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Quantum theory of spin-torque driven magnetization switching
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Magnetization dynamics driven by the current-induced spin torque is conventionally determined by the
classical Landau-Lifshitz-Gilbert-Slonczewski equation in which the spin (magnetization) fluctuation at finite
temperature is modeled by a white-noise random field. We propose a quantum approach for current driven
magnetization switching that explicitly includes the spin fluctuation by the quantum statistics of magnon
excitations. We find that the spin fluctuation substantially reduces the critical spin torque at high temperatures.
Since the spin fluctuations are fundamentally stronger in lower-dimensional systems, this reduction is stronger
in two-dimensional (2D) than in three-dimensional magnets. The result implies that the 2D magnets may have
an advantage in terms of electrically manipulating magnetization states for spintronic applications.
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I. INTRODUCTION

Efficient magnetization switching by electric means is
highly desirable for modern magnetic storage devices such
as magnetic random access memory [1–8]. The spin torque,
generated by either the spin angular momentum transfer [9,10]
or spin-orbit coupling in a magnetic layered structure [11–15],
is a leading method for electrically switching the direction
of magnetization in various magnetic films and magnetic
multilayers. The essential physics of the spin-torque driven
switching in conventional three-dimensional (3D) magnetic
films is well understood: when the spin torque exceeds
a critical value that overcomes the damping torque, the
system becomes a negative damping system, and the orig-
inal magnetization state at a local energy minimum is no
longer stable [10,16–19]. More quantitatively, based on the
Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation in the
macrospin approximation in which all magnetic moments are
aligned with each other and the spin fluctuation is ignored,
the critical spin torque (CST) ac

J = αHK for the magnet with
a simple uniaxial anisotropy, and ac

J = α(HK + 2πMs) with
both an in-plane uniaxial anisotropy and an out-of-plane de-
magnetizing field, where α is the damping parameter, HK is
the uniaxial anisotropy field, and Ms is the saturation mag-
netization [17,20]. To model the spin fluctuations at finite
temperature, a classical frequency-independent (white-noise)
stochastic field is often used to augment the LLGS equa-
tion [21–23]. While the above approach provides a simple
and efficient method to model the current driven dynamics of
magnetization in conventional 3D magnets, such a classical
treatment is not expected to properly account for the spin
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fluctuations in low-dimensional (d � 2) magnets, where the
long-wavelength (low-energy) excitations (magnons) play an
essential role in the magnetic instability such that the classical
model fails.

In this paper, motivated by the recent experimental dis-
covery of new classes of two-dimensional van der Waals
magnets [24–29], we develop a quantum approach that ex-
plicitly takes into account the spin fluctuation and allows
us to establish an analytical self-consistent equation for the
nonequilibrium magnetization state in the presence of spin
torque, from which the CST for magnetization switching can
be deduced. We find that the CST for two-dimensional (2D)
magnets at finite temperatures could be substantially lower
than 3D counterparts.

This paper is organized as follows. In Sec. II, we describe
a simple heuristic approach to solve the anisotropic Heisen-
berg model at the equilibrium. A more rigorous proof of this
approach is shown in Appendix A. In Sec. III, we extend
the calculation to the nonequilibrium condition where a spin
torque is injected in the magnet, with the detailed formulation
given in Appendixes B and C. We present the numerical
solutions of the critical spin torque for the magnetization
switching for various parameters and temperatures in Sec. IV.
We discuss and summarize our results in Sec. V.

II. MODEL AND ITS EQUILIBRIUM SOLUTIONS

We consider the standard Heisenberg Hamiltonian with an
anisotropic exchange interaction,

Ĥ = −J
∑
〈i, j〉

Ŝi · Ŝ j − A
∑
〈i, j〉

Ŝz
i Ŝz

j − Hex

∑
i

Ŝz
i , (1)

where Ŝi is the spin operator at lattice site Ri, J and A are the
nearest-neighbor isotropic and anisotropic exchange integrals
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(J, A > 0), respectively, and Hex is the external magnetic field
along the z axis. We will use the above Hamiltonian for both
2D and 3D magnets. Nonzero A is essential for 2D mag-
nets since the isotropic exchange interaction alone is unable
to form long-range magnetic ordering [30]. Since the above
Hamiltonian has no exact solutions even in the equilibrium
state, one has to either rely on numerical simulations or make
certain approximations for analytical solutions.

We shall first present a heuristic approach to solve the
above Hamiltonian, and the justification for this approach will
be given in Appendix A. Consider the commutator relation
[Ŝ+

i , Ŝ−
j ] = 2δi j Ŝ

z
i , where Ŝ±

i = Ŝx
i ± Ŝy

i are the spin-raising
and -lowering operators, respectively, and we set h̄ = 1. If
Ŝz

i on the right-hand side is replaced by its thermal average,
〈Ŝz

i 〉 = M(T ), where M(T ) is defined as the magnetization,
we then introduce the magnon creation and annihilation oper-
ators â†

i ≡ Ŝ−
i /

√
2M and âi ≡ Ŝ+

i /
√

2M, respectively, which
satisfy the standard boson commutator relation, i.e., [âi, â†

j ] =
δi j . In Appendix A, we show that this treatment of the longitu-
dinal component of spin operator is equivalent to the random
phase approximation (RPA); that is, the correlation between
the longitudinal and transverse spin fluctuations is neglected,
within the framework of the Green’s function approach. The
excitation energy of the single magnon εq is then determined
by [âq, Ĥ] = εqâq, where âq = (1/

√
N )

∑
j â j exp(−iq · R j )

is the Fourier transformation of âi, with N being the number
of lattice sites. By using Eq. (1) and the above definition of
the magnon operators, we have

εq = 2N0M(T )[A + J (1 − γq)] + Hex, (2)

where γq = (1/N0)
∑

δ eiq·Rδ and the summation is over the
nearest-neighbor sites, with Rδ being the position vector with
respect to the original site. The magnetization M(T ) appear-
ing in the above magnon energy represents the “softening” of
the magnon dispersion relation at finite temperatures.

We point out the difference between the magnon operator
â (â†) defined here and the boson operator b̂ (b̂†) defined
in the conventional Holstein-Primakoff (HP) transformation,
Ŝ+ = (

√
2S − b̂†b̂)b̂ and Ŝ− = b†(

√
2S − b̂†b̂). If one is to

expand the square root in Taylor series of the boson oper-
ators, the second-order terms will also produce an energy
term similar to Eq. (2) [31]. However, there are two dif-
ferences. The HP transform is useful for low temperature
where (b̂†b̂)/S � 1 since one can take into account only sev-
eral leading terms. For high temperature, the HP transform
requires us to include all high-order nonlinear interactions be-
tween magnons, which are analytically unfeasible. In contrast,
our definition of magnon operators allows us to deal with
the case of any finite temperatures, and all these nonlinear
interactions are absorbed by the magnetization that needs
to be self-consistently determined. The second difference is
that, in the HP transformation, the magnetization is directly
related to the number of the magnons since Ŝz = S − b̂†b̂, or,
equivalently, M = S − 〈b̂†b̂〉. In our case, the relation between
the number of magnons and the magnetization becomes more
complicated. To see this, we use the spin operator identity
Ŝz

i = S(S + 1) − (Ŝz
i )2 − Ŝ−

i Ŝ+
i [32], and by substituting the

spin-raising and -lowering operators with â and â†, respec-

tively, and taking the thermal average, we have

M = S(S + 1) − 〈(
Ŝz

i

)2〉 − 2M

N

∑
q

〈â†
qâq〉. (3)

For the spin-1/2 case, S = 1/2, (Ŝz
i )2 = 1/4, and the above

relation becomes

M = 1

2
− 2M

N

∑
q

〈â†
qâq〉. (4)

For any other spin numbers, one needs an additional decou-
pling scheme to express 〈(Ŝz

i )2〉 in terms of 〈Ŝz
i 〉 and 〈â†

qâq〉;
we will discuss the case of an arbitrary spin number toward
the end of the paper. In the following, we shall focus on only
S = 1/2 such that a simple relation, Eq. (4), holds.

If one applies Eq. (4) to the thermal equilibrium, the num-
ber of magnons is given by the Bose-Einstein distribution,
and one can immediately rewrite Eq. (4) as a self-consistent
equation for the magnetization,

M = 1

2
− 2M

(2π )d

∫
BZ

dd q
(

1

eβεq − 1

)
, (5)

where d is the spatial dimension of the system, β = 1/kBT ,
the summation over q was replaced by an integral over the
first Brillouin zone, and we set the volume of the unit cell
to be unity. Note that the magnetization M(T ) appears in
three places since the magnon energy εq [see Eq. (2)] is
also proportional to M(T ). Equation (5) was also previously
obtained using the Green’s function formalism within the RPA
scheme [33].

III. MAGNETIZATION INSTABILITY WITH
SPIN TORQUES

Now we consider a spin-polarized current injected with the
spin polarization along the z axis, which is done to switch the
magnetization through the induced spin torque. When a spin
torque is present, the system is no longer in equilibrium, and
the Bose-Einstein distribution for the number of magnons in
Eq. (4) is no longer valid. In general, there are two types of
spin torques. The fieldlike torque is equivalent to an effective
magnetic field along the z axis, and one can thus continue
to use Eq. (5) as long as one includes the fieldlike torque as
an external field. The dampinglike torque for magnetization
switching describes the antidamping process that competes
with the magnetic dissipation, and one is unable to include
it as an effective magnetic field. Below we use the Green’s
function approach to describe the nonequilibrium properties
of the magnetization driven by the dampinglike torque. In the
presence of both the dissipation and dampinglike torque, the
retarded Green’s function (propagator) for the magnon can be
written as (see the derivation in Appendix B)

Gr (q, ω) = 1

ω − εq − 	r (ω)
, (6)

where 	r is the retarded self-energy. In the Gilbert repre-
sentation, 	r (ω) = −i(αω − aJ ), where a phenomenological
damping constant α accounts for the dissipation of magnons
and aJ is the strength of the dampinglike torque. Since the
system is not in equilibrium, there is no direct connection
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between the imaginary part of the above retarded Green’s
function and the expectation of the magnon number.

In nonequilibrium, the spin fluctuation is described by the
lesser Green’s function, defined as G<(q, t ) ≡ −i〈â†

qâq(t )〉
such that its Fourier transform determines the nonequilib-
rium magnon numbers, 〈â†

qâq〉 = i/(2π )
∫

dω G<(q, ω). In
the steady-state condition, the lesser Green’s function and its
corresponding lesser self-energy 	<(ω) satisfy the general
relation [34,35]

G<(q, ω) = Gr (q, ω)	<(ω)Ga(q, ω), (7)

where Ga(q, ω) = Gr (q, ω)∗ is the advanced Green’s
function. Physically, the lesser self-energy represents the
correlation of the magnetic fluctuation field h f associated
with the magnetic dissipation (see the details in Appendix C).
In equilibrium, the fluctuation-dissipation theorem
demands 	<(ω) = 2iIm[	r (ω)]n(ω) = −2iαωn(ω) [i.e.,
〈h f (x, ω)h∗

f (x′, ω′)〉 = 2αωn(ω)δ(x − x′)δ(ω − ω′)], where
n(ω) = 1/[eβω − 1] is the Bose-Einstein distribute function.
In the classical limit where kBT 	 ω, 〈h f (x, ω)h∗

f (x′, ω′)〉 =
2αkBT δ(x − x′)δ(ω − ω′) restores the well-known classical
white-noise fluctuation field, which has been extensively used
in the stochastic Landau-Lifshitz-Gilbert equation to capture
the spin fluctuations [36]. As shown below, it is, however,
essential to include the frequency dependence of fluctuation
field in order to derive the proper magnon occupation number.

In the presence of the spin torque, we assume that the fluc-
tuation field does not change; that is, the spin torque is treated
as a deterministic driving force which leads to an effective
damping but does not affect the randomness of the fluctua-
tion field. This assumption was previously used to study the
thermal effect of the spin torque where the temperature of
the magnetic system is kept the same with and without the
spin torque [21,37]. By using the above self-energy along with
Eq. (7), we have

〈â†
qâq〉 = 1

π

∫
dω

αωn(ω)

(ω − εq)2 + (αω − aJ )2
≈ Zq

eβεq − 1
,

(8)

where we have used the limit of small α in the second equality
and we have defined Zq = (1 − aJ/αεq)−1. By placing Eq. (8)
into Eq. (4), we obtain

M = 1

2
− 2M

(2π )d

∫
BZ

dd q
Zq

eβεq − 1
. (9)

Equation (9) is our main result for the magnetization in the
presence of the spin torque. By comparing it with Eq. (5),
we immediately see that the role of the spin torque is to
renormalize the number of magnons by a factor of Zq. For
the antidamping process (aJ > 0, Zq > 1), the spin torque
enhances the spin fluctuations, leading to an increase in the
number of magnons, which was observed using Brillouin light
scattering [38]. As the spin torque increases beyond a critical
value such that Eq. (9) no longer has a solution, consequently,
the magnetization switching occurs. Below we analyze the
detailed solutions.

IV. CRITICAL SPIN TORQUE AT FINITE TEMPERATURE

At nearly zero temperature, the magnon number is vanish-
ingly small, and the magnetic instability occurs only when Zq
approaches its divergent singularity, i.e., aJ → αεq. Since the
minimum of εq is at q = 0, we recover the classical result of
the CST ac

J → α(
 + Hex), where 
 = 2N0M(T )A is the ef-
fective anisotropy or the magnon gap. As the magnon number
increases with increasing temperature, it is expected that the
CST will decrease and the instability will occur before the
divergence of Zq. At high temperature near the Curie temper-
ature, a small spin torque could destabilize the magnetization
ordering.

The most interesting temperature range is the one in which
the magnetization M(T ) remains substantial; that is, the tem-
perature is high enough that a significant number of magnons
are excited, and meanwhile, the temperature is only a fraction
of the Curie temperature with the magnetization not far away
from the low-temperature value. To obtain quantitative values
of the CST, we rewrite Eq. (9) by m = F (m, aJ ), with

F−1(m, aJ ) = 1 + 2

(2π )d

∫
BZ

dd q
αεq

(eβεq − 1)(αεq − aJ )
,

(10)

where m ≡ M/S = 2M is the normalized magnetization. Note
that the magnon energy εq depends linearly on m, given by
Eq. (2). In Fig. 1(a), we take the 2D magnet with a square
lattice as an example and plot the curve F (m, aJ ) as a function
of m for several typical values of aJ . The solutions of Eq. (9)
are given by the intersection points of the curves of function
F (m, aJ ) and the direct proportion function with a slope of 1
[the dashed straight line in Fig. 1(a)]. For zero spin torque,
there are two solutions: one is at m = 0, representing the
paramagnetic solution, and the other is at the finite value. The
finite one is the desired ferromagnetic solution. When the spin
torque is turned on, there are two solutions of magnetization
as well. The solution with the smaller m evolves from the
paramagnetic solution in which the magnetization is small
but nonzero since the spin torque induces a net magnetization
(similar to the magnetic field induced magnetization). The
solution with the larger m is slightly smaller than that with-
out the spin torque, resulting from the enhancement of spin
fluctuations by the spin torque. As the spin torque reaches a
critical value, there is only one solution; this gives the CST at
which the magnetization starts to become unstable against the
dramatic spin fluctuations, i.e., the magnetization switching
occurs. Beyond the critical value, there is no longer a solu-
tion for the positive magnetization since the magnetization
has been switched to the opposite (−z) direction, which the
spin torque helps the magnetization to stabilize (note that,
after the magnetization switching, aJ < 0 and thus Zq < 1
since the relative direction of the magnetization and the spin
polarization of current has changed). Quantitatively, the CST
can be determined by the condition

mc = F
(
mc, ac

J

)
, (11)

∂mF
(
m, ac

J

)|m=mc = 1, (12)
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FIG. 1. (a) The graphic solutions of the magnetization as a function of spin torque. Four solid curves of the function F (m, aJ ), Eq. (10),
are shown for four typical values of the spin torque aJ = 0, 0.5ac

J , ac
J , 1.2ac

J , where ac
J is the critical spin torque (CST). When the spin torque

is smaller than ac
J , the function F (m, aJ ) has two intersection points with the dashed straight line, whose slope is 1, representing two solutions

of Eq. (9) in which the larger m is the desired ferromagnetic solution. As the spin torque aJ increases to a critical value, aJ = ac
J , there is only

one solution (red line). When the spin torque exceeds ac
J , there is no solution for the positive magnetization, indicating the magnetization has

switched to the opposite (−z) direction, where one finds the solution with a negative magnetization (see the green line). (b) The magnetization
solution as a function of the spin torque, which is normalized by α
0, where 
0 = 2N0SA is the magnon gap at zero temperature. The
numerical parameters for (a) and (b) are T = 0.4Tc, A = 0.01J , and Hex = 0 for a 2D square lattice with γq = (cos kxa + cos kya)/2 in Eq. (2),
where a is the lattice constant and Tc is the Curie temperature in the absence of spin torque.

where mc is the (normalized) magnetization at the CST of
ac

J . In Fig. 1(b), we show the desired ferromagnetic solution
as a function of the spin torque. Before the magnetization
switching, the magnetization decreases slowly with increasing
spin torque. At the CST, the magnetization switches to the
opposite direction, with its magnitude slightly larger than that
before the switching.

We next compare the CST for the 2D and 3D mag-
nets. The fundamental differences between 2D and 3D come
from the effective number of magnons. In the 3D case, the
long-wavelength magnon number is finite and scales with
temperature even if there is no gap in the magnon spectrum,
and the short-wavelength (high-energy) magnons dominate
the magnetic instability. In contrast, the 2D magnetization
is unstable at any finite temperatures without the magnetic
anisotropy due to the divergence of magnon numbers, and the
long-wavelength (low-energy) magnons control the magnetic
instability. In Fig. 2, we plot the CST as a function of the
temperature for 2D and 3D magnets. Figure 2 shows that
the CST for the 3D magnets is nearly equal to its classi-
cal value when the temperature is not too high relative to
the Curie temperature Tc, while the reduction of the CST
for the 2D magnets is much more significant even at low
temperature. Consequently, the 3D magnetization switching
dynamics could be approximately modeled by coherent mag-
netization (macrospin) rotation as long as the temperature is
not close to the Curie temperature, and thus, the micromag-
netic model [17,18] is appropriate to simulate the dynamic
trajectory of the magnetization switching. Yet the dynamic
modeling of the 2D magnetization switching would go beyond
the classical micromagnetics. Further study is required for the
2D magnetization dynamics.

V. DISCUSSION AND SUMMARY

Until now, we have used Eq. (9), which is based on the
model in the case of S = 1/2. For higher spin numbers, 〈(Ŝz

i )2〉
is no longer a constant. Instead, an additional step is required

FIG. 2. The temperature dependence of the CST normalized by
its classical value, α
(T ), where 
(T ) = N0mc(T )A is the effective
magnon gap, with mc being the magnetization (normalized by S)
at ac

J , for the 2D square and 3D cubic lattice magnets with several
different anisotropies. Here, we take Hex = 0 and γq = (cos kxa +
cos kya)/2 for the 2D square lattice and γq = (cos kxa + cos kya +
cos kza)/3 for the 3D cubic lattice.
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to reduce Eq. (3) to a self-consistent equation for the magne-
tization. In Ref. [39], Callen developed a decoupling scheme
that can express 〈(Ŝz

i )2〉 as a function of the magnetization 〈Ŝz
i 〉

and the magnon number 〈â†
qâq〉, resulting in a more complex

expression for self-consistently determining the magnetiza-
tion M(T ) at the thermal equilibrium. In Appendix D, we
extend Callen’s procedure to the nonequilibrium case and
arrive at

M = (S − Nm)(1 + Nm)2S+1 + (S + 1 + Nm)N2S+1
m

(1 + Nm)2S+1 − N2S+1
m

, (13)

where Nm = (1/N )
∑

q Zqn(εq) is the magnon density in the
presence of spin torque. It is straightforward to verify that
Eq. (13) reduces to Eq. (9) when S = 1/2.

Finally, we comment on the possible experimental observa-
tion of the temperature dependence of the CST. The material
parameters such as the magnetic anisotropy and damping con-
stant are highly temperature dependent. The effects of these
parameters were already included in the modeling of spin-
torque driven switching before taking into account the spin
fluctuation. The present study shows a significant reduction
of the CST from the spin fluctuation without altering the
temperature dependence from other sources. Another possi-
ble uncertainty is the measuring time since the longer the
measurement time is, the greater the chance is for ther-
mally assisted magnetization switching when the duration
of current pulse lasts more than a few nanoseconds, as it
has been shown both experimentally and theoretically that
the observed CST might be much reduced in the thermal
activation regions [21,40–42]. In this thermal picture, the
magnetic layer was treated as a macrospin, and the thermal
agitation is to overcome the magnetic energy barrier, known
as superparamagnetism [43], in contrast to the deterministic
magnetization switching dynamics in our present study. A
further complication might be the difficulty in determining the
quantitative relation between the spin-torque parameter aJ and
the applied electric current for particular physical systems and
materials.

In summary, we proposed a quantum theory for the current
driven magnetization switching, which allowed us to properly
address the influence of spin fluctuation on the magnetization
switching. Particularly, we showed that the CST for 2D mag-
nets can be considerably reduced at finite temperature owing
to the fundamentally strong spin fluctuations compared to
their 3D counterparts. Our work indicated that the 2D magnets
are highly suitable for energy-efficient magnetization manipu-
lation by electric means, despite the reduced thermal stability
for information storage. A realistic device design would bal-
ance the two sides of the coin, i.e., the reduced switching
current and the enhanced instability of two-dimensional mag-
nets.
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APPENDIX A: EQUIVALENCE TO THE RANDOM PHASE
APPROXIMATION WITHIN THE FRAMEWORK OF THE

GREEN’S FUNCTION APPROACH

In the main text, we introduced the boson (magnon) op-
erators, a†

i ≡ (2M )−1/2Ŝ−
i (ai ≡ (2M )−1/2Ŝ+

i ), by taking the
averaging over the longitudinal component spin in the com-
mutator, [Ŝ+

i , Ŝ−
j ] = 2δi j Ŝ

z
i ≈ 2δi jM, where M = 〈Ŝz

i 〉 is the
magnetization. In this Appendix, we show that this treatment
is equivalent to the random phase approximation (RPA) within
the framework of the Green’s function approach in which the
correlation of the longitudinal and transverse fluctuations of
spin at different sites is discarded. To see this, we first define
the following retarded spin Green’s function:

Gr
S (i, t ; j, t ′) ≡ 〈〈S+

i (t ); S−
j (t ′)〉〉

≡ −iθ (t − t ′)〈[Ŝ+
i (t ), Ŝ−

j (t ′)]〉, (A1)

which is related to the retarded magnon Green’s function
in the main text through Gr

S (i, t ; j, t ′) = 2MGr (i, t ; j, t ′),
where Gr (i, t ; j, t ′) ≡ −iθ (t − t ′)〈[âi(t ), â†

j (t
′)]〉 is the re-

tarded Green’s function of the magnon. The equation of
motion is given by

i
d

dt
Gr

S (i, t ; j, t ′)

= 〈[Ŝ+
i (t ), Ŝ−

i (t ′)]〉δ(t − t ′)δi j + 〈〈[Ŝ+
i (t ), Ĥ (t )]; Ŝ−

j (t ′)〉〉
= 2

〈
Ŝz

i

〉
δ(t − t ′)δi j + HexGr

S (i, t ; j, t ′)

+ 2A
∑

δ

〈〈
Ŝz

i+δ (t )Ŝ+
i (t ); Ŝ−

j (t ′)
〉〉

+ 2J
∑

δ

〈〈[
Ŝz

i+δ (t )Ŝ+
i (t ) − Ŝz

i (t )Ŝ+
i+δ (t )

]
; Ŝ−

j (t ′)
〉〉
,

(A2)

where the summation is over the nearest neighbor of site i.
In order to make the above equation of motion closed, it is
necessary to use an approximation to break the higher-order
Green’s functions. The simplest decoupling scheme, the RPA
which neglects the correlation of longitudinal and transverse
components of the spin operators at different sites, is used
below:〈〈

Ŝz
l (t )Ŝ+

i (t ); Ŝ−
j (t ′)

〉〉 ≈ 〈
Ŝz

l

〉〈〈Ŝ+
i (t ); Ŝ−

j (t ′)〉〉 (i �= l ). (A3)

Assuming the system is translationally invariant (the magne-
tization is thus uniform), we can write

Gr
S (i, t ; j, t ′) = 1

N

∑
q

∫
dω

2π
Gr

S (q, ω)eiq·Ri j−iω(t−t ′ ), (A4)

and then we find from Eq. (A2) that

Gr
S (q, ω) = 2M

ω − εq + i0+ , (A5)

where

εq = 2N0M[A + J (1 − γq)] + Hex (A6)

is the magnon spectrum as in the main text, with N0 being the
nearest-neighbor number and γq = (1/N0)

∑
δ eiq·Ri j . Accord-

ing to the spectrum theorem (i.e., the fluctuation-dissipation
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theorem), the equilibrium correlation function 〈Ŝ−
i Ŝ+

i 〉 is re-
lated to the imaginary part of the above spin Green’s function
through

〈Ŝ−
i Ŝ+

i 〉 = − 1

πN

∑
q

∫
dω

ImGr
S (q, ω)

eβω − 1
= 1

N

∑
q

2M

eβεq − 1
,

(A7)

with β = 1/kBT . For the simplest case of S = 1/2, the opera-
tor identity Ŝz

i = 1/2 − Ŝ−
i Ŝ+

i leads to

M = 1/2 − 〈Ŝ−
i Ŝ+

i 〉 = 1/2 −
∫

BZ

dd q
(2π )d

2M

eβεq − 1
, (A8)

where the summation over the momentum was replaced by an
integral over the first Brillouin zone. The above equation is
exactly Eq. (5) in the main text for the equilibrium magneti-
zation. When the spin torque is present, the same procedure
as in the main text can be implemented with the replacement
of G<

S (q, ω) = 2MGr (q, ω) and 	r
S (q, ω) = 	r (q, ω)/(2M ),

where 	r
S (q, ω) and 	r (q, ω) are the retarded self-energies of

the spin and magnon, respectively.
Thus, we have proven that the approach using an effective

magnon operator in the main text is equivalent to the RPA
approximation in the Green’s function formalism.

APPENDIX B: THE RETARDED MAGNON GREEN’S
FUNCTION IN THE PRESENCE OF MAGNETIC

DISSIPATION AND SPIN TORQUE

In this section, we show the retarded magnon Green’s func-
tion, Eq. (6) in the main text, can be derived by the classical
Landau-Lifshitz-Gilbert (LLG) equation. The LLG equation
with the spin torque reads

ṁ = − m × (h + h f ) + αm × ṁ + aJm × (m × ẑ), (B1)

where we omitted the space and time coordinates (x, t )
for notation simplicity; m is the unit vector of magne-
tization; h = −δU/δm represents the effective field, with
U = 1/2

∫
dr[J (∇m)2 − Am2

z ] being the magnetic energy,
where J and A are the exchange stiffness and out-of-plane
anisotropy constant, respectively; h f is the random field; α is
the Gilbert damping constant; and aJ is the parameter of the
(dampinglike) spin torque with its spin polarization along the
z direction.

The magnetization without the random field is in the posi-
tive z direction for the ground state. With the random field, the
magnetization deviates from the z direction. We may define
the complex field (magnon wave function) ψ = δmx + iδmy,
where δmx and δmy are the small transverse deviations caused
by h f . Up to the first order in h f , Eq. (B1) becomes

{i(1 + iα)∂t + J∇2 − A − iaJ}ψ (x, t ) = h f (x, t ), (B2)

where h f (x, t ) = hx
f (x, t ) + ihy

f (x, t ). The retarded Green’s
function of the magnon is then readily identified as

[i(1 + iα)∂t + J∇2 − A − iaJ ]Gr (x, t ; x′, t ′)

= δ(x − x′)δ(t − t ′). (B3)

In the momentum and frequency space,

Gr (q, ω) = 1

ω − εq + i(αω − aJ )
, (B4)

where Gr (q, ω) = ∫∫
d (x − x′)d (t −

t ′)Gr (x, t ; x′, t ′)e−iq·(x−x′ )+iω(t−t ′ ) and εq = J q2 + A is
the magnon spectrum in the continuity limit. For the discrete
spin Hamiltonian, the magnon spectrum is replaced by
Eq. (A6), and the above retarded magnon Green’s function
becomes Eq. (6) in the main text.

APPENDIX C: THE PHYSICAL MEANING OF THE
LESSER SELF-ENERGY �<

In this section, we will show that the lesser self-energy
represents the correlation of the random fluctuation field,
and thus, it is reasonable to assume in the main text that
it depends only on the properties of the thermal bath and
remains unchanged even when the spin torque is present, i.e.,
	<(ω) = −2iαωn(ω).

First, we consider the wave function of the magnon
ψ (x, t ) in the presence of the fluctuation field h f (x, t ). From
Eqs. (B2) and (B3) in Appendix B, ψ (x, t ) is related to the
fluctuation field through

ψ (x, t ) =
∫∫

dx′dt ′Gr (x, t ; x′, t ′)h f (x′, t ′), (C1)

where Gr (x, t ; x′, t ′) is the retarded Green’s function of the
magnon given by Eq. (B3) and h f (x, t ) = hx

f (x, t ) + ihy
f (x, t ).

On the other hand, the lesser Green’s function G<(x, t ; x′, t ′)
related to the magnon density [i.e., |ψ (x, t )|2] is given by the
correlation between magnon wave functions, i.e.,

G<(x, t ; x′, t ′) ∼ −i〈ψ∗(x′, t ′)ψ (x, t )〉, (C2)

where 〈· · · 〉 represents the average over the configuration of
the fluctuation field. Substituting Eq. (C1)) into Eq. (C2), we
find that

G<(x, t ; x′, t ′) ∼ −i
∫∫∫ ∫

dx1dt1dx2dt2Gr (x, t ; x1, t1)

× [Gr (x′, t ′; x2, t2)]∗〈h f (x1, t1)h∗
f (x2, t2)〉

∼
∫∫∫ ∫

dx1dt1dx2dt2Gr (x, t ; x1, t1)

× 	<(x1, t1; x2, t2)Ga(x2, t2; x′, t ′),
(C3)

where

	<(x1, t1; x2, t2) ∼ −i〈h f (x1, t1)h∗
f (x2, t2)〉 (C4)

is the lesser self-energy and Ga(x, t ; x′, t ′) = [Gr (x′, t ′; x, t )]∗
is the advanced Green’s function of the magnon. Note that the
above relation is exactly the Keldysh formalism of Eq. (7) in
the main text using the time and space coordinates, with 	<

representing the correlation of the fluctuation field from the
thermal bath. Thus, 	< is supposed to be not relevant to the
spin torque even though both Gr and Ga are.

In the main text, we used the lesser self-energy, 	<(ω) =
−2iαωn(ω), obtained from the equilibrium fluctuation-
dissipation relation in the absence of the spin torque. From
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Eq. (C4), the corresponding correlation of the fluctuation field
is 〈h f (x, ω)h∗

f (x′, ω′)〉 ∼ 2αωn(ω)δ(x − x′)δ(ω − ω′), where
h f (x, ω) = ∫

dt h f (x, t ) exp(iωt ).

APPENDIX D: THE SELF-CONSISTENT EQUATION OF
NONEQUILIBRIUM MAGNETIZATION WITH AN

ARBITRARY SPIN NUMBER

In this Appendix, we shall generalize Callen’s decoupling
scheme for the self-consistent equation of the equilibrium
magnetization with an arbitrary spin number to the nonequi-
librium case. First, we define the following retarded Green’s
function:

Gr
χ (i, j, t ) = −iθ (t )

〈[
âi(t ), eχ Ŝz

j â†
j

]〉
, (D1)

where χ is the Callen parameter. Compared to the retarded
Green’s function of the magnon (i.e., χ = 0) in the main text,
the above Green’s function is given by

Gr
χ (q, ω) = �(χ )

ω − εq − 	r (ω)
= 1

gr
χ (q, ω)−1 − 	r

χ (ω)
,

(D2)
where �(χ ) ≡ 〈[âi, eχ Ŝz

i â†
i ]〉, 	r (ω) = −i(αω − aJ ) is the

retarded self-energy of the magnon, gr
χ (q, ω) = �(χ )/(ω −

εq + i0+) is the free retarded Green’s function corresponding
to Gr

χ (q, ω), and 	r
χ (ω) = 	r (ω)/�(χ ) is the retarded self-

energy of Gr
χ . In the nonequilibrium steady state, we have the

following relation:

G<
χ (q, ω) = Gr

χ (q, ω)	<
χ (ω)Ga

χ (q, ω), (D3)

where G<
χ (q, ω) = −i

∫
dt

∫
dRi jeiωt−iq·Ri j 〈eχ Ŝz

j â†
j âi(t )〉 is

the lesser Green’s function in the frequency and momentum
space, 	<

χ (ω) is the corresponding lesser self-energy, and
Ga

χ (q, ω) = Gr
χ (q, ω)∗ is the advanced Green’s function. As

in the main text, we assume that 	<
χ remains unchanged when

the spin torque is present, i.e., 	<
χ (ω) = −2iαn(ω)/�(χ ).

Then Eq. (D3) leads to

〈
eχ Ŝz

i â†
i âi

〉 = i
∫

BZ

dd q
(2π )d

∫
dω

2π
G<

χ (q, ω)

≈ �(χ )
∫

BZ

dd q
(2π )d

Zq

eβεq − 1

= �(χ )Nm, (D4)

where in the second equality a small damping constant
is assumed and Nm = 1/(2π )d

∫
BZ dd qZq/[eβεq − 1] is the

nonequilibrium magnon density with Zq = (1 − aJ/αεq)−1.
Following Callen’s work, we define �(χ ) = 〈eχ Ŝz

i 〉, and
thereby, 〈eχ Ŝz

i â†
i âi〉 and �(χ ) of Eq. (D4) can be expressed

in terms of the differential form of �(χ ) with respect to χ .
Too see this, using the operator identities [Ŝ+

i , eχ Ŝz
i ] = (e−χ −

1)eχ Ŝz
i Ŝ+

i and Ŝz
i = S(S + 1) − (Ŝz

i )2 − Ŝ−
i Ŝ+

i , one has

�(χ ) = 1

2M

[
S(S + 1)(e−χ − 1)

〈
eχ Ŝz

i
〉 + (e−χ + 1)

〈
eχ Ŝz

i Ŝz
i

〉

− (e−χ − 1)
〈
eχ Ŝz

i
(
Ŝz

i

)2〉]

= 1

2M

[
S(S+ 1)(e−χ − 1)�(χ )+ (e−χ + 1)∂χ�(χ )

− (e−χ − 1)∂2
χ�(χ )

]
, (D5)

where we have used the definitions âi = Ŝ+
i /

√
2M and â†

i =
Ŝ−

i /
√

2M, and similarly,

〈
eχ Ŝz

i â†
i âi

〉 = S(S + 1)�(χ ) − ∂χ�(χ ) − ∂2
χ�(χ )

2M
. (D6)

Substituting Eqs. (D5) and (D6) into Eq. (D4)), one arrives at

∂2
χ�(χ ) + (1 + Nm)eχ + Nm

(1 + Nm)eχ − Nm
∂χ�(χ ) − S(S + 1)�(χ ) = 0,

(D7)
with boundary conditions

�(0) = 1, (D8a)
S∏

p=−S

(∂χ − p)�(χ )|χ=0 = 0, (D8b)

where the second boundary condition comes from the op-
erator identity

∏S
p=−S (Ŝz

i − p) = 0. The above differential
equation was previously obtained by Callen but for the equi-
librium state, while we here extend it to the spin-torque
driven nonequilibrium state. The solution of differential equa-
tion (D7) satisfying boundary conditions is given by

�(χ ) = N2S+1
m e−Sχ − (1 + Nm)2S+1e(S+1)χ[

N2S+1
m − (1 + Nm)2S+1

]
[(1 + Nm)eχ − Nm]

,

(D9)

from which the magnetization is found with

M ≡ 〈Ŝz
i 〉

= ∂χ�(χ )|χ=0

= (S − Nm)(1 + Nm)2S+1 + (S + 1 + Nm)N2S+1
m

(1 + Nm)2S+1 − N2S+1
m

,

(D10)

which is the self-consistent equation of magnetization with an
arbitrary spin number in the presence of spin torque.
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