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Spin-flip scattering in magnetic tunnel junctions: From current-voltage characteristics to
spin-transfer torque
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We examine room temperature current-voltage (IV) characteristics of CoFeB | MgO | CoFeB type of perpen-
dicularly magnetized tunnel junctions developed for memory applications. From their nonlinear bias voltage
dependence, a conductance “cross-scaling” is seen that is consistent with the involvement of inelastic spin-flip
scattering in electrodes. A phenomenological model is constructed that connects the parameters of spin-flip
scatter-related inelastic events with both magnetoresistance and spin-transfer torque. The model provides mea-
surable, electrode-specific properties such as interface exchange stiffness as it affects spin-torque performance.
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I. INTRODUCTION

The room temperature conductance of a magnetic tun-
nel junction (MTJ) commonly increases with bias, due
to mechanisms such as inelastic electron spin-flip scatter-
ing [1–7], inelastic electronic processes such as interface
charge traps [8–11], as well as elastic processes involv-
ing band-structure-specific nonlinear conductance [12,13].
While many studies have been carried out to investigate
the fundamental electronic-structures related bias depen-
dence in MTJs, relatively little has been quantified for their
room temperature properties that are important for memory
applications.

The difficulty of understanding room temperature MTJ
nonlinear behavior originates from the complexity of com-
peting mechanisms present with similar magnitudes. This is
the situation for both charge and spin-conductance analyses. It
becomes therefore challenging to isolate a unique contributing
factor in a given situation.

It however remains curious to notice that across MTJs of
many types of tunnel barriers and ferromagnetic electrodes,
a similar general behavior of conductance increase, and
corresponding TMR reduction with bias is seen—for some ex-
amples, see Ref. [1,14–18] for non-MgO-based barriers, and
Ref. [19–27] for MgO barrier based devices. It circumstan-
tially suggests a common mechanism, perhaps large enough to
be noticeable that is governing the leading order nonlinearity
at room temperature. While band-structure related effects are
present, the over-all behavior of ambient TMR versus bias
appears quite robust against different types of barriers and
electrodes.

Such ambient bias-dependent conductance is also seen in
our CoFeB-MgO-based perpendicular tunnel junctions devel-
oped for memory applications. Our observations suggest a
large portion of it is governed by tunnel electron’s spin-flip
scattering [1,5,6,14]. Earlier we described the basic observa-
tion [28]. In this paper, we expand the discussion to connect
the observation semiquantitatively to the effect of spin-flip
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scattering process on spin-transfer torque (STT), thus relating
the measured MTJ’s current-voltage (IV) characteristics to
its STT bias dependence as they both are connected to bias-
dependent spin-flip scatter rates.

II. ROOM TEMPERATURE BIAS DEPENDENCE
OF A CoFeB-MgO-CoFeB TYPE OF MTJ

An example of the IV and related bias-dependent quan-
tities are illustrated in Fig. 1. The junction shown here is
about 80 nm in diameter, with CoFeB | MgO | CoFeB type
of perpendicularly magnetized electrodes similar to what is
described in Ref [29]. Figure 1(a) contains two IV branches
corresponding to STT-induced magnetic switching between
high- and low-conductance states. The red-colored branch la-
beled “P” is for measurement with up-sweeping V, in parallel
state over the hysteresis region, and a parallel to antiparal-
lel (P-to-AP) switch at the positive threshold voltage. The
black branch labeled “AP” is the opposite branch with down-
sweeping voltage, and a corresponding AP-to-P switch at a
negative voltage threshold. This IV shown was 100 trace-
averaged on triangular voltage bias sweeps at a frequency
around 0.2 Hz.

Figure 1(b) gives the corresponding differential conduc-
tance. The zero-bias conductance corresponding to P and AP
states are designated gp0 and gap0, respectively. An empirical
transformation is made as

�p,ap(V ) = gp,ap(V ) − gp0,ap0

gap0,p0
, (1)

which translates the curves in Fig. 1(b) into that of Fig. 1(c).
Equation (1) “cross-normalizes” the P-branch’s conductance
by the AP-branche’s zero-bias conductance, and vise versa.
We note that the �p,ap(V )’s voltage dependence slope in
Fig. 1(c) has a dominant linear term, and that they show
similar slope values (mostly within 2X) for both polarities.

The second-order derivative of the IVs are shown in
Fig. 1(d). These are commonly used in tunnel spectroscopy
for detecting additional scattering channels at elevated bias
[30]. For our room temperature MTJ IVs, the blue dashed
lines in Fig. 1(c) then corresponds to the respective blue
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FIG. 1. IV characteristics related quantities of an MTJ. Room
temperature measurement. (a) The IV curve of a device. (b) The
differential conductance from (a), gD = dI/dV . The zero-bias values
are taken for gp0 and gap0 for P and AP branches. (c) The “cross-
normalized” conductance vs bias voltage, as defined by Eq. (1).
Data beyond the STT-switching thresholds are truncated. The dashed
blue lines illustrate the approximate linear voltage dependence, dis-
cussed later in Sec. 2. (d) The second-order differential conductance
d2I/dV 2. The blue dashed lines illustrate the (nearly constant) aver-
age slopes of the spectral intensity related to the slopes in (c).

dashed level-lines in Fig. 1(d). The rounding near the V = 0
origin is related to thermal smearing of low-energy electronic
states, with a reference energy scale as the ambient tem-
perature kBT ∼ 26 mV. It may also in part be due to the
presence of thermal magnons at ambient temperature. The
slope in Fig. 1(c) is otherwise rather free of strong features,
also evident from tunnel spectroscopy related second-order
derivatives shown in Fig. 1(d).

These features presented in Fig. 1 could not be directly
accounted for by zero-temperature band-structure related bias
dependence. For an in depth discussion, a closer examination
of our ambient IV curve with those from ab initio calculations
is shown in the Supplemental Material [31].

Importantly, features shown in Fig. 1 appear across many
types of different MTJ electrodes, and thus likely contain
a common bias-dependence mechanism. In what follows,
we present an empirical model demonstrating this common
mechanism as likely originating from spin-flip scattering re-
lated magnetic excitation.

III. SPIN-SEPARATED CONDUCTANCE
CHANNELS IN AN MTJ

A. Review of a simplified elastic spin-dependent tunnel model

To start, we revisit a spin-dependent magnetic tunnel junc-
tion model first introduced by John Slonczewski [32,33].
Following the assumptions in Refs. [1,10,33,34], we write
the spin subband differential charge conductance of elastic
channels between the reference (R) and free (F) electrodes
separated by a tunnel barrier as

gσ,σ ′ (V ) = dJσ,σ ′

dV
= Gσ,σ ′ (V )〈σ | σ ′〉2, (2)

FIG. 2. An illustration of the tunnel junction under consider-
ation, and definition of relevant symbols. An electrode-specific
quantity, such as the spin-flip scatter rate �, is labeled by the elec-
trode name “R” or “F” for reference or free as the first subscript,
followed by the electrode’s relative positions (“U”,“D” for upstream
or downstream), followed by the spin-flip direction from the subband
indices (“du” for a minority band electron scattering into the majority
band, and so on.)

where σ (R) and σ ′(F) = |±〉 = |ud〉1 are spin indices for R
and F tunnel electrodes subband tunnel states, respectively.
A rotation between F and R moments of angle θ gives 〈u

d|ud〉 =
cos (θ/2), and 〈u

d|du〉 = ± sin (θ/2). θ = 0 is the P state; θ =
π , the AP state. Gσ,σ ′ are the spin-channel specific electron
conductance. The geometry and indices are defined in Fig. 2.

We assume an R and F electrode “separatability” [33]
so that Gσ,σ ′ = f �Rσ�Fσ ′ , where the �s are the electrode’s
interface spin-subband average density of states in their own
spin-quantization direction, and summed over states involved
[32,33,35]. The factor f represents the band-structure re-
lated quantity in the tunnel state summation [1,33]. For
simplicity, we set f = 1 and let it be absorbed into the �s
without loss of generality for our parametrization. We also
use the low-bias limit assumption so that �Rσ�Fσ ′ is taken
as voltage-independent [33], which appears to be a reason-
able assumption for CoFe alloyed electrodes except when
approaching the very cobalt-rich limit and at biases well above
0.5 V. A more detailed discussion on this is given in the Sup-
plemental Material [31] for a side-by-side comparison with ab
initio results from Ref. [13].

1Here, we use |ud〉 rather than |±〉 [10,33,34] to indicate the majority
and minority subbands for easier tracking, as explained in Fig. 2.
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B. Adding spin-flip scattering as a leading order inelastic
bias-dependence term

We define an electrode-specific phenomenological spin-
flip scattering term

�ABpq = �(R,F)(U,D)(du,ud). (3)

From left to right, the first subscript position A = (R,F) indi-
cates the spin-flip scattering action is occurring with magnon
excitation in the R or F layer. The second subscript B = (U,D)
describes the upstream and downstream electrodes, as defined
by momentum-space direction of tunnel electrons. The third
and fourth subscripts describe the direction of spin-flip, with
(du) for minority-to-majority band electron scattering, and
(ud) for majority-to-minority.

As a leading order expansion from constant tunnel con-
ductance at low bias, assume these �ABpq-factors are the only
ones with bias-V dependence in conductance. Treat them as
the leading order correction to the low-bias elastic tunnel
expressions Eq. (2) (i.e. Eqs. (2)-(3) in Ref. [34]). Following
Ref. [10,33,34], we derive the subband elecrode- and spin-
specific conductance. The Gσ,σ ′ by Eq. (2) with the spin-flip
scattering factor Eq. (3) included now reads

Guu = �Ru�Fu + �RUdu�Fu�Rd + �FDud�Ru�Fd,

Gdd = �Rd�Fd + �FDdu�Fu�Rd + �RUud�Ru�Fd,
(4)

Gud = �Ru�Fd + �RUdu�Fd�Rd + �FDdu�Ru�Fu,

Gdu = �Rd�Fu + �FDud�Fd�Rd + �RUud�Ru�Fu.

The subband differential conductances are then computed
from spin eigenstate rotation, following the description after
Eq. (2) and in Refs. [33,34]:

gRu = Guu cos2 (θ/2) + Gud sin2 (θ/2),

gRd = Gdd cos2 (θ/2) + Gdu sin2 (θ/2),
(5)

gFu = Guu cos2 (θ/2) + Gdu sin2 (θ/2),

gFd = Gdd cos2 (θ/2) + Gud sin2 (θ/2).

The presence of the �ABpqs in Eq. (4) through Gσσ ′ necessi-
tates the distinction in Eqs. (4)–(5) of upstream vs downstream
electrons. Equations (4) and (5) as written above are explicitly
coded for the direction of electrons tunnel from reference into
the free layer, corresponding to a spin-torque-driven AP-to-P
switching direction, or, a “write-0” (W0) direction. The op-
posite voltage bias direction corresponds to a substitution of
subscripts in the form of {R, F } → {F, R} in Eqs. (4) and (5).

The sum gXu + gXd for X ∈ [F, R] in Eq. (5) should and
does give the same result as dictated by charge neutrality. It
gives the junction’s total differential conductance as g(θ ) =
g(R,F)u + g(R,F)d. The parallel and antiparallel charge conduc-
tances are of course g(0) and g(π ), respectively. For ease of
discussion below, these “collinear” conductances are further
written as gμWν (V ). To the leading order of the �s, for the two
configurations of θ = (0, π ) corresponding to μ = [0, 1], and
the two possible bias direction of ν = [0, 1], it yields

g0W0 = �Fu[�Rd(�FDdu + �RUdu) + �Ru]

+�Fd[�Ru(�FDud + �RUud) + �Rd],

g1W0 = �Rd[�Fd(�FDud + �RUdu) + �Fu]

+�Ru[�Ru(�FDdu + �RUud) + �Fd],

g0W1 = �Fu[�Rd(�FUud + �RDud) + �Ru]

+�Fd[�Ru(�FUdu + �RDdu) + �Rd],

g1W1 = �Rd[�Fd(�FUdu + �RDud) + �Fu]

+�Ru[�Ru(�FUud + �RDdu) + �Fd]. (6)

The subscripts for gμWν means “in state μ and in the bias
direction for writing to state ν”.

We then take the leading order expansion of

�ABpq ≈ ηABpqV, (7)

with V being the voltage across the MTJ, now confined to V �
0, as reverse bias is handled by an R/F index swap, discussed
below [Eq. (5)]. ηABpq are the electrode- and subband-specific
spin-flip scatter-rate’s voltage dependence slope. It is the aver-
age value of the second-order derivative d2I/dV 2 of the spin
subband, similar to what was illustrated earlier in Fig. 1 with
a measured MTJ’s IV, but here for spin subbands.

IV. CHARGE CONDUCTANCE

A sum of Eq. (5) in its angular dependent form gives the
tunnel differential conductance as

g(θ ) = gA + gB cos θ, (8)

with

gA,B = 1
2 [(1 ± �FDud ± �RUdu)�Fd�Rd

± (1 ± �FDdu ± �RUdu)�Fu�Rd
(9)

± (1 ± �FDud ± �RUud)�Fd�Ru

+ (1 ± �FDdu ± �RUud)�Fu�Ru].

This expression is for voltage bias as shown in Fig. 2, or
for the STT-direction to favor a parallel state. Borrowing a
memory-technology term, we name this the “W0” direction
of bias. For Eq. (9) to represent the opposite voltage bias
direction of “W1”, a substitution of U → D needs to be made
made.

A. Tunnel magnetoresistance (TMR)

The low-bias voltage limit of Eq. (8), where all �ABpq → 0
gives

g0(θ ) = 1
2 [(�Fd + �Fu)(�Rd + �Ru)] +
+ 1

2 [(�Fd − �Fu)(�Rd − �Ru)] cos θ. (10)

Write the tunnel density-of-state’s spin-polarization for the R
and F electrodes as

PR,F = �(R,F)u − �(R,F)d

�(R,F)u + �(R,F)d
, (11)

which leads to the expression of low-bias tunnel magnetore-
sistance mr :

mr = gp − gap

gap
= 2PFPR

1 − PFPR
, (12)

where gp = g0(0), and gap = g0(π ). PR,F are the density-
of-state spin-polarization factors of the R, F electrodes.
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A corresponding evaluation of (gp − gap)/gap including the
�ABpqs gives the leading-order bias-dependence of TMR.

B. Bias-dependent IV and spin-flip scatter

In this simplified approach, we assume the leading contrib-
utor to the bias dependence of our MTJ comes from inelastic
events related to spin-flip scatter. It then allows us to define a
set of observation-based, measurable bias-dependent reduced
conductance as

�0W0 = g0W0(V ) − g0W0(0)

g1W0(0)
,

�1W0 = g1W0(V ) − g1W0(0)

g0W0(0)
,

(13)

�0W1 = g0W1(V ) − g0W1(0)

g1W1(0)
,

�1W1 = g1W1(V ) − g1W1(0)

g0W1(0)
,

where g0Wν (0) = gp, g1Wν (0) = gap are the low-bias conduc-
tances for P and AP states.

Equation (13) are the net differential conductance increases
at elevated bias, cross-normalized to the zero-bias conduc-
tance of the opposite orientation. They are in the same form as
the empirical relation Eq. (1) discussed earlier, except for us-
ing the μW ν notation for representing the four combinations
of (collinear) moment and bias directions.

Discussions in Sec. 1 surrounding Eq. (1) give experimen-
tal observations stating that (1) �μWν ≈ ημWνV are mostly
V-proportional; and (2) they lead to a range of ημWν values
around 0.1 to 1 (1/V) [28]. The ημWν can be viewed as
the voltage mean-value of the second-order differential con-
ductance d2I/dV 2. Using ημWν together with Eq. (6), one
could express the reduced conductances in Eq. (13) in terms
of electrode-specific spin-flip scatter rate’s voltage slopes.
Namely,

η0W0 = (ηFDdu + ηRUdu)�Fu�Rd + (ηFDud + ηRUud)�Fd�Ru

�Fu�Rd + �Fd�Ru
,

η1W0 = (ηFDud + ηRUdu)�Fd�Rd + (ηFDdu + ηRUud)�Fu�Ru

�Fd�Rd + �Fu�Ru
,

η0W1 = (ηFUud + ηRDud)�Fu�Rd + (ηFUdu + ηRDdu)�Fd�Ru

�Fu�Rd + �Fd�Ru
,

η1W1 = (ηFUdu + ηRDud)�Fd�Rd + (ηFUud + ηRDdu)�Fu�Ru

�Fd�Rd + �Fu�Ru
.

(14)

This relationship can be solved to deduce the electrode-
specific ηXYpq from the measured ημWν under some simpli-
fying assumptions.

V. SPIN DIFFERENTIAL CONDUCTANCE
AND SPIN-TORQUE

The total spin current at the tunnel barrier interface can
be found by considering the pill-box around the electrode
interface at the tunnel barrier, as illustrated by the dashed
line box in Fig. 2. Unit vectors nR and nF represent the

magnetic moment direction of R and F layers respectively; eRp

and eFp are unit vectors representing the transverse in-plane
directions. We do not include the so-called out-of-plane, or
field-like torque term [36] in this analysis.

Assuming the tunnel barrier has no spin-flip scatter centers,
one can write down the angular momentum conservation rela-
tion for spin-current flowing into and out of the pill-box region
in Fig. 2. This gives, for transverse (in-plane) spin-torque of
the R and F layer moments T p(R,F) = Tp(R,F)e(Rp,Fp):

T pR + T pF =
(

h̄

2e

)
[(IRu − IRd)nR + (IFu − IFd)nF ], (15)

where I(R,F)(u,d) represents the majority and minority subchan-
nel electron current for the R and F layers.

A voltage derivative on both sides of Eq. (15) gives the
in-plane “torqance” [33] τp(R,F) = dT p(R,F)/dV on the left-
hand side, and the subchannel differential conductance pieces
[Eq. (5)] on the right-hand side. That is

τpR + τpF =
(

h̄

2e

)
[(gRu − gRd)nR + (gFu − gFd)nF ], (16)

which solves to give2

τpR =
(

h̄

4e

)
[ �Fu(1 − �FDdu) − �Fd(1 − �FDud)]

[�Ru(1 + �RUud) + �Rd(1 + �RUdu)] sin θ,

τpF =
(

h̄

4e

)
[ �Fu(1 + �FDdu) + �Fd(1 + �FDud)]

[�Ru(1 − �RUud) − �Rd(1 − �RUdu)] sin θ. (17)

A voltage integration of τp(R,F) from Eq. (17) gives the in-
plane transverse spin-torque

Tp(R,F) =
∫ V

0
τp(R,F)dV. (18)

Spin-flip scattering introduces a spin-current in the form of
magnons whose polarization remains collinear with that of the
electrodes, as long as the magnons involved in spin-flip scatter
are incoherent. Tallying up each spin-flip scatter term in the
charge transport equation for g(θ ) = gRu + gRd = gFu + gFd

gives its corresponding electrode’s magnon spin-current dif-
ferential conductance in the form of

gRm = [(�Fu + �Fd)(�RUud�Ru − �RUdu�Rd)] +
+ [(�Fd − �Fu)(�RUud�Ru + �RUdu�Rd)] cos θ,

gFm = [(�Ru + �Rd)(�FDud�Fd − �FDdu�Fu)] −
− [(�Rd − �Ru)(�FDud�Fd + �FDdu�Fu)] cos θ. (19)

The voltage-integration of g(R,F)m in spin unit gives the
total magnon spin current as

I(R,F)ms =
(

h̄

2e

)∫ V

0
g(R,F)mdV. (20)

These expressions above, Eqs. (15)–(20), are specific to
spin-torque current polarity corresponding to driving an AP-
to-P, or write-0 (“W0”) transition. For the opposite polarity, a

2Eq. (17) to be taken to the leading (first) order of �ABpq only.
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{“R”→ “F”, “F”→ “R” } substitution in the above Eqs. (15)–
(17) and Eq. (19) is needed.

VI. TORQUE AND MAGNON CURRENTS UNDER
SIMPLIFYING APPROXIMATIONS

These general expressions shown above contain too many
unknown parameters for direct comparison with experiments.
Below, we consider two specific approximation cases, where
the number of parameters is reduced to a manageable level.

Two intuitive approach to the reduction of scatter parame-
ters are (1) assuming upstream spin-flip rates are much lower
than that of the downstream, as upstream tunnel electrons
dynamics occur at the Fermi level, whereas downstream elec-
trons are Vw above, giving rise to strongly V-dependent scatter
rate; and (2) the “du” (or down-to-up) scatter rate is likely
higher than “ud” for temperatures well below the magnetic
ordering exchange energy.

Another simplification method is to examine MTJs with
symmetric RL and FL interfaces with the MgO barrier, so that
the density-of-state (DOS) related spin-polarizations can be
treated as symmetric.

Below, we examine these approximation in combination to
reach some quantitative estimates possible for experimental
comparison.

A. Case I. Low-temperature, symmetric spin-
polarization for both electrodes

In case I, we assume only low-temperature limit, where
�XYdu 	 �XYud → 0 for X ∈ [R, F ], and Y ∈ [U, D]. We also
assume a nearly symmetric electrode spin-polarization, that
is PR ≈ PF ≈ P. The spin-flip scatter rates are assumed to be
different for the R, F electrodes, and we allow a non-negligible
upstream spin-flip scatter rate �XUdu = ηXUduV . That is with
ηXUdu > 0 for X ∈ (R, L).

Under these assumptions, one has

�d = 1 − P

1 + P
�u,

mr = 2P2

1 − P2
, (21)

gp = 2(1 + P2)

(1 + P)2 �2
u.

In the case I limit, the spin-torque and magnon spin-current
expressions from Eq. (17) and Eq. (19) can be simplified to

read

τpR,W0 ≈ τ0

[
1 − (1 + P)ηFDdu − P(1 − P)ηRUdu

2P
V

]
,

τpR,W1 ≈ τ0

[
1 − P(1 + P)ηFDdu + (1 − P)ηRUdu

2P
V

]
,

τpF,W0 ≈ τ0

[
1 + (1 − P)ηFUdu + P(1 − P)ηRDdu

2P
V

]
,

τpF,W1 ≈ τ0

[
1 + P(1 − P)ηFUdu − (1 + P)ηRDdu

2P
V

]
, (22)

where τ0 = P

1 + P2
(

h̄

2e
)gp sin θ is the elastic spin-torqance

expression.
The corresponding magnon differential spin-conductance

can be written as

gRmW0 ≈ −gp

(
1 − P

1 + P2

)
(1 + P cos θ )ηRUduV,

gRmW1 ≈ −gp

(
1 + P

1 + P2

)
(1 − P cos θ )ηRDduV,

gFmW0 ≈ −gp

(
1 + P

1 + P2

)
(1 − P cos θ )ηFDduV,

gFmW1 ≈ −gp

(
1 − P

1 + P2

)
(1 + P cos θ )ηFUduV, (23)

and the electrode-specific ηXYpq expressed in measured ημWν

follows, from Eq. (14), (21):

ηRUdu = (1 + P)2η0W0 − (1 + P2)η1W0

2P
,

ηRDdu = (1 + P2)η1W1 − (1 − P)2η0W1

2P
,

ηFUdu = (1 + P)2η0W1 − (1 + P2)η1W1

2P
,

ηFDdu = (1 + P2)η1W0 − (1 − P)2η0W0

2P
. (24)

The case I assumption is likely only for very limited experi-
mental cases where one could claim symmetric tunnel density
of states for electrodes on either side of the tunnel barrier.
Once one deviates from that (with dissimilar electrodes at the
interface for R and F), the case I assumption is no longer valid.

The case I relationship between ημWν and ηXYpq can also
be written in matrix form which reads

⎡
⎢⎣

η0W0

η1W0

η0W1

η1W1

⎤
⎥⎦ = 1

2(1 + P2)

⎡
⎢⎢⎣

1 + P2 1 + P2 0 0
(1 + P)2 (1 − P)2 0 0

0 0 1 + P2 1 + P2

0 0 (1 + P)2 (1 − P)2

⎤
⎥⎥⎦

⎡
⎢⎣

ηFDdu

ηRUdu

ηRDdu

ηFUdu

⎤
⎥⎦. (25)

The use for case I approximation is, for such symmetric
junction electrodes, one should be able to establish an upper
limit for the amount of upstream spin-flip scatter that is likely
to be present in these structures. Once confirmed by experi-
ments that the upstream spin-flip scatter rate is likely far lower

than that of the downstream, one could employ the case II
approximation with more confidence.

One challenge of this approach may lie in the strong depen-
dence of ηXUdu on η0Wν , which appears for high MR junctions
to have a lot more variations, some with bias-V dependent
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features in �(V ) in addition to the linear-V dependence. The
exact causes of these variability is still under investigation,
it may well be related to interface composition and texture
dependent band-structure-related conductance variations in
Ref. [13] and further discussed in the Supplemental Material
[31]. Such variability makes the deduction of ηXUdu less reli-
able than that of ηXDdu, which is more strongly dependent on
η1Wν , and which has less variability experimentally.

B. Case II. Asymmetric spin-polarization for electrodes,
assuming no upstream spin-flip scatter

In case II, we assume asymmetric spin-polarizations for R
and F electrodes, but neglect upstream spin-flip scatter terms,
i.e., let �XUdu → 0 for X ∈ (R, L). These give

�(R,F)d = 1 − P(R,F)

1 + P(R,F)
�(R,F)u,

mr = 2PFPR

1 − PFPR
,

gp = 2(1 + PFPR)

(1 + PF)(1 + PR)
�Fu�Ru. (26)

The case II spin-torqances within low-temperature limit of
�XYdu 	 �XYud → 0 read

τpR,W0 ≈ τ1

(
2PF

1 + PFPR

)[
1 −

(
1 + PF

2PF

)
ηFDduV

]
,

τpR,W1 ≈ τ1

(
2PF

1 + PFPR

)[
1 +

(
1 + PR

2

)
ηRDduV

]
,

(27)

τpF,W0 ≈ τ1

(
2PR

1 + PFPR

)[
1 +

(
1 + PF

2

)
ηFDduV

]
,

τpF,W1 ≈ τ1

(
2PR

1 + PFPR

)[
1 −

(
1 + PR

2PR

)
ηRDduV

]
,

with τ1 = (h̄/4e)gp sin θ defines the prefactor.
The effect of a voltage-dependent spin-flip scattering pro-

cess effectively changes the apparent tunnel density-of-states
of the electrode underwent such spin-flip scattering. That is
why the FL torqance is voltage modified by the RL PR and
vice versa [33]. The sign of the voltage term reflects the effect
of such a term on the overall electron-transported angular
momentum. A minority-band dominant spin-flip scattering
reduces the torque (as in the case of W1), whereas a majority-
band dominant spin-flip enhances the torque. The same can be
observed in Eq. (22) for case I, albeit with a somewhat more
complex form.

The corresponding magnon spin-conductance expressions
are

gRmW0 ≈ 0,

gRmW1 ≈ −gp

(
1 + PR

1 + PFPR

)
(1 − PF cos θ )ηRDduV,

gFmW0 ≈ −gp

(
1 + PF

1 + PFPR

)
(1 − PR cos θ )ηFDduV,

gFmW1 ≈ 0. (28)

There is also a corresponding translation between the mea-
sured ημWν and electrode-specific ηXDdu for X ∈ [R, F ]. From

FIG. 3. An illustration of the transverse spin-torque on F layer as
τpF,W0,1 in case II limit. The parameters used are listed in the figure.
The reduced spin-torque vs bias (normalized by the elastic term) is
calculated using Eqs. (27) and (18).

Eqs. (14), and (26), and assuming PR → 1:3

ηFDdu ≈ η1W0,

ηRDdu ≈ (1 + PF)2η1W1 − (1 − PF)2η0W1

4PF
, (29)

with PF = mr/P2
R(2 + mr ) and PR ∼ 1 one could calculate

an MTJ’s electrode specific spin-flip scatter rate slope, and
thereby assess its electrode’s magnetic state at MgO tunnel
barrier interface.

One may also express ημWν in terms of ηXYpq. These follow
from Eq. (14). For case II and high PR = 1 − ε with ε 
 1 but
a nonunity PF < 1 gives

η0W0 ≈ ηFDud + ε
(1 + PF)(ηFDdu − ηFDud)

2(1 − PF)
,

η1W0 ≈ ηFDdu − ε
(1 − PF)(ηFDdu − ηFDud)

2(1 + PF)
,

η0W1 ≈ ηRDdu − ε
(1 + PF)(ηRDdu − ηRDud)

2(1 − PF)
,

η1W1 ≈ ηRDdu + ε
(1 − PF)(ηRDdu − ηRDud)

2(1 + PF)
, (30)

which makes η0W0 especially sensitive to the details of PF as
its leading term itself ηFDud is likely small compared to other
ηXYpqs.

VII. DISCUSSION

A. Spin-flip scattering and transverse spin-torque

For the two switchable configurations of 1
0W

0
1 , spin-flip

causes downstream STT-switching torque to increase from
its elastic linear V-dependence limit, and upstream switching
torque to decrease. This can be seen in both cases I and II

3For simplicity, we skipped the expressions for PR < 1, and those
for ηXDud which are cumbersome. Further, they are sensitive to PR,F,
making their extraction from measured ημWμ unreliable.
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in Eqs. (22) and (27). An illustration with the case II limit
is shown in Fig. 3. This illustrates the effect of magnon
excitation in the F layer is to enhance the W0 spin-torque
on F layer, whereas the excitation in R layer goes to reduce
W1 spin-torque on the F layer, due to reduced net magnetic
polarization. The spin-flip scatter parameters used in Fig. 3 are
representative values consistent with our experiments. Thus
spin-flip scattering in MTJs should have observable effects
on dissipative spin-torque, especially at higher bias voltage
end around 0.5 V or so. This mechanism would result in
more efficient switching at high bias for W0, and less efficient
high-bias switching for W1.

B. Spin-flip scattering and magnon spin-current

Spin-flip scattering generated magnon spin-current can be
estimated with Eqs. (23) and (28) for our two simplified cases
also. For comparison with magnetic moment related discus-
sions, it is often convenient to write the magnon current in
Bohr magnetons. Through Eq. (20), the magnon spin-current
can be converted to Bohr-magneton current, and be used to
estimate the amount of magnetic moment reduction.

For case II, combining Eq. (28) with (20) gives a magnon
moment current of the form for F layer and in the “1W0”
direction a magnon magnetic moment current of IFm1W0 =
εF1W0V 2, with

εF1W0 ≈ gp

(μB

e

) (1 + PF)(1 + PR)

2(1 + PFPR)
ηFDdu. (31)

Note IFm0W1 = 0 in the case II limit.

C. Spin-flip scattering related magnon numbers

The added magnon excitation from IFm1W0 increases the
number of magnons nFm from its thermal equilibrium value.
Assume a near thermal distribution with a relaxation rate of
τFm, and if the added magnon number density per unit area in
the F layer due to the magnon generation current is nFm, then

dnFm

dt
= −nFm

τFm
+ |IFm|

2μB
→ 0, (32)

in steady state. This gives nFm in IFm and τFm as

nFm ≈
(

τFm

2μB

)
IFm ≈

(
τFm

2μB

)
εF1W0V

2
w . (33)

The value of of τFm is not well known. If the magnon-
magnon scattering relaxation speed is faster than magnon-
lattice relaxation, it is possible for the additional hot-electron-
generated magnons to condense at the low-energy end of
the magnon dispersion spectrum. On the other hand, if the
magnon-magnon relaxation speed is comparable or slow
compared to magnon-lattice, one expect a nearly thermal dis-
tribution, with a slightly elevated magnon bath temperature.

For the former scenario, one expects a τFm of the order of
1/αωk with k → π/a where a is the MTJ diameter. That could
result in some very long-living magnon states with τFm ∼ 0.1
to 1 ns, dominated by the low-lying standing wave energy.

If it is the later scenario, then τFm is associated with a
frequency comparable to kBT . If ambient temperature and
α ≈ 0.01, then τFm ≈ h/kBT α ≈ 16 ps.

Using Eq. (33), one gets an estimate of the magnons gen-
erated by the spin-flip scattering tunnel electrons. Converting
it to effective magnetic moment-thickness product (so as to
render it a per unit area quantity, where t is film thickness
of the FL electrode), the net reduction of the FL’s saturation
magnetization by the amount of Mseff = Ms − Msf , and

Msft = 2μBnFm ≈ τFmεF1W0V
2
w, (34)

or equivalently

Mseff ≈ Ms

[
1 −

(τFmεF1W0

Mst

)
V 2

w

]
. (35)

This relation can be compared with experiment. Note the
bias dependence of Eq. (35) is of the same form as if the F
layer moment is being reduced by Joule heating, even though
here the reduction is not due to increased thermal magnons
but originates from hot-electron spin-flip scattering induced
incoherent magnons.

Within the assumptions of case II, there is no upstream
spin-flip scattering, consequently, εF0W1 = 0.

VIII. COMPARISON WITH EXPERIMENTS

In real-life device structures, there are other factors influ-
encing switching asymmetry, including band-structure effects
(discussed extensively above and in the Supplemental Mate-
rial [31]), Joule heating [37,38], chirality-dependent dynamic
dipolar coupling between F layer and R layer [39], voltage-
induced perpendicular anisotropy change [40–42], and other
more subtle effects such as edge- vs center-nucleation of
reversal volume when the MTJ diameter is comparable or
larger than layer’s exchange length, and high-frequency in-
terface magnetodynamics [29,43]. It is often nontrivial to
isolate individual contributions to spin-flip scattering related
effects.

We now examine experimental data for comparison with
major model expectations using our perpendicularly magne-
tized (PMA) MTJs of CoFeB | MgO | CoFeB type [44,45].
These MTJs have their thin-film stacks similar to Ref. [46,47].
Films are based on a ∼1.7 nm thick CoFeB free-layer (F),
and a synthetic antiferromagnetic (SAF) reference layer (R),
sputter deposited at ambient temperature, followed by a vac-
uum anneal around 300–400 ◦C for 1 h prior to fabrication.
Device diameter ranges from 15–150 nm as estimated from
resistance, and selectively calibrated via scanning electron
microscopy. Tunnel magnetoresistance is of the order ∼100%.
The resistance-area product (RA, or rA) ranges from ∼5 to 30
�μm2. For investigation on the roles of tunnel barrier facing
F-layer magnetic properties, various dopants are introduced in
sub-Ångstrom form into the F layer.

We take a case II limit, which assumes asymmetric PR,F

and with the simplifying assumption of PR → 1 and mr di-
rectly relates to PF, as discussed below [Eq. (29)], and as
discussed in the section above. This is an approximation to
reduce the number of materials parameters. It is justified by
the sample set in this study, where the RL is kept with the
same design that is known to give TMR 	 100% for simple
CoFeB electrodes, whereas the FL is studied with materials
modifications such as interface element doping.
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FIG. 4. rA and interface doping varied set of MTJs’ spin-flip
scattering coefficient as deduced from their IV curves and through
Eq. (29) with the case II assumption discussed in the text, for ηXYdu

with XY ∈ [FD,RD]

Figure 4 shows results of junctions from five different sam-
ple wafers. About 100 junctions from each wafer in the size
range between approximately 30 to 40 nm are analysed using
their IV curve deduced FL and RL spin-flip scatter rate coeffi-
cient as defined by Eq. (29). The samples are from two groups,
each with an intentional rA change by different MgO barrier
thicknesses. Wafers 50 and 90 have rA ≈ 10 and 20 �μm2,
respectively, whereas wafers 130, 150, and 170 have rA ≈ 9,
12, and, 19 �μm2. The first group of Wafers 50 and 90 have
a simple MgO | 1.8nm CoFeB | cap tunnel barrier interface,
whereas for wafers 130, 150, and 170, the FL interface has
the nominal structure of MgO | 0.1nm V | 1.8nm CoFeB | cap.

Two observations can be made for these two groups of
samples. (1) The IV-deduced ηFDdu is insensitive to the varia-
tions of MTJ rA as it is tuned by MgO barrier thickness, and
(2) The value of ηFDdu is very sensitive to 1 Å of vanadium
doping at the MgO-CoFeB interface4. As discussed above,
ηFDdu ∝ 1/AexF with AexF representing the FL’s tunnel barrier
interface region exchange energy. The correlation between in-
terface vanadium doping and an increase in ηFDdu is consistent
with V-doping’s effect of reducing ferromagnetic coupling.

The values of ηRDdu appear to be less sensitive to either rA

change or doping. This is consistent with the constant lower
interface structure at the RL | MgO interface. The small rise
of ηRDdu upon FL V-doping should probably not be taken
seriously, as our case II assumption is relatively crude in terms
of describing real-life experimental data.

To more directly probe the strength of spin-torque the FL
receives during switching, we also examined another exper-
imental sample set including a RL design similar to the one
mentioned above, while the FL’s doping is varied. We use the
write-error’s inverse log-linear slope against write voltage as a
proxy for the strength of spin-torque [48–51]. The ratio of the

4Describing the ambient temperature film deposition sequence, and
not necessarily reflective of the final elemental position state upon
postdeposition annealing.

FIG. 5. Experimental measurement of various tunnel devices
with different FL composition. The measured inverse write-error
slope of δVw/δlog10εr is plotted against 1/ηFDdu from the same
junction’s IV curve using Eq. (29). Each data point is an average
from ∼102 junctions from the same layer structure and size-group
on the same wafer and location. The sizes examined in this dataset
is restricted to 25 to 35 nm in diameter. Data are presented with two
different switching pulse widths at 3 and 5 ns.

resulting write error rate’s inverse log slopes (WER slope, in
unit of mV/decade of error reduction) from the W0/W1 direc-
tions [49] using two different write-pulse widths (3 and 5 ns)
are plotted against the same junction IV-deduced 1/ηFD ∝
AexF. We see the WER slope’s W0/W1 slope ratio increases
in value when the corresponding junction’s IV-deduced FL
interface Aex,F ∝ 1/ηFDdu increases, as illustrated in Fig. 5.

These results suggest for enhanced FL spin-flip scatter
rate ηFDdu, corresponding to a weakened FL-barrier interface
magnetic exchange energy, there is a corresponding increase
in W0 direction switching efficiency, or a steeper switching
write-error slope with fewer mV/decade for error reduction.
This is consistent qualitatively in trend as one would expect
from the discussions surrounding Fig. 3, providing experi-
mental evidence that a spin-flip scattering mediated nonlinear
spin-torque effect is at play.

IX. CONCLUSIONS

Spin-flip scattering due to hot tunnel electrons in an spin-
torque switched MTJ results in asymmetric spin-torque in
“0W1” and “1W0” directions, giving relatively higher an-
tidamping torque at elevated bias for the 1W0 direction
than to 0W1. Among many other mechanisms contributing
to W0/W1 asymmetries in an MTJ for memory applica-
tions, such spin-flip scattering contribution makes it relatively
harder for “0W1” switch at high speed (i.e. high bias Vw)
compared to “1W0” for typical MTJs with MgO-barrier and
a CoFeB-like ferromagnetic electrodes. Spin-flip scattering
also leads to a reduction of moment on the F-layer side in
“1W0” direction, and an R-layer moment reduction in “0W1”
direction. A correlation between IV-deduced spin-flip scatter
rate as signified by a “cross-normalized” conductance vs bias
slope and that of switching W0/W1 asymmetry is expected,
consistent with experimental observations in our data.
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