Thus this
approach is well applicable in the strong EPI regime.

As an application of our approach, we will investigate the
high-Tc superconductivity induced by the interfacial optical
phonons (IOPs) in 1UC FeSe/SrTiO3 system, and examine
how the value of Tc is affected by EPI vertex corrections. It is
found that neglecting the vertex corrections may significantly
underestimate Tc. This result would help ascertain whether the
coupling of electrons in FeSe film to IOPs by itself is able to
produce the observed high Tc.

The rest of the paper is organized as follows. We define the
Lagrangian density of EPI systems in Sec. II and present and
analyze three coupled DS integral equations in Sec. III. We
make a detailed symmetry analysis and derive two coupled
WTIs in Sec. IV. We obtain an exact relation between the
EPI and current vertex functions within the framework of
functional integral in Sec. V. Using these results, we derive
the self-closed equations of mass renormalization function
and pairing function in Sec. VI. We then apply the DS equa-
tion approach to compute the superconducting Tc based on a
simple model of 1UC FeSe/SrTiO3 in Sec. VII. We collect
some basic rules of the functional integral in Appendix A and
show how to derive the DS equations of electron and phonon
propagators in Appendix B. We present the linearized gap
equations in Appendix C, and demonstrate how the iterative
method works in Appendix D.

II. THE MODEL

In order to deal with the formation of Cooper pairs, here
we define the standard Nambu spinor [24]

�†(p) = (ψ†
↑(p), ψ↓(−p)). (1)

The d-dimensional Lagrangian density [15,24] is

L = �†(p)(εσ0 − ξpσ3)�(p) + 1
2φ†(q)F−1

0 (q)φ(q)

− gφ(q)�†(p + q)σ3�(p), (2)

where ξp is electron energy and g is coupling constant for
EPI. Here, σ1,2,3 are the standard Pauli matrices, and σ0 de-
notes the unit 2 × 2 matrix. Shorthand notations p ≡ (ε, p),
q ≡ (ω, q), and z ≡ (t, z) will be used throughout the paper.
The phonon field φ(q) satisfies the relation φ†(q) = φ(−q).
For simplicity, we first consider the simplest case and assume
that ξp = p2

2m − μ with μ being the chemical potential. The
free phonon propagator F0(q) can be identified as the Fourier
transformed expression of D−1, where D = −(∂2

t + �q) is
the dynamical operator for phonon field φ that satisfies the
equation Dφ(t, q) = 0 in the noninteracting limit. Both the
electron dispersion ξp and the phonon dispersion �q are
strongly material dependent, and can be determined by car-
rying out first-principle calculations. We emphasize that our
approach is independent of the concrete expressions of ξp
and �q, and even independent of whether the scalar field
φ(q) represents phonon or other types of boson. Later we
will discuss how to generalize our results to realistic metals
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where ξp exhibits a more complicated p dependence than

ξp = p2

2m − μ.
To illustrate how our approach works, let us first define

several quantities. In quantum many-body theory, one studies
various n-point correlation functions

〈O1O2 . . .On〉, (3)

where O’s are Heisenberg operators and 〈. . . 〉 stands for the
manipulation of taking the expectation value (more precisely,
the statistical average over all the possible field configura-
tions). The theoretical descriptions of quantum many-body
effects are based on three elementary quantities: the full elec-
tron propagator G(p) = −i〈��†〉, the full phonon propagator
F (q) = −i〈φφ†〉, and the full EPI vertex function �v(q, p)
that is defined by the relation

F (q)G(p + q)�v(q, p)G(p) = 〈φ��†〉. (4)

These three quantities embody the quantum corrections to the
free electron term, free phonon term, and EPI-coupling term
of the Lagrangian density (2), respectively. In the noninteract-
ing limit, G(p) is reduced to the free electron propagator

G0(p) = 1

εσ0 − ξpσ3
, (5)

F (q) is reduced to the free phonon propagator

F0(q) = 2�q

ω2 − �2
q
, (6)

and the EPI vertex function is reduced to its bare expression

�v(q, p) → gσ3. (7)

One of the key challenges of quantum many-body theory is to
determine the full propagators G(p) and F (q) on the basis of
free propagators G0(p) and F0(q).

III. DYSON-SCHWINGER EQUATIONS

This section is devoted to the derivation of DS equations of
G(p), F (q), and �v(q, p). The functional integral formalism
of quantum field theory [25] will be adopted. By using this
formalism, the DS equations and WTIs can be derived in
a compact and elegant manner. To generate various n-point
correlation functions, we introduce three external sources η†,
η, and J for field operators �, �†, and φ, respectively, and
then write the total Lagrangian density LT in d-dimensional
real space as

LT = �†(t, z)(i∂tσ0 − ξ∂σ3)�(t, z) + 1
2φ†(t, z)Dzφ(t, z)

− gφ(t, z)�†(t, z)σ3�(t, z) + Jφ + �†η + η†�, (8)

where

Dz = −∂2
t + �2

∂z

2�∂z

. (9)

Here we use ξ∂ and �∂z to denote the real-space correspon-
dence of ξp and �q, respectively. The partition function can
be formally written as

Z (η†, η, J ) =
∫

D�D�†Dφei
∫
LT(�,�†,φ;η†,η,J ). (10)

According to the calculations presented in Appendix B, G(p),
F (q), and �v(q, p) satisfy the following DS integral equations

G−1(p) = G−1
0 (p) − ig

∫
q
σ3G(p + q)F (q)�v(q, p),

(11)

F−1(q) = F−1
0 (q) + ig

∫
p

Tr[σ3G(p + q)�v(q, p)G(p)],

(12)

�v(q, p) = gσ3 −
∫

p′
G(p′ + q)�v(q, p′)G(p′)K4(p, p′, q).

(13)

The integration over d-dimensional energy-momenta is
henceforth abbreviated as

∫
q ≡ dd q

(2π )d . K4(p, p′, q) is the kernel
function defined via 4-point correlation function GGK4GG =
〈��†��†〉. These three DS equations are formally exact and
contain all the quantum many-body effects caused by EPI.
However, they appear to be too complicated to tackle. It turns
out that they are not closed because K4(p, p′, q) satisfies its
own DS integral equation that is in turn coupled to the DS
equations of five-, six-, and higher-point correlation functions.
Indeed, there is an infinite hierarchy of coupled DS equations,
which can never be really solved.

The conventional ME theory assumes, based on the Migdal
theorem, that

�v(q, p) → gσ3,

which amounts to discarding all the n-point correlation func-
tions with n > 2. In actual applications, one usually further
assumes that

F (q) → F0(q).

Then there is only one single DS equation of G(p), which is
numerically solvable. This is exactly how conventional ME
theory works. Taking �v(q, p) = gσ3 is reliable when the pa-
rameter λ(ωD/EF ) is small enough. However, as pointed out
in Sec. I, this condition is not satisfied in many unconven-
tional superconductors. To investigate systems in which the
ME theory becomes unreliable, one needs to carefully include
higher-order corrections to the vertex function �v(q, p) and
also those to the phonon propagator F (q). This is absolutely
difficult. Remember that �v(q, p) contains an infinite number
of Feynman diagrams. It is impossible to compute all the
diagrams.

In the past several decades, numerous theorists have pro-
posed various methods to investigate the impact of vertex
corrections on the value of superconducting Tc and other
physical quantities. It is fair to say that all previous attempts
are unsuccessful. Generically, previous studies incorporate the
vertex corrections by employing two sorts of strategies:

(1) Compute a small number of special diagrams of
�v(q, p). This strategy is apparently not justified since the
vertex function receives contributions from an infinite number
of Feynman diagrams. In fact, this method is ad hoc if one
could not prove that the chosen diagrams are overwhelmingly
more important than the omitted ones.
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(2) Introduce some kind of ansatz for �v(q, p). The main
drawback of this method is that there is no reliable guiding
principle to ensure the validity of the ansatz.

In this paper, we will investigate the impact of EPI vertex
corrections by employing an entirely different method. We
are not intended to compute any Feynman diagram nor to
introduce any ansatz. Motivated by previous studies on the
nonperturbative effects of quantum gauge theories [26–28],
we will perform a generic quantum-field-theoretic analysis,
and manage to find out a number of intrinsic relations between
different correlation functions based on careful symmetry
considerations. We will demonstrate that the symmetry con-
straints are powerful enough to allow for an unambiguous
determination of the full vertex function �v(q, p).

IV. WARD-TAKAHASHI IDENTITIES

The aim of this section is to derive two exact identities that
connect the full electron propagator G(p) to a special current
vertex function.

Consider the following two global U(1) transformations

� → eiασ3�, (14)

� → eiασ0�. (15)

It is easy to check the action S = ∫
L(z) ≡ ∫

dd zL(z) is
invariant under these two transformations. Noether’s theo-
rem dictates that the symmetry given by Eq. (14) induces a
conserved current jc

μ ≡ ( jc
t , jc), whose time and spatial com-

ponents are given by [24]

jc
t (z) = �†(z)σ3�(z), (16)

jc(z) = i

2m
[(∇�†(z))σ0�(z) − �†(z)σ0(∇�(z))]. (17)

In the absence of external sources, this current is conserved,
namely,

∂μ jc
μ = 0,

corresponding to the conservation of electric charge. The
symmetry Eq. (15) generates another conserved current js

μ ≡
( js

t , js), whose time and spatial components are given by [24]

js
t (z) = �†(z)σ0�(z), (18)

js(z) = i

2m
[(∇�†(z))σ3�(z) − �†(z)σ3(∇�(z))]. (19)

In the absence of external sources, this current is also con-
served, namely,

∂μ js
μ = 0,

corresponding to the conservation of spin. The time compo-
nents of charge and spin currents, i.e., jc

t (z) = �†(z)σ3�(z)
and js

t (z) = �†(z)σ0�(z), can be used to define two current
vertex functions �t and �s as follows:

〈�†(z)σ3�(z)�(z1)�†(z2)〉
= −

∫
dz3dz4G(z1 − z3)�t (z, z3, z4)G(z4 − z2), (20)

〈�†(z)σ0�(z)�(z1)�†(z2)〉
= −

∫
dz3dz4G(z1 − z3)�s(z, z3, z4)G(z4 − z2). (21)

The minus sign appearing on the right-hand side (r.h.s.) comes
from i2 (recall that 〈��†〉 = iG). The propagator G(z1, z3)
depends only on the difference z1 − z3 if the system is transla-
tionally invariant. The Fourier transformation of �t,s(z, z3, z4)
is defined [15,27,28] as

�t,s(z, z3, z4) ≡ �t,s(z3 − z, z − z4)

=
∫

q,p
e−i(p+q)(z3−z)e−ip(z−z4 )�t,s(q, p). (22)

The current vertex functions �t,s are defined through con-
served currents and satisfy some WTIs together with the
full electron propagator. Remarkably, �t would be entirely
determined and purely expressed in terms of full electron
propagator if one could find a sufficient number of WTIs.
Later we will show that two coupled WTIs suffice to deter-
mine �t,s in our case.

The partition function Z integrates over all possible field
configurations. Therefore an infinitesimal variation of spinor
� should leave Z unchanged. When � undergoes a generic
transformation � → eiασm� where σm might be σ3 or σ0, the
action S[�,�†, φ; η†, η, J] satisfies the following equation:

0 =
〈

δS

iδα

〉
=

〈
− δS

δ�

δ�

iδα
+ δ�†

iδα

δS

δ�†

〉

= −
〈

δS

δ�
σm�

〉
−

〈
�†σ †

m

δS

δ�†

〉
. (23)

Substituting S[�,�†, φ; η†, η, J] into this equation leads to

〈(i∂t�
†(z))σ0σm�(z)〉 + 〈(

ξ∂z�
†(z)

)
σ3σm�(z)

〉 + 〈�†(z)σ †
mσ0(i∂t�(z))〉 − 〈

�†(z)σ †
mσ3

(
ξ∂z�(z)

)〉
= 〈gφ(z)�†(z)(σ †

mσ3 − σ3σm)�(z) − �†(z)σ †
mη(z) + η†(z)σm�(z)〉. (24)

The first term of right-hand side (r.h.s.) of this identity is induced by the EPI. It vanishes if we choose σm = σ3 and σm = σ0. We
obtain

〈i∂t (�
†(z)σ3�(z))〉 + 〈(

ξ∂z�
†(z)

)
σ0�(z) − �†(z)σ0

(
ξ∂z�(z)

)〉 = 〈−�†(z)σ3η(z) + η†(z)σ3�(z)〉 (25)

for σm = σ3, and

〈i∂t (�
†(z)σ0�(z))〉 + 〈(

ξ∂z�
†(z)

)
σ3�(z) − �†(z)σ3

(
ξ∂z�(z)

)〉 = 〈−�†(z)σ0η(z) + η†(z)σ0�(z)〉 (26)
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for σm = σ0. The left-hand side (l.h.s.) of Eq. (25) is the expectation value of the divergence of charge current jc
μ, since

〈
i∂μ jc

μ(z)
〉 = 〈

i∂t jc
t (z)

〉 + 〈i∇ · jc(z)〉

= 〈i∂t (�
†(z)σ3�(z))〉 − 1

2m
〈∇ · [(∇�†(z))σ0�(z) − �†(z)σ0(∇�(z))]〉

= 〈i∂t (�
†(z)σ3�(z))〉 + 〈(

ξ∂z�
†(z)

)
σ0�(z) − �†(z)σ0

(
ξ∂z�(z)

)〉
. (27)

The l.h.s. of Eq. (26) is the expectation value of the divergence of charge current js
μ, since

〈
i∂μ js

μ(z)
〉 = 〈

i∂t js
t (z)

〉 + 〈i∇ · js(z)〉 = 〈i∂t (�
†(z)σ0�(z))〉 − 1

2m
〈∇ · [(∇�†(z))σ3�(z) − �†(z)σ3(∇�(z))]〉

= 〈i∂t (�
†(z)σ0�(z))〉 + 〈(

ξ∂z�
†(z)

)
σ3�(z) − �†(z)σ3

(
ξ∂z�(z)

)〉
. (28)

Therefore, for charge and spin currents, we obtain the following two identities:〈
i∂μ jc

μ(z)
〉 = 〈−�†(z)σ3η(z) + η†(z)σ3�(z)〉, (29)〈

i∂μ js
μ(z)

〉 = 〈−�†(z)σ0η(z) + η†(z)σ0�(z)〉. (30)

These two identities are called Slavnov-Taylor identities (STIs). STIs play a significant role in the proof of renormalization of
quantum gauge theories [25], and also are of paramount importance in our analysis. One can regard STIs as the generalization
of Noether theorem to the case in which the system is coupled to external sources. Once external sources are removed, the above
two STIs will be reduced to 〈∂μ jc,s

μ 〉 = 0, which naturally reproduces the Noether’s theorem.
Our ultimate goal is to derive the relation between the current vertex functions �t,s defined in Eqs. (20) and (21) and the

full electron propagator. This can be achieved by calculating functional derivatives of STIs with respect to external sources.
Performing functional derivatives of Eqs. (29) and (30) with respect to η(z2) and then to η†(z1) yields

〈
i∂μ jc

μ(z)�(z1)�†(z2)
〉 = −G(z1 − z)σ3δ(z − z2) + δ(z − z1)σ3G(z − z2), (31)〈

i∂μ js
μ(z)�(z1)�†(z2)

〉 = −G(z1 − z)σ0δ(z − z2) + δ(z − z1)σ0G(z − z2). (32)

The correlation function 〈i∂μ jc
μ(z)�(z1)�†(z2)〉 can be divided into two parts, namely,

〈i∂t (�
†(z)σ3�(z))�(z1)�†(z2)〉 (33)

and 〈[(
ξ∂z�

†(z)
)
σ0�(z) − �†(z)σ0(ξ∂z�(z))

]
�(z1)�†(z2)

〉
. (34)

For the first term, the time derivative i∂t operates on the product �†(z)σ3�(z) as a whole and thus can be directly moved out of
the expectation value. Then it becomes i∂t 〈�†(z)σ3�(z)�(z1)�†(z2)〉, which can be expressed via the current vertex function
�t defined in Eq. (20). The second term needs to be treated carefully. Since ξ∂z operates solely on �†(z) or solely on �(z), it
cannot be directly moved out. Here, it is interesting to notice that, the second term is formally very similar to the current vertex
function �s defined by Eq. (21). Remember that �s is defined by 〈�†(z)σ0�(z)�(z1)�†(z2)〉, which does not contain differential
operators inside expectation value. In order to relate the second term to �s, we need to move the operator ξ∂z out of the statistical
average. This purpose can be achieved by adopting the point-splitting technique.

The point-splitting technique was first proposed by Dirac [29] and afterwards discussed by other theorists [30,31]. In an
influential paper [32], Schwinger used this technique to demonstrate how to maintain the relativistic and gauge invariance of
physical quantities in the context of quantum electrodynamics. Subsequently, this technique was employed by several theorists
[33–35] to analyze the anomalies of neutral axial-vector current. Nowadays the point-splitting technique has already been
developed into a well-established method and widely used in high-energy physics [36,37]. The basic idea of this technique
is simple: split the point at which the product of two spinor fields are located into two slightly separated points and let the two
points coincide at the end of calculations.

In our case, we will split z into two different points denoted by z and z′, perform Fourier transformations, and finally take the
limit z′ → z after all calculations are completed. The main problem with the point-splitting technique is that it could break the
Lorentz invariance and the local gauge invariance when applied to quantum gauge theories and thus needs to be implemented
with great caution. However, this problem is not encountered in our case because the EPI system under consideration exhibits
neither Lorentz invariance nor local gauge invariance. Our analytical derivation is based on the global gauge invariance and the
translational invariance, which are not spoiled by point-splitting manipulation.
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Using the point-slitting technique [28], we now recast Eqs. (31) and (32) in the following forms:

i∂t 〈�†(z)σ3�(z)�(z1)�†(z2)〉 + lim
z′→z

(
ξ∂z′ − ξ∂z

)〈�†(z′)σ0�(z)�(z1)�†(z2)〉
= −G(z1 − z)σ3δ(z − z2) + δ(z − z1)σ3G(z − z2), (35)

i∂t 〈�†(z)σ0�(z)�(z1)�†(z2)〉 + lim
z′→z

(
ξ∂z′ − ξ∂z

)〈�†(z′)σ3�(z)�(z1)�†(z2)〉
= −G(z1 − z)σ0δ(z − z2) + δ(z − z1)σ0G(z − z2). (36)

Making use of Eqs. (20) and (21), we find it sufficient to express these two STIs in terms of two current vertex functions �t and
�s. Making Fourier transformations to the above two STIs eventually leads to two WTIs:

ω�t (q, p) − (ξp+q − ξp)�s(q, p) = G−1(p + q)σ3 − σ3G−1(p), (37)

ω�s(q, p) − (ξp+q − ξp)�t (q, p) = G−1(p + q)σ0 − σ0G−1(p). (38)

Originally, charge conservation and spin conservation are in-
dependent. They are expected to yield two independent WTIs
that contain four independent current vertex functions, two for
charge-related WTI and two for spin-related WTI. However,
with the help of point-splitting technique, we find that these
four functions are indeed related, and can be described by two
independent functions, namely �t (q, p) and �s(q, p).

In Ref. [15], Engelsberg and Schrieffer have derived the
WTI induced by charge conservation. Using the Nambu
spinor, that WTI can be written in the form

ω�t (q, p) − q · �(q, p) = G−1(p + q)σ3 − σ3G−1(p). (39)

In their work, the vector function �(q, p) is entirely unknown.
This implies that the function �t (q, p) cannot be uniquely
determined. For this reason, although the above WTI has been
known for nearly sixty years, it is of little use in practical
studies on EPI-induced effects. Comparing to Ref. [15], in
this work we have obtained two important new results. First,
we have shown, making use of point-splitting technique, that
�(q, p) can be expressed in terms of current vertex function
�s(q, p) as

q · �(q, p) = (ξp+q − ξp)�s(q, p).

Second, we have shown that the WTI related to spin conser-
vation can also be expressed in terms of the two current vertex
functions �t (q, p) and �s(q, p). Since the two unknown func-
tions �t (q, p) and �s(q, p) satisfy two coupled WTIs, they can
be unambiguously determined. By solving Eqs. (37)–(38), it
is straightforward to obtain

�t (q, p) = ω[G−1(p + q)σ3 − σ3G−1(p)]

ω2 − (ξp+q − ξp)2

+ (ξp+q − ξp)[G−1(p + q)σ0 − σ0G−1(p)]

ω2 − (ξp+q − ξp)2
.

(40)

The other function �s(q, p) can be easily derived, but it is
not directly useful at this stage and thus will not be given
explicitly.

It is now necessary to discuss the specific expression of
fermion dispersion ξp. Remember our starting point is the
Lagrangian density (2). The Laplace operator has the standard

form ξ∂ = −∇2
z

2m , since the motion of free electrons is supposed
to satisfy nonrelativistic Schrodinger equation. It becomes
ξp = p2

2m − μ after making Fourier transformation and intro-
ducing chemical potential. Such an electron dispersion is
often oversimplified. In more realistic studies on metals, the
electron dispersion ξp is usually derived from a certain lattice
(tight-binding) model and exhibits a much more complicated
dependence on momenta. In this case, one should replace the

simple Laplace operator −∇2
z

2m with a more generic operator ξ∂ ,
which can be obtained from the dispersion ξp by doing Fourier
transformation. Normally, the generic operator ξ∂ could be
expanded as the sum of various powers of gradient operator
∇. Accordingly, the operator ∇ appearing in the spatial com-
ponents of charge current jc

μ [see Eq. (17)] and that of spin
current js

μ [see Eq. (19)] should be replaced by ξ∂
∇
∇2 . After

performing a series of calculations, one would still obtain the
same WTIs given by Eqs. (37) and (38). Therefore these two
WTIs are independent of the expressions of ξp

V. RELATION BETWEEN �v(q, p) AND �t (q, p)

Thus far we have defined and analyzed two sorts of vertex
functions. One is the EPI vertex function �v(q, p) that is
defined through the mean value 〈φ��†〉, as shown in Eq. (4).
�v(q, p) is a scalar function and enters into the DS equations
of electron and phonon propagators. Notice that �v(q, p) it-
self does not necessarily satisfy any WTI unless the boson
field couples to certain current operator composed of fermion
fields. The other sort is called the current vertex function,
including �t (q, p) and �s(q, p). Current vertex functions are
defined in terms of conserved currents and thus satisfy a num-
ber of WTIs as the result of current conservation. These two
sorts of vertex functions are closely related but are apparently
not identical. Below we derive their relation.

In the last section, we have derived two WTIs based on the
fact that the partition function Z is not changed by infinites-
imal variations of spinor field �. Here, we require that Z is
invariant under an infinitesimal variation of phonon field φ.
This fact is described by the equation

0 =
∫

DφD�†D�
δ

δφ
exp{iS},
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which then gives rise to

0 = 〈Dzφ(z) − g�†(z)σ3�(z) + J (z)〉, (41)

The above formula is rewritten in the form

g〈�†(z)σ3�(z)〉 = Dz
δW

δJ (z)
+ J (z), (42)

which, after taking the functional derivative with respect to η†

and η in order, leads to

δ2

δη†(z1)δη(z2)
〈�†(z)σ3�(z)〉 = 〈�†(z)σ3�(z)�(z1)�†(z2)〉

= 〈
jc
t (z)�(z1)�†(z2)

〉
= g−1Dz

δ3W

δJ (z)δη†(z1)δη(z2)
.

(43)

Here, we have utilized an important fact that the electron
density operator �†σ3� that couples to phonon field φ is pro-
portional to the time-component of conserved charge current
jc
μ, i.e., �†σ3� = jc

t .
Making use of the identity

δ3W

δJδη†δη
= −FG

δ3�

δφδ�†δ�
G, (44)

we obtain from Eqs. (43) and (20) that∫
dz3dz4G(z1 − z3)�t (z, z3, z4)G(z4 − z2)

=
∫

dz5dz3dz4g−1DF (z, z5)

× G(z1 − z3)�v(z5, z3, z4)G(z4 − z2). (45)

After performing Fourier transformation, Eq. (45) is trans-
formed into an exact identity

�t (q, p) = g−1F−1
0 (q)F (q)�v(q, p), (46)

which builds a connection among F0(q), F (q), �t (q, p), and
�v(q, p). This identity can be further written as

gF0(q)�t (q, p) = F (q)�v(q, p), (47)

Note that this identity was first obtained by Engelsberg and
Schrieffer [15]. However, it turns out that they did not realize
the importance of this identity. As can be seen from Appendix
B of Ref. [15], after obtaining the identity, they did not discuss
its physical implication but were trying to prove that �v(q, p)
satisfies the charge-related WTI. Nevertheless, it is �t (q, p),
rather than �v(q, p), that satisfies the WTI. To solve this
problem, they took the zero-momentum limit q → 0 and then
argued that �t (q, p) = �v(q, p) as q → 0. Thus the EPI ver-
tex �v(q, p) approximately satisfies the charge-related WTI in
the special limit q → 0. While their argument was absolutely
correct, the potential importance of the above identity was
entirely overlooked.

In this paper, we have rederived the identity given by
Eq. (47) within the framework of functional integral. The
crucial new insight provided by our paper is that we fully
realize the importance of this identity and make use of its
general expression (without taking any limit) to prove that

the DS equation of the electron propagator G(p) is decoupled
from all the other DS equations. This will be illustrated in the
next section.

VI. SELF-CLOSED INTEGRAL EQUATION OF
ELECTRON PROPAGATOR

We now demonstrate how to use the identity of Eq. (47) to
simplify DS equations. Originally, the DS integral equations
of G(p) and F (q) are coupled to each other self-consistently,
reflecting the dramatic mutual influence between electrons
and phonons. Their equations are further coupled to the DS
equations of all the n-point correlation functions with n > 2. It
would be extremely difficult to solve such an infinite number
of coupled equations. To simplify these equations, we observe
that the product F (q)�v(q, p) enters into the DS equation of
G(p) as a whole. After inserting the identity Eq. (47) into
Eq. (11), we obtain

G−1(p) = G−1
0 (p) − ig2

∫
q
σ3G(p + q)F0(q)�t (q, p). (48)

Now, the DS equation of G(p) contains only G0(p), G(p),
F0(q), and �t (q, p), and therefore is decoupled completely
from that of F (q). This is a vast simplification. We have
already shown in the last section that �t (q, p) is solely deter-
mined by G(q + p) and G(p). Based on these results, we have
proved rigorously that the DS equation of G(p) is self-closed.

The full electron propagator G(p) can be numerically com-
puted once the free propagators G0(p) and F0(q) are known.
Generically, one can expand [24] G(p) as follows:

G(ε, p) = 1

A1(ε, p)εσ0 − A2(ε, p)ξpσ3 + �(ε, p)σ1
, (49)

where A1(ε, p) is the mass renormalization function, A2(ε, p)
is the chemical potential renormalization, and �(ε, p) is the
superconducting pairing function. The true superconducting
order parameter is determined by the ratio �(ε, p)/A1(ε, p).
As demonstrated by Nambu [24], it is only necessary to in-
clude the σ1 term since the σ2 term can be easily obtained
from the σ1 term upon a simple transformation. Substitut-
ing Eq. (49) into Eqs. (40) and (48) would decompose the
DS equation of G(p) into three self-consistent equations
for A1,2(ε, p) and �(ε, p), which are amenable to numer-
ical studies. The pairing function �(ε, p) is finite in the
superconducting state and decreases with growing T . The
superconducting Tc is just the temperature at which �(ε, p)
goes to zero from nonzero values.

There is a subtle issue here. The two coupled WTIs
are derived from two global U(1) symmetries. These two
symmetries are both respected in the normal phase. The
superconducting phase is a little more complicated. While
superconducting pairing, described by a nonzero �(ε, p),
preserves the U(1) symmetry related to spin conservation, it
spontaneously breaks the U(1) symmetry for charge conserva-
tion. The spin-related WTI should be always correct, but the
charge-related WTI needs to be treated more carefully. Nambu
[24] and Schrieffer [1] addressed this issue and assumed that
the charge-related WTI has the same expression in both the
normal and superconducting phases. Based on such an as-
sumption, Nambu [24] and Schrieffer [1] further demonstrated
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that the gauge invariance of electromagnetic response func-
tions is maintained even in the superconducting phase. If this
assumption was reliable, one could substitute the general elec-
tron propagator given by Eq. (49) into Eq. (40) and express
�t (q, p) in terms of A1(ε, p), A2(ε, p), and �(ε, p). However,
it seems premature to accept the above assumption without
reservation. A complete understanding is still lacking. It is
well established that the Anderson-Higgs (AH) mechanism
should be invoked to accommodate U(1)-symmetry breaking
[38,39] inside the superconducting phase. For that purpose,
one needs to promote the global U(1) symmetry, defined in
Eq. (14) with a constant α, to the local one [defined by
coordinate-dependent α(z)], which is realized by coupling
some U(1) gauge boson to the electrons, such that the massless
Goldstone boson generated by U(1)-symmetry breaking can

be naturally eliminated. It is currently unclear how to recon-
cile the AH mechanism with our DS equations approach. This
is a highly nontrivial issue that we leave for future research.

The absence of a complete understanding of the super-
conducting phase might not be an obstacle if our interest is
restricted to the computation of superconducting Tc, because
the pairing function vanishes continuously as T → Tc. In the
vicinity of Tc, the charge-related U(1) symmetry is still pre-
served and it is not necessary to consider the AH mechanism.
In practical applications of our approach, one could drop the
� dependence of �t (q, p) and then insert it into the DS equa-
tion of G(p). For notational simplicity, here it is convenient to
divide the function �t (q, p) into two parts

�t (q, p) ≡ �t3(q, p)σ3 − �t0(q, p)σ0, (50)

where

�t3(q, p) = iω[A1(p + q)(iε + iω) − A1(p)iε]

(iω)2 − (ξp+q − ξp)2
− (ξp+q − ξp)[A2(p + q)ξp+q − A2(p)ξp]

(iω)2 − (ξp+q − ξp)2
,

�t0(q, p) = iω[A2(p + q)ξp+q − A2(p)ξp]

(iω)2 − (ξp+q − ξp)2
− (ξp+q − ξp)[A1(p + q)(iε + iω) − A1(p)iε]

(iω)2 − (ξp+q − ξp)2
.

With the help of �t3(q, p) and �t0(q, p), it is easy to derive from Eq. (48) the following three integral equations:

A1(p)iε = iε + g2
∫

dd q

(2π )d

2�q

ω2 + �2
q

A1(p + q)(iε + iω)�t3(q, p) − A2(p + q)ξp+q�t0(q, p)

A2
1(p + q)(ε + ω)2 + A2

2(p + q)ξ 2
p+q + �2(p + q)

, (51)

A2(p)ξp = ξp + g2
∫

dd q

(2π )d

2�q

ω2 + �2
q

A1(p + q)(iε + iω)�t0(q, p) − A2(p + q)ξp+q�t3(q, p)

A2
1(p + q)(ε + ω)2 + A2

2(p + q)ξ 2
p+q + �2(p + q)

, (52)

�(p) = g2
∫

dd q

(2π )d

2�q

ω2 + �2
q

�(p + q)�t3(q, p)

A2
1(p + q)(ε + ω)2 + A2

2(p + q)ξ 2
p+q + �2(p + q)

. (53)

These integral equations are self-consistently coupled, which
describes the important fact that the mass renormalization,
chemical potential renormalization, and Cooper pairing can
affect each other. By numerically solving these equations at a
series of different temperatures, one will be able to obtain the
superconducting Tc. In addition, the detailed p dependence of
A1(p) and A2(p) can also be simultaneously extracted from
the numerical solutions.

In the noninteracting limit, the fully renormalized elec-
tron propagator G(p) is reduced to the free one, namely
G(p) → G0(p). Similarly, F (q) → F0(q). Substituting G0(p)
into Eq. (50) leads to �t (q, p) → σ3. After substituting G0(p)
and �t (q, p) = σ3 into Eqs. (51)–(53), one obtains the well
known ME equations [1–3,5,6]. Thus, the conventional ME
equations are a special limit of the more generic DS equations
given by Eqs. (51)–(53).

Once the equations of A1,2(ε, p) and �(ε, p) are numer-
ically solved, the solutions can be substituted to the DS
equation of the phonon propagator F (q). Using the previously
derived identities, we obtain

F (q) = F0(q) + ig2F 2
0 (q)

∫
p

Tr[σ3G(p + q)�t (q, p)G(p)].

(54)

Since �t (q, p) is expressed in terms of G(p) and G(p + q),
one can extract the full information about the phonons by
directly integrating over p ≡ (ε, p), which is easier than
solving self-consistent integral equations. The full phonon
self-energy, also known as polarization function, then can be
computed based on G(p) as follows:

�(q) = F−1
0 (q) − F−1(q),

= −ig
∫

p
Tr[σ3G(p + q)�v(q, p)G(p)],

=
−ig2

∫
p Tr[σ3G(p + q)�t (q, p)G(p)]

1 − ig2F0(q)
∫

p Tr[σ3G(p + q)�t (q, p)G(p)]
.

This expression would be very useful in the calculation of
density-density correlation function 〈�†σ3��†σ3�〉. How-
ever, since the primary interest of this work is to study the
superconducting transition, we will not further discuss the
behaviors of F (q) and �(q). Next, we focus on the self-closed
DS equation of G(p) and use it to compute the superconduct-
ing Tc.

The DS equations and the coupled WTIs are derived by
carrying out generic field-theoretical analysis. They are ex-
act and nonperturbative as long as the U(1) symmetries are
preserved. No small expansion parameter is employed in
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the derivation. This is apparently distinct from traditional
perturbation theories. As is well known, the ME theory is
developed based on series expansion in powers of a small
parameter λ(ωD/EF ); it retains only the leading order con-
tribution and entirely discards all the rest contributions. Such
an approximation becomes invalid when λ(ωD/EF ) becomes
large. In contrast, our DS equation approach does not need
any small parameter and does not discard any Feynman di-
agram. This guarantees that the results extracted from the
solutions of DS equations are valid for any value of λ

and any value of ωD/EF , which is a significant advantage
compared to traditional ME theory. To what extend the re-
sults about G(p) and F (q) are exact is mainly determined
by the errors generated in numerical integration, which can
be gradually reduced by costing reasonably more computer
resources.

Another remarkable advantage of our approach is that, the
inclusion of vertex corrections does not increase the computa-
tional difficulties. The generic DS equations and the simplified
ME equations can be solved by the same numerical skills.
A standard method of solving such equations is the itera-
tive method, which continues to use the old values of some
unknown functions [A1,2(ε, p) and �(ε, p) in our case] to
generate new values until stable results of such unknown func-
tions are reached. We demonstrate how the iterative method
works in practice in Appendix D. The computational time for
obtaining stable results is mainly determined by the dimen-
sions of the multiple integral. In the practical implementation
of our approach, including vertex corrections only alters the
kernel function but does not change the dimensions of the
integral. Thanks to this crucial feature, the computational time
needed to solve DS equations (including all vertex correc-
tions) is not dramatically longer than that is needed to solve
ME equations (neglecting all vertex corrections). There is
little difference between the efficiency of solving the complete
DS equations and that of solving the simplified ME equations.

Besides diagrammatic techniques, strongly correlated elec-
tron systems are often studied by means of several numerical
methods, among which DQMC simulation [40] and dynam-
ical mean field theory (DMFT) [41] are the most frequently
adopted. Different from DQMC, our approach can directly ac-
cess the ultra-low energy regime (i.e., thermodynamic limit),
and is not plagued by the fermion-sign problem. While DMFT
is exact only when the spatial dimension d − 1 is taken to the
limit of infinity, our approach is applicable to EPI systems
defined in any spatial dimension, including the most realistic
cases of two and three dimensions.

VII. APPLICATION TO SMALL-q
ELECTRON-PHONON INTERACTION

Our DS equation approach provides an efficient and uni-
versal tool to study the superconducting transition mediated
by EPI. To testify its efficiency, we now apply it to a concrete
example. Here, we choose to study 1UC FeSe/SrTiO3, where
the origin of observed high-Tc superconductivity has been
intensively studied in recent years but currently remains an
open puzzle.

Bulk FeSe becomes a superconductor below Tc ≈ 8 K [42].
When 1UC FeSe film is placed on SrTiO3 substrate [9], its

Tc is dramatically promoted. This discovery has opened a
new route to engineering interfacial high-Tc superconductors.
An important issue is to find out the underlying mechanism
that gives rise to such a high Tc. It has been revealed [43]
that, although charge carrier doping and K intercalation also
enhance Tc, Tc could be higher than 70 K only when 1UC
FeSe is at the interface to SrTiO3 or other similar substrates.
Thus the interfacial coupling must play a unique role. Angle-
resolved photoemission spectroscopy (ARPES) experiments
have provided strong evidence [10,11] that the coupling of
electrons of FeSe-layer to IOPs generated by oxygen ions
of SrTiO3 may account for the observed replica bands and
high-Tc.

Motivated by the existing experiments, the IOP-induced
superconductivity has been theoretically investigated
[13,44–47] by solving the ME equations of A1(ε, p) and
�(ε, p). However, to date, there is still no consensus on
the value of Tc caused by IOPs. Different results have been
obtained by different groups. The existence of controversy
about Tc is not surprising, as the kinetics and dynamics
of mobile electrons in FeSe film is quite complicated. In
order to acquire precise result of Tc, one needs to take into
account several effects, including the potentially important
contributions of vertex corrections, the multiband electronic
structure [47], the unusual screening of Coulomb interaction
[48], and the influence of magnetic and nematic fluctuations
[49]. Among all of these effects, the role of vertex corrections
is of special interest. Experiments [10] and first principles
calculations [50] have confirmed that IOPs are nearly
dispersionless, and the frequency �(q) ≡ � ≈ 81 meV. In
comparison, the Fermi energy [11] is roughly EF ≈ 65 meV.
Apparently, the Migdal theorem is no longer reliable since the
ratio �/EF > 1, and the impact of vertex corrections must be
properly incorporated.

In this paper, we will not investigate all the effects men-
tioned above. Our concentration is on the influence of vertex
corrections on the value of Tc. For simplicity, we consider
the single band model, following Ref. [13]. It is known that
the scattering due to IOPs is dominated by small-q forward
scattering [10,11,13], which is described by a coupling func-
tion g(q) = g0e−|q|/q0 where the parameter q0 is determined
by lattice constant. Similar to Ref. [13], we consider two
different forms of g(q): δ function and exponential function.
The full set of integral equations of A1,2(ε, p) and �(ε, p)
are too complicated to solve and proper approximations are
unavoidable. Since A2(ε, p) can be absorbed into a redefini-
tion of chemical potential, here we assume that A2(ε, p) = 1.
Because IOPs lead to extreme forward scattering, the initial
and final states of electrons are mostly located near Fermi
surface, which allows us to further set ξp = ξpF . As a result,
the coupled equations are independent of momenta.

To separate the physical effects of the mass renormal-
ization and the vertex corrections, we will consider three
approximations: (1) the so-called GAP approximation that
includes only the gap equation and ignores both mass renor-
malization [A1(ε) = 1] and vertex corrections (�t = σ3); (2)
the standard ME approximation that couples the equation
of A1(ε) self-consistently to that of �(ε) but ignores all
the vertex corrections (�t = σ3); and (3) our DS equation
approximation that self-consistently takes into account the
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FIG. 2. Numerical results of Tc: (a) using δ function of g(q)
(corresponding to a0 → 0 limit) and (b) using exponential function
of g(q). There is only a minor difference between (a) and (b). Di-
mensionless coupling parameter λ is related to g0 by the formula
g0 = √

λ�. If � = 81 meV, 0.01 � ≈ 9.5 K.

mass renormalization A1(ε) and all the vertex corrections.
The corresponding equations of A1(ε) and �(ε) are explicitly
shown in Appendix C. These equations can be numerically
solved by using the iterative method, which is demonstrated
in Appendix D.

The numerical results of Tc are shown in Fig. 2. The upper,
middle, and lower curves are the results obtained under GAP,
DS, and ME approximations, respectively. We see that the
GAP approximation overestimates Tc, whereas the ME ap-
proximation underestimates Tc. This indicates that, ignoring
electron mass renormalization may improperly increase Tc

and ignoring vertex corrections may improperly reduce Tc. For
very small values of λ, GAP and ME results are both good.
When λ is increasing, the deviation from DS results (middle
curve) becomes progressively more dramatic. For instance, if
λ = 0.5, the GAP result of Tc (denoted by T GAP

c ) is about
32 K higher, and the ME result of Tc (denoted by T ME

c ) is
about 20K lower, than the DS result of Tc (denoted by T DS

c ).
For λ = 1.0, T GAP

c − T DS
c ≈ 85 K and T DS

c − T ME
c ≈ 38 K.

For λ = 2.0 (not shown in Fig. 2), T GAP
c − T DS

c ≈ 200 K
and T DS

c − T ME
c ≈ 70 K. It is clear that the GAP and ME

approximations are valid only in the weak-coupling regime.

When λ becomes sufficiently large, both GAP and ME ap-
proximations are quantitatively unreliable. In contrast, our DS
equation approach remains well-controlled and can lead to
reliable results.

The effect of Coulomb interaction is not included in the
above analysis. The Coulomb interaction is usually treated by
the pseudopotential method [6,7]. After including the contri-
bution of pseudopotential μ∗, the value of Tc would be reduced
[13] by roughly 10%–20%.

It is known that a nematic order, which spontaneously
breaks C4-symmetry down to C2-symmetry, exists in bulk
FeSe material [51–53]. Although the physical origin of ne-
matic order is still in fierce debate [54], a widely accepted
notion is that the nematic order is induced by electron-
electron interaction, rather than lattice distortion. When
monolayer FeSe is placed on SrTiO3 substrate, nematic or-
der is suppressed [53], indicating that the interaction that
causes nematicity should not play an important role in 1UC
FeSe/SrTiO3. But nematic fluctuation may not be negligible
and could help enhance superconductivity [49]. Similarly, al-
though there is no long-range magnetic order in bulk FeSe
and 1UC FeSe/SrTiO3, the spin fluctuation may mediate
Cooper pairing. Recently, the cooperative effect of spin fluc-
tuation and IOPs on superconducting Tc in 1UC FeSe/SrTiO3

has been studied [55] using the ME formalism. It will be
interesting to investigate the coupling of electrons to ne-
matic and/or spin fluctuation by employing our DS equation
approach.

The realistic electronic structure of FeSe film is more com-
plicated than the single band model considered in our work.
The multiband effects [47,55] cannot be ignored. The impacts
of nematic and spin fluctuations also need to be examined.
In this sense, our results do not provide a conclusive answer
to the underlying microscopic mechanism for the remarkable
Tc enhancement. But our approach does provide a firm basis
for further theoretical studies. Indeed, even if the multiband
effects and additional pairing mechanism(s) are considered,
the value of Tc cannot be determined accurately if the full EPI
vertex corrections were not correctly taken into account. As
shown in Fig. 2, ignoring vertex corrections leads to a con-
siderable underestimation of Tc. Once the full vertex function
is incorporated into the DS equations, one could proceed to
consider the multiband effects as well as additional pairing
mechanism(s).

In the future, we will generalize our approach from the
simple single-band model to more realistic multiband models
[47]. The EPI vertex function may become more complex af-
ter considering the multiband effects. The interplay of EPI and
Coulomb interaction also needs to be handled more carefully.
These issues will be addressed in forthcoming separate works.

VIII. SUMMARY AND DISCUSSION

In summary, our DS equation approach provides a novel
nonperturbative framework for the theoretical study of super-
conductivity induced by EPI of any strength. To testify its
efficiency, it would be interesting to apply it to a number
of well-defined models. As the simplest model describing
EPI, Holstein model [56] have been extensively investigated
[57–60] by various methods (see Ref. [60] for a recent re-

094501-10



TOWARDS EXACT SOLUTIONS FOR THE SUPERCONDUCTING … PHYSICAL REVIEW B 103, 094501 (2021)

view). When EPI becomes very strong, superconductivity is
not the only instability and EPI may lead to a CDW state
[57–60]. An extended version of our approach can be used
to investigate the competition between superconductivity and
CDW in Holstein model. The results will be presented else-
where.

The applicability of our approach is not restricted to EPI
systems. The DS equations and associated WTIs can be sim-
ilarly constructed and solved if phonon is replaced by other
sorts of bosons. A particularly interesting example is the U(1)
gauge boson that couples strongly to gapless fermions excited
around the Fermi surface of a two-dimensional strange metal
[61–65]. In this case, the vertex corrections would have more
significant effects on physical quantities than EPI systems,
because the function A1(ε, p) exhibits singular behaviors in
the ultra-low energy region. The non-Fermi liquid behavior
produced by gauge interaction can be studied by solving the
self-consistent integral equation of A1(ε, p) and A2(ε, p).

Heavy fermion system is another platform to apply our ap-
proach. The role played by phonons in heavy fermion system
was studied in Ref. [66] based on a periodic Anderson model
combined with Holstein model. The coherence temperature
Tcoh is nearly unaffected by phonons if EPI is handled within
ME approximation [66]. But calculations using DFMT in con-
cert with a continuous-time QMC impurity solver found [66]
that the coupling of conduction electrons to phonons leads to
a strong reduction of Tcoh. This indicates the complete failure
of Migdal theorem in heavy fermion system, since the ratio
TD/Tcoh, TD being the temperature scale of Debye frequency,
is no longer small. Actually, even weak EPI suffices to cause
Kondo breakdown [66]. It would be of great interest to revisit
this problem by using our approach and examine how these
results are affected by EPI vertex corrections.

The interest of this paper is restricted to metals with
a finite Fermi surface. In Dirac semimetals that exhibit
zero-dimensional Fermi points, the low-energy fermionic
excitations have more degrees of freedom (such as spin,
sublattice, and valley). There, the vertex function should be
determined by a larger number of coupled WTIs. Our ap-
proach has recently been generalized [67] to deal with the
strong fermion-phonon interaction and long-range Coulomb
interaction in Dirac semimetals.
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APPENDIX A: FUNCTIONAL INTEGRAL RULES

Our field-theoretic analysis is carried out within the frame-
work of functional integral. To help the readers understand
the analysis, in this Appendix we list some basic rules of
functional integration that are used in our derivation. These

rules are not new and can be found in standard textbooks of
quantum field theory [25,36].

All the correlation functions are generated from three
important quantities: the partition function Z (η†, η, J ), the
generating functional W (η†, η, J ), and the generating func-
tional �(�,�†, φ). They are defined as follows:

Z (η†, η, J ) =
∫

DφD�†D� exp

(
i
∫

L(z)

)
, (A1)

W (η†, η, J ) = −i ln Z (η†, η, J ), (A2)

�(�,�†, φ) = W (η†, η, J ) −
∫

(η†� + �†η + Jφ). (A3)

The following identities will be frequently used:

δW

δJ
= 〈φ〉, δW

δη
= −〈�†〉, δW

δη†
= 〈�〉, (A4)

δ�

δφ
= −J,

δ�

δ�
= η†,

δ�

δ�†
= −η. (A5)

W (η†, η, J ) generates all the connected Green’s functions
and �(�,�†, φ) generates all the irreducible proper vertices
of electron-phonon coupling. For instance, the full electron
propagator G(z − z′) and full phonon propagator F (z − z′) are
given by

G(z − z′) ≡ −i〈�(z)�†(z′)〉 = δ2W

δη†(z)δη(z′)
, (A6)

F (z − z′) ≡ −i〈φ(z)φ†(z′)〉 = − δ2W

δJ (z)δJ (z′)
. (A7)

With the help of Eqs. (A4) and (A5), the above two expres-
sions are calculated by the following steps:

δ2W

δη†(z)δη(z′)
= −δ�†(z′)

δη†(z)
= −

(
δη†(z)

δ�†(z′)

)−1

= −
(

δ2�

δ�†(z′)δ�(z)

)−1

, (A8)

δ2W

δJ (z)δJ (z′)
= δφ(z′)

δJ (z)
=

(
δJ (z)

δφ(z′)

)−1

= −
(

δ2�

δφ(z′)δφ(z)

)−1

.

(A9)

Here it is important to emphasize that δ2W
δη†δη

and δ2W
δJδJ only

involve connected Feynman diagrams for the electron and
phonon propagators. To understand this, we take the phonon
field φ as an example, and perform functional derivatives as
follows:

δ2W

δJδJ
= −i

δ

δJ

(
1

Z

∫
DφD�D�†iφ exp{iL}

)

= i

∫
DφD�D�†φφ exp{iL}

Z

− i

(∫
DφD�D�†φ exp{iL}

Z

)2

. (A10)

In the last line, the first term contains all the connected and
disconnected diagrams, whereas the second term contains all
the disconnected diagrams. Hence, the phonon propagator
F = − δ2W

δJδJ contains only connected diagrams. The same is
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− δ3W
δJδη†δη =

F

G G

δ3Ξ
δφδΨ†δΨ

FIG. 3. Diagrammatic illustration of the relation given by
Eq. (4). Dropping three external legs of a three-point correlation
function 〈φ��†〉 yields the EPI vertex function �v.

true for the electron propagator, namely G = δ2W
δη†δη

contains
only connected diagrams.

The correlation function 〈φ��†〉 is expressed as follows:

〈φ��†〉 ≡ δ3W

δJδη†δη
= −FG

δ3�

δφδ�†δ�
G, (A11)

where we have defined a truncated (external legs being re-
moved) EPI vertex function �v, i.e.,

�v(z1, z2, z3) ≡ δ3�

δφ(z1)δ�†(z2)δ�(z3)
. (A12)

These two equations are schematically illustrated by Fig. 3.
Analogous to the electron and phonon propagators, here the
vertex function �v receives contributions solely from con-
nected diagrams. It is straightforward to define and analyze
four-point and higher-point correlation functions by means
of similar operations. However, for our purposes, it suffices
to consider two- and three-point correlation functions. For a
more comprehensive illustration of functional integral tech-
niques, we would refer readers to the textbook of Itzykson
and Zuber [25].

APPENDIX B: DYSON-SCHWINGER EQUATIONS OF
FERMION AND BOSON PROPAGATORS

In this Appendix, we derive the formal DS integral equa-
tions of the full fermion propagator G(p) and the full phonon
propagator F (q) by using the rules of functional integral pre-
sented in Appendix A.

First derive the DS equation of electron propagator. The
derivation is based on an apparent fact that the partition func-
tion is invariant under an arbitrary infinitesimal variation of
spinor field �†, that is,

∫
DφD�†D�

δ

iδ�†
exp{iS} = 0.

It is easy to get〈(
iσ0∂t − σ3ξ∂z

)
�(z) − gφ(z)σ3�(z) + η(z)

〉 = 0. (B1)

Using the relations given by Eq. (A4), we rewrite the above
equation as

−η(z) = (
iσ0∂t − σ3ξ∂z

) δW

δη†(z)
+ igσ3

δ2W

δJ (z)δη†(z)
− g

δW

δJ (z)
σ3

δW

δη†(z)
. (B2)

The last term of the right-hand side (r.h.s.) vanishes upon removing sources and can be directly omitted. Operating functional
derivative of both sides with respect to η(z2) yields

δ(z − z2)σ0 = (
iσ0∂t − σ3ξ∂z

) δ2W

δη†(z)δη(z2)
+ igσ3

δ3W

δJ (z)δη†(z)δη(z2)

= (
iσ0∂t − σ3ξ∂z

)
G(z − z2) − ig

∫
dz′

1dz′
2σ3F (z − z′

1)G(z − z′)
δ3�

δφ(z′
1)δ�†(z′)δ�(z′

2)
G(z′

2 − z2).

This expression can be rewritten as

G−1(z − z3) = (
iσ0∂t − σ3ξ∂z

)
δ(z − z3) − ig

∫
dz′

1dz′σ3F (z − z′
1)G(z − z′)

δ3�

δφ(z′
1)δ�†(z′)δ�(z3)

. (B3)

Making use of the definition

�v(z′
1, z′, z3) ≡ δ3�

δφ(z′
1)δ�†(z′)δ�(z3)

(B4)

and performing Fourier transformation to Eq. (B3), we
ultimately obtain the following DS equation for fermion prop-
agator G(p):

G−1(p) = G−1
0 (p) − ig

∫
dqσ3G(p + q)F (q)�v(q, p). (B5)

The Fourier transformation of �v(z′
1, z′, z3) is

�v(q, p) =
∫

dz′
1dz′eip(z′

1−z3 )e−i(p+q)(z′
1−z′ )�v(z′

1, z′, z3).

The DS integral equation of F (q) is derived based on the
fact that the partition function is invariant under an arbitrary
infinitesimal variation of phonon field φ, i.e.,∫

DφD�†D�
δ

iδφ
exp{iS} = 0.
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= +
Γv gσ3 Γv

G

G K4

= +
F

gσ3 Γv

G

G

F0 FF0

+=
GG

gσ3 Γv

G0

F

G0 G

FIG. 4. An intuitive diagrammatic illustration of the coupled DS
equations of G(p), F (q), and �v(q, p). The complicated relation of
these three functions can be readily seen. The connection between
K4(p, p′, q) and higher-point correlation functions are not shown.

Then one finds that

〈Dzφ(z) − g�†(z)σ3�(z) + J (z)〉 = 0. (B6)

Again, we use the relations of Eq. (A4) to obtain

−J (z) = Dz〈φ(z)〉 + igTr

[
σ3

δ2W

δη†(z)δη(z)

]

− gTr

[
σ3

δW

δη†(z)

δW

δη(z)

]
. (B7)

Here a trace operator is introduced to operate on the compo-
nents of Nambu spinors. The last term of the r.h.s. vanishes
upon removing external sources and can be directly omitted.
This expression can be rewritten, using rules of functional
integral, as

δ�

δφ(z)
= Dz〈φ(z)〉 − igTr

[
σ3

(
δ2�

δ�†(z)δ�(z)

)−1
]
.

Performing functional derivative of both sides of this equation
with respect to the field φ(z′) gives rise to

δ2�

δφ(z)δφ(z′)
= Dzδ(z − z′) + ig

∫
dz1dz2Tr

[
σ3

(
δ2�

δ�†(z1)δ�(z)

)−1(
δ3�

δφ(z′)δ�†(z1)δ�(z2)

)(
δ2�

δ�†(z)δ�(z2)

)−1
]
.

Making use of the identities given by Eqs. (A6)–(A9), we obtain

F−1(z − z′) = Dzδ(z − z′) + ig
∫

dz1dz2Tr[σ3G(z − z1)�(z′, z1, z2)G(z2 − z)], (B8)

which, after carrying our Fourier transformation according to Eq. (B6), becomes

F−1(q) = F−1
0 (q) + ig

∫
p

Tr[σ3G(p + q)�v(q, p)G(p)]. (B9)

This is the DS equation of the full boson propagator.
The DS equations of the EPI vertex function �v(q, p) can be derived by performing a series of analogous calculations [25].

The derivation is quite lengthy and the details will not be explicitly presented here. For a more understandable diagrammatic
illustration of the coupled DS equations of G(p), F (q), and �v(q, p), please see Fig. 4. The DS equation of �v(q, p) can be
formally written as

�v(q, p) = gσ3 −
∫

p′
G(p′ + q)�v(q, p′)G(p′)K4(p, p′, q). (B10)

Here, the function K4(p, p′, q) is defined via the 4-point correlation function 〈φφ†��†〉 as follows:

FFK4GG = 〈φφ†��†〉.
One could verify that, the function K4(p, p′, q) satisfies its own DS integral equation, which in turn is related to other higher-point
correlation functions. In fact, there exists an infinite number of DS equations that connect every n-point correlation function to
a (n + 1)-point correlation function for all positive integers n > 1. All of these DS equations are self-consistently coupled.
Therefore the full set of DS equations are not closed and cannot be tackled. For this reason, although the full set of DS equations
are exact and, in principle, contain all the interaction-induced effects, they are rarely used in the realistic studies on strongly
correlated electron systems. Fortunately, we have shown in the main paper that the DS equation of electron propagator G(p) is
indeed self-closed if several symmetry-induced exact identities are properly taken into account. The full boson propagator F (q)
and the vertex function �v(q, p) can be obtained from the numerical solutions of G(p).

APPENDIX C: GAP EQUATIONS IN SMALL-q DOMINATED EPI SYSTEMS

In 1UC FeSe/SrTiO3, electrons in FeSe film couple to IOPs. Different from ordinary (acoustic) phonons, IOPs are nearly
dispersionless. The dispersion �q can thus be taken as a constant. This type of EPI is sharply peaked at q = 0 [10,11,13,46,47].
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We will make use of this unique feature to simplify the vertex function �t (q, p), which then reduces the time required to complete
the numerical computation. Moreover, if one is mainly interested in the determination of Tc, it is reasonable to linearize the DS
equations, i.e., taking the � → 0 limit, near Tc.

As discussed in Sec. VII, here we will consider three different approximations, namely GAP, ME, and DS approximations, of
the coupled integral functions of A1(ε) and �(ε). To compare to results reported in Ref. [13], we also consider two different forms
of coupling function g(q): an idealized δ function and a more realistic exponential function. We adopt Matsubara formalism
to describe finite-temperature correlation functions. The electron frequency is εn = (2n + 1)πT and the phonon frequency is
ωm = 2mπT , where n and m are integers.

1. δ function

In the case of δ function, the coupling function has the simple form g(q) = g0δ(q). Under GAP approximation, we take
A1 = 1. Then there is only the equation of pairing function:

�(εn) = λ�2T
∑

m

2�

�2 + ω2
m

�(εn + ωm)

(εn + ωm)2 + �2(εn + ωm)
. (C1)

The dimensionless coupling constant λ is related to EPI coupling constant g0 by g0 = √
λ�. This approximation ignores the

mass renormalization and supposes that EPI leads only to Cooper pairing. The gap equation given by Eq. (C1) is similar, but not
identical to, the standard BCS gap equation. This equation has previously been analyzed by Rademaker et al. [13], who made a
comparison between the solution of Eq. (C1) to that of the standard BCS gap equation and shown that extreme forward scattering
leads to a remarkable enhancement of Tc.

Certainly, it is inappropriate to neglect the contributions of A1. If both A1 and � are considered, we would obtain the following
two coupled ME equations:

�(εn) = λ�2T
∑

m

2�

�2 + ω2
m

�(εn + ωm)

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)

, (C2)

A1(εn) = 1 + 1

εn
λ�2T

∑
m

2�

�2 + ω2
m

εn + ωm

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)

. (C3)

Including the full vertex corrections, described by �t , to the above ME equations leads to the following two DS equations:

�(εn) = λ�2T
∑

m

2�

�2 + ω2
m

�(εn + ωm)

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)

A1(εn + ωm)(εn + ωm) − A1(εn)εn

ωm
, (C4)

A1(εn) = 1 + 1

εn
λ�2T

∑
m

2�

�2 + ω2
m

A1(εn + ωm)(εn + ωm)

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)

A1(εn + ωm)(εn + ωm) − A1(εn)εn

ωm
. (C5)

2. Exponential function

We then consider the more realistic exponential function of coupling parameter g(q) = √
λ�e−q/q0 . It is necessary to

introduce an UV cutoff �, which then can be used to define a dimensionless parameter r = q0/�. Under the GAP approximation,
the pure gap equation is given by

�(εn) =
(

2

r

)2

λ�2T
∑

m

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + ω2
m

× �(εn + ωm)√
(εn + ωm)2 + �2(εn + ωm)

√
(εn + ωm)2 + �2(εn + ωm) + ζx2

. (C6)

The coupled ME equations of �(εn) and A1(εn) are

�(εn) =
(

2

r

)2

λ�2T
∑

m

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + ω2
m

× �(εn + ωm)√
A2

1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)
√

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm) + ζx2

, (C7)
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A1(εn) = 1 + 1

εn

(
2

r

)2

λ�2T
∑

m

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + ω2
m

× A1(εn + ωm)(εn + ωm)√
A2

1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)
√

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm) + ζx2

. (C8)

After including vertex corrections, the coupled DS equations are of the form

�(εn) =
(

2

r

)2

λ�2T
∑

m

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + ω2
m

× �(εn + ωm)√
A2

1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)
√

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm) + ζx2

× A1(εn + ωm)(εn + ωm) − A1(εn)εn

ωm
, (C9)

A1(εn) = 1 + 1

εn

(
2

r

)2

λ�2T
∑

m

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + ω2
m

× A1(εn + ωm)(εn + ωm)√
A2

1(εn + ωm)(εn + ωm)2 + �2(εn + ωm)
√

A2
1(εn + ωm)(εn + ωm)2 + �2(εn + ωm) + ζx2

× A1(εn + ωm)(εn + ωm) − A1(εn)εn

ωm
. (C10)

APPENDIX D: NUMERICAL METHOD

The self-consistent integral function(s) can be solved numerically by using the iterative method. Let us take Eqs. (C9) and
(C10) as an example to illustrate how the iterative method works. In the first step, one assumes some initial values of A1 and �.
In the second step, substitute these initial values into Eqs. (C9) and (C10) to obtain a set of new values of A1 and �, which are
more or less different from the initial values. In the third step, substitute the new values again into Eqs. (C9) and (C10) to obtain
another set of new values of A1 and �. Repeat this manipulation many times until the input and output of A1 and � no longer
change. Such stable values of A1 and � are precisely the solutions that we need.

The two equations contain a summation over ωm for all possible values of m. In practice, it is not possible, nor necessary, to
sum to infinity. On generic physical grounds we know that A1 and � are positive even functions of frequency. Smaller frequency
gives rise to larger A1 and �. When electron frequency is much larger than phonon frequency �, the contributions are negligible.
We choose a large number N = 400 and define εn as follows

εn = ±(2n − 1)πT, n = 1, 2, . . . , N. (D1)

Introduce ω′
m and define it as ω′

m = εn + ωm. Thus ω′
m is restricted to the same region as εn, namely,

ω′
m = ±(2m − 1)πT, m = 1, 2, . . . , N. (D2)

Then Eqs. (C9) and (C10) can be expressed as

�(εn) =
(

2

r

)2

λ�2T
N∑

m=1

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + (ω′
m − εn)2

× �(ω′
m)√

A2
1(ω′

m)ω′
m

2 + �2(ω′
m)

√
A2

1(ω′
m)ω′

m
2 + �2(ω′

m) + ζx2

A1(ω′
m)ω′

m − A1(εn)εn

ω′
m − εn

, (D3)

A1(εn) = 1 + 1

εn

(
2

r

)2

λ�2T
N∑

m=1

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + (ω′
m − εn)2

× A1(ω′
m)ω′

m√
A2

1(ω′
m)ω′

m
2 + �2(ω′

m)
√

A2
1(ω′

m)ω′
m

2 + �2(ω′
m) + ζx2

A1(ω′
m)ω′

m − A1(εn)εn

ω′
m − εn

. (D4)

Now choose two initial values for unknown functions A1 and �: A1 = 1 and � = 10−3. The Gaussian quadrature is used to
integrate over variable x. After i times of iteration, we would obtain A1,i and �i, which are then substituted into the above two
equations to obtain A1,i+1 and �i+1. Repeat such calculations until the difference between i-results and (i + 1)-results vanishes.
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A1,i+1 and �i+1 are related to A1,i and �i via the following equations:

�i+1(n) =
(

2

r

)2

λ�2T
N∑

m=1

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + 4π2T 2(m − n)2

× �i(m)√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m)

√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m) + ζx2

× A1,i(m)(2m − 1) − A1,i(n)(2n − 1)

2(m − n)

+
(

2

r

)2

λ�2T
N∑

m=1

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + 4π2T 2(m + n)2

× �i(m)√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m)

√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m) + ζx2

× A1,i(m)(2m − 1) + A1,i(n)(2n − 1)

2(m + n)
, (D5)

A1,i+1(n) = 1 + 1

(2n − 1)

(
2

r

)2

λ�2T
N∑

m=1

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + 4π2T 2(m − n)2

× A1,i(m)(2m − 1)√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m)

√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m) + ζx2

× A1,i(m)(2m − 1) − A1,i(n)(2n − 1)

2(m − n)

− 1

(2n − 1)

(
2

r

)2

λ�2T
N∑

m=1

∫ 1

0
dxx exp

(
−2x

r

)
2�

�2 + 4π2T 2(m + n)2

× A1,i(m)(2m − 1)√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m)

√
A2

1,i(m)(2m − 1)2π2T 2 + �2
i (m) + ζx2

× A1,i(m)(2m − 1) + A1,i(n)(2n − 1)

2(m + n)
. (D6)

The error factors created after i times of iteration are

EPSa(i) = 1

N

N∑
n=1

|A1,i(n) − A1,i−1(n)|
|A1,i(n)| + |A1,i−1(n)| , EPSb(i) = 1

N

N∑
n=1

|�i(n) − �i−1(n)|
|�i(n)| + |�i−1(n)| . (D7)

For given values of λ and T , both EPSa(i) and EPSb(i) decrease gradually with increasing i, provided that � has nontrivial
solutions. When EPSa(i) and EPSb(i) become sufficiently small, the iteration can be terminated and the finial results of A1 and
� are obtained. In realistic calculations, we take EPSa < 10−6 and EPSb < 10−6 as the criterion for achieving convergence. If
� does not have a nontrivial solution, EPSa still becomes gradually small, but EPSb does not tend to decrease with growing i.
Actually, �i(n) would rapidly go to zero as i grows. Once �i(n), which takes a finite initial value, becomes sufficiently small,
we would take �(n) = 0 directly and terminate the iterating process. In practice, the iteration procedure can be terminated if
1
N

∑N
n=1 �i(n) < 10−9.
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