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Spin-lattice model for cubic crystals
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We present a methodology based on the Néel model to build a classical spin-lattice Hamiltonian for cubic
crystals capable of describing magnetic properties induced by the spin-orbit coupling like magnetocrystalline
anisotropy and anisotropic magnetostriction, as well as exchange magnetostriction. Taking advantage of the
analytical solutions of the Néel model, we derive theoretical expressions for the parametrization of the exchange
integrals and Néel dipole and quadrupole terms that link them to the magnetic properties of the material. This
approach allows us to build accurate spin-lattice models with the desired magnetoelastic properties. We also
explore a possible way to model the volume dependence of magnetic moment based on the Landau energy. This
feature allows us to consider the effects of hydrostatic pressure on the saturation magnetization. We apply this
method to develop a spin-lattice model for BCC Fe and FCC Ni, and we show that it accurately reproduces
the experimental elastic tensor, magnetocrystalline anisotropy under pressure, anisotropic magnetostrictive
coefficients, volume magnetostriction, and saturation magnetization under pressure at zero temperature. This
work could constitute a step towards large-scale modeling of magnetoelastic phenomena.
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I. INTRODUCTION

Magnetoelastic interactions couple the motion of atoms
in a magnetic material with atomic magnetic moments and
allow us to transfer mechanical and thermal energies between
phonon and magnon subsystems [1]. Magnetoelasticity is of
great interest for applications, but also from a fundamental
point of view. For instance, precise control of magnetiza-
tion through a mechanical excitation of the motion of atoms
in magnetic materials, and vice versa, has enabled the de-
velopment of a wide range of technological applications
such as sensors (torque sensors, motion and position sensors,
force and stress sensors) and actuators (sonar transducers,
linear motors, rotational motors, and hybrid magnetostric-
tive/piezoelectric devices) [2–5]. Similarly, the combination
of magnetism and heat is exploited in many applications
like heat-assisted magnetic recording (HAMR) [6], thermally
assisted magnetic random access memory (MRAMs) [7], ul-
trafast all-optically induced magnetization dynamics [8,9],
magnetic refrigeration [10], and biomedical magnetic hyper-
thermia [11].

Magnetoelastic effects can also have a strong influence
on the thermomechanical properties of materials. This is, for
example, the case of the phononic component of the ther-
mal conductivity. Though magnon-phonon scattering, it can
abruptly change through magnetic phase transitions [12,13].
For metallic oxides presenting strong magnetoelastic effects,
and for which accurate thermal conductivity predictions can
be of practical importance (such as uranium dioxide [14]), the
development of accurate numerical models is still an ongoing
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process. Similarly, magnetoelastic effects can also play an
important role in the thermal expansion of magnetic materials
like in Invars, where volume magnetostriction is large enough
to cancel the normal thermal expansion, leading to nearly zero
net thermal expansion over a broad range of temperatures
[15].

Presently, the theoretical and modeling techniques have
reached a great level of development and accuracy to describe
the uncoupled dynamics of magnons and phonons at different
spatial and time scales. Typically, in magnetic materials this is
done by constraining or neglecting either the motion of atomic
magnetic moments or atoms. For example, in spin-polarized
ab initio molecular dynamics (AIMD) magnetic moments are
constrained in certain directions and only atomic positions are
updated in each time step, while in classical atomistic spin
dynamics (SD) and molecular dynamics (MD) the motion of
atoms or spins is neglected, respectively [16–18]. However,
it is still a challenge to find suitable modeling approaches to
deal with processes where the interaction between magnons
and phonons is essential, like in magnetocaloric and magne-
toelastic phenomena. The lack of such models is limiting the
multiscale design of materials suitable for relevant technolog-
ical applications based on these physical processes. Recently,
novel attempts to address this problem have been proposed.
Stockem et al. demonstrated that for small supercells, a con-
sistent interface can be designed to couple spin-polarized
AIMD and classical SD [19]. Although offering an excellent
level of accuracy, this approach presents the space and time
scale limitations of first-principles approaches and does not
appear to be suited for running mesoscale magnetoelastic
simulations. Another concept, referred to as spin-lattice dy-
namics, is based on the combination of classical spin and
molecular dynamics (SD-MD), which includes the spatial de-
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pendence of exchange integrals in the spin equation of motion,
among other features [20–26]. The computational cost of this
classical approach scales linearly with the number of magnetic
atoms in the system [26]. Combined to accurate massively
parallel algorithms, this enables the simulation of multimillion
magnetic atom systems on time scales sufficient to accurately
study magnon-phonon relaxation processes [22,26].

These ideas have opened up interesting opportunities and
questions about how to model and study magnetocaloric and
magnetoelastic phenomena within a multiscale approach. In
particular, the coarse-grained modeling of spin-orbit cou-
pling (SOC) through magnetocrystalline anisotropy (MCA)
in SD-MD is currently a bottleneck of this issue [27,28]. The
single-ion model of MCA is widely used in SD, but unfortu-
nately it does not couple atom and spin degrees of freedom.
This drawback can be overcome using the Néel model (two-
ion model) that reproduces the correct symmetry of MCA and
couples atom and spin motion. Hence, despite some limita-
tions of the Néel model concerning nonmagnetic atoms and its
phenomenological nature [29], it seems a promising starting
point to build a SD-MD model capable of simulating mag-
netocaloric and magnetoelastic phenomena. In this work, we
propose a general procedure to find the parameters of the Néel
model within the Bethe-Slater curve [30–32] that reproduces
the MCA, isotropic and anisotropic magnetoelastic properties,
and magnetization under pressure for cubic crystals at zero
temperature accurately.

II. METHODOLOGY

A. Spin-lattice Hamiltonian

In the following discussion, we consider the spin-lattice
Hamiltonian

Hsl(r, p, s) = Hmag(r, s) +
N∑

i=1

pi

2mi
+

N∑
i, j=1

V (ri j ), (1)

where ri, pi, si, and mi stand for the position, momentum,
normalized magnetic moment, and mass for each atom i in the
system, respectively, V (ri j ) = V (|ri − r j |) is the interatomic
potential energy, and N is the total number of atoms in the
system with total volume V . Here, we include the following
interactions in the magnetic energy

Hmag(r, s) = −μ0

N∑
i=1

μi(v)H · si − 1

2

N∑
i, j=1,i �= j

J (ri j )si · s j

+HL(v) + HNéel(r, s), (2)

where μi(v) is the atomic magnetic moment that depends on
the volume per atom of the system v = V/N , μ0 is the vacuum
permeability, H is the external magnetic field, and J (ri j ) is the
exchange parameter. The quantity HL is the Landau energy
[22,33–35]

HL(v) =
N∑

i=1

(
Aiμ

2
i (v) + Biμ

4
i (v) + Ciμ

6
i (v)

)
, (3)

where Ai, Bi, and Ci are parameters, while HNéel is the Néel
interaction

HNéel = −1

2

N∑
i, j=1,i �= j

{
g(ri j ) + l1(ri j )

×
[

(ei j · si )(ei j · s j ) − si · s j

3

]

+ q1(ri j )

[
(ei j · si )

2 − si · s j

3

][
(ei j · s j )

2 − si · s j

3

]

+ q2(ri j )

[
(ei j · si )(ei j · s j )

3 + (ei j · s j )(ei j · si )
3

]}
,

(4)

where ei j = ri j/ri j , and

l1(ri j ) = l (ri j ) + 12
35 q(ri j ),

q1(ri j ) = 9
5 q(ri j ),

q2(ri j ) = − 2
5 q(ri j ). (5)

In the case of a collinear state (si ‖ s j), Eq. (4) is reduced to

HNéel = −1

2

N∑
i, j=1,i �= j

{
g(ri j ) + l (ri j )

(
cos2 ψi j − 1

3

)

+ q(ri j )

(
cos4 ψi j − 6

7
cos2 ψi j + 3

35

)}
, (6)

where cos ψi j = ei j · si. The Néel energy reproduces the cor-
rect symmetry of MCA and magnetoelastic energy [29]. It is
convenient to use g(ri j ) to offset the exchange and Landau
energy in order to allow the forces and pressure become zero
at the ground state, as detailed in Ma et al. [20]. To do so, we
write this function as

g(ri j ) = −J (ri j ) + 2

N − 1

(
Aiμ

2
i (v) + Biμ

4
i (v) + Ciμ

6
i (v)

)
.

(7)

This offset does not affect the precession dynamics of the
spins. However, it allows us to offset the corresponding
mechanical forces. This particular choice of the offset also im-
plies that the spatial dependence of the exchange and Landau
energy is not taken into account in the evaluation of the mag-
netic energy at the ground state. The combination of exchange
and Landau energies (Heisenberg-Landau Hamiltonian) deter-
mines the value of magnetic moments [33]. In this model, we
effectively take into account this fact by parametrizing the vol-
ume dependence of magnetic moment using first-principles
calculations. The spatial dependence of the exchange and Lan-
dau energy would also contribute to the total energy when the
lattice parameter is modified, influencing the energy versus
volume curve from which the equation of state and elastic
properties are derived. However, the lack of this contribution
in the model should not compromise its accuracy as long
as the interatomic potential V (ri j ) correctly reproduces the
equation of state and elastic properties. Typically, interatomic
potentials are developed and designed for this purpose. As a
result of this offset, we see that the second term in Eq. (7)
cancels with the Landau energy, so that we can simplify the
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magnetic Hamiltonian Eq. (2) by removing the Landau energy

Hmag(r, s) = −μ0

N∑
i=1

μi(v)H · si − 1

2

N∑
i, j=1,i �= j

J (ri j )si · s j

+HNéel(r, s), (8)

and setting

g(ri j ) = −J (ri j ). (9)

Consequently, this approach has the advantage that it avoids
the calculation of the parameters Ai, Bi, and Ci in the Landau
energy [Eq. (3)]. As shown in Sec. III B, the parametrization
of the volume dependence of magnetic moment might be
simpler than the calculation of the parameters in the Landau
energy [33]. According to the Néel model, function g(ri j )
can be linked to the volume magnetostriction induced by the
exchange interactions (isotropic magnetostriction) [36]. The
Néel dipole [l (ri j )] and quadrupole [q(ri j )] terms can describe
the effects induced by SOC and crystal field interactions like
MCA and its strain dependence (anisotropic magnetostriction)
[36]. Here, we take into account the spatial dependence of
J (ri j ), l (ri j ), and q(ri j ) using the Bethe-Slater curve, as im-
plemented in the SPIN package of LAMMPS [26]

J (ri j ) = 4αJ

( ri j

δJ

)2[
1 − γn

( ri j

δJ

)2]
e−

(
ri j
δJ

)2

�(Rc,J − ri j ),

l (ri j ) = 4αl

( ri j

δl

)2[
1 − γl

( ri j

δl

)2]
e−

(
ri j
δl

)2

�(Rc,l − ri j ),

q(ri j ) = 4αq

(
ri j

δq

)2[
1 − γq

(
ri j

δq

)2]
e−

(
ri j
δq

)2

�(Rc,q − ri j ),

(10)

where �(Rc,n − ri j ) is the Heaviside step function and Rc,n

(n = J, l, q) is the cutoff radius. The parameters αn, γn, and
δn (n = J, l, q) must be determined in order to reproduce
the Curie temperature (TC) and volume magnetostriction (ωs)
via J (ri j ), as well as anisotropic magnetostriction and MCA
through l (ri j ) and q(ri j ). The parametrization of J (ri j ) with
the Bethe-Slater curve is a well established procedure. For
instance, to find the values of αJ , γJ , and δJ , one can fit the
Bethe-Slater curve to exchange parameters calculated with
density functional theory (DFT) at fixed equilibrium positions
at zero temperature [26]. However, in some cases this proce-
dure might lead to spin-lattice models that do not reproduce
correctly either TC or ωs. Hence, a strategy to parametrize
J (ri j ) using the Bethe-Slater function in order to simulate
correctly these properties is highly desirable. Similarly, the
parametrization of l (ri j ) and q(ri j ) with the Bethe-Slater curve
is a quite new approach, so that it is not clear how to obtain
the values of these parameters yet. In Sec. II B, we propose a
general procedure to obtain these parameters for cubic crystals
based on the theoretical analysis of the Néel model [36].
In Sec. III B we explore a possible parametrization of the
volume dependence of magnetic moment using the Landau
energy. In the present work, we study this model only at zero
temperature. The equations of motion of this model at finite
temperature are those implemented in the SPIN package of
LAMMPS [18,26]. A detailed description of these equations
can be found in Ref. [26].

B. Procedure to calculate the Bethe-Slater parameters of
Néel interaction for cubic crystals

The basic idea to calculate the Bethe-Slater parameters for
the Néel interaction is to find the theoretical relations that
link Eq. (6) to both the MCA and magnetoelastic energies. To
illustrate this method, we will apply it to simple cubic (SC),
body-centered cubic (BCC), and face-centered cubic (FCC)
crystals. The MCA energy for cubic systems reads [37]

Hcub
MCA(α, r) = V K1(r)

(
α2

x α
2
y + α2

x α
2
z + α2

y α
2
z

)
, (11)

where K1 is the first MCA constant with units of energy per
volume, r is the distance to the first nearest neighbor, V is
the volume of the system, and αi (i = x, y, z) are the direction
cosines of magnetization. From this equation we have

V K1(r) = 4

[
Hcub

MCA

(
1√
2
,

1√
2
, 0, r

)
− Hcub

MCA(1, 0, 0, r)

]
.

(12)

Next, we evaluate Eq. (6) with magnetic moment directions
s = ( 1√

2
, 1√

2
, 0) and s = (1, 0, 0) up to first nearest neighbors,

and we replace it in Eq. (12) in order to ensure that the Néel
energy gives the correct MCA energy. By doing so, we find
the following relations for SC, BCC, and FCC [38]

SC : q(r0) = V0K1(r0)

2N
= 1

2
r3

0K1(r0),

BCC : q(r0) = −9V0K1(r0)

16N
= −

√
3

4
r3

0K1(r0),

FCC : q(r0) = −V0K1(r0)

N
= − 1√

2
r3

0K1(r0), (13)

where r0 is the equilibrium distance to the first nearest neigh-
bors, and N is the number of atoms in the equilibrium volume
V0. Here, q(r0) has units of energy per atom. In Appendix we
show that the derivative of q(r) with respect to r can be written
as

SC : r0
∂q

∂r

∣∣∣
r=r0

= 3

2
r3

0K1(r0)

[
1 − B

K1

∂K1

∂P

]
r=r0

,

BCC : r0
∂q

∂r

∣∣∣
r=r0

= −3
√

3

4
r3

0K1(r0)

[
1 − B

K1

∂K1

∂P

]
r=r0

,

FCC : r0
∂q

∂r

∣∣∣
r=r0

= − 3√
2

r3
0K1(r0)

[
1 − B

K1

∂K1

∂P

]
r=r0

, (14)

where B is the bulk modulus and P is pressure. Here again,
r0∂q/∂r has units of energy per atom. Note that the dipole
term in Eq. (6) cancels out after summing all first nearest
neighbors, so that it does not contribute to the MCA in the
cubic crystal symmetry. Since we are only considering Néel
interactions up to the first nearest neighbors, we set the cutoff
radius Rc,q in between the first and second nearest neighbors
in Eq. (10), that is

q(r0) = 4αq

(
r0

δq

)2[
1 − γq

(
r0

δq

)2]
e−

(
r0
δq

)2

. (15)

The derivative of this function with respect to r is

∂q

∂r

∣∣∣∣
r=r0

= 8αqr0e−
(

r0
δq

)2

δ6
q

[
γqr4

0 − (1 + 2γq)δ2
qr2

0 + δ4
q

]
. (16)
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Hence, we have two equations with three unknown variables
αq, γq, and δq. A reasonable strategy to reduce the number
of unknown variables is to set δq equal to the equilibrium
distance to the first nearest neighbors r0 (δq = r0) because
it has a unit of distance and can be easily estimated. Hence,
solving Eqs. (15) and (16) gives

δq = r0,

αq = e

8

[
2q(r0) − r0

∂q

∂r

∣∣∣∣
r=r0

]
,

γq =
r0

∂q
∂r

∣∣
r=r0

r0
∂q
∂r

∣∣
r=r0

− 2q(r0)
. (17)

These are the Bethe-Slater parameters in terms of K1 and
∂K1/∂P [via Eqs. (13) and (14)] to model the physics of MCA
within the Néel model.

Let us now find the values of the Bethe-Slater parameters
that simulate magnetostriction. The magnetoelastic energy for
cubic systems (point groups 432, 4̄3m, m3̄m) reads [39,40]

Hcub
me

V0
= b0(εxx + εyy + εzz ) + b1

(
α2

x εxx + α2
y εyy + α2

z εzz
)

+ 2b2(αxαyεxy + αxαzεxz + αyαzεyz ), (18)

where b0, b1, and b2 are the magnetoelastic constants with
units of energy per volume, and εi j are the elements of
the strain tensor. For small deformations (infinitesimal strain
theory), the strain tensor can be expressed in terms of the
displacement vector u as [41,42]

εi j = 1

2

(
∂ui

∂r j
+ ∂u j

∂ri

)
, i, j = x, y, z, (19)

where ∂ui/∂r j is called the displacement gradient. For this
definition of the strain tensor, the elastic energy for cubic
crystal reads [41,42]

Hcub
el

V0
= c11

2

(
ε2

xx + ε2
yy + ε2

zz

) + c12(εxxεyy + εxxεzz + εyyεzz )

+ 2c44
(
ε2

xy + ε2
yz + ε2

xz

)
, (20)

where c11, c12, and c44 are the elastic constants. After evaluat-
ing the Néel energy [Eq. (6)] for a strained cubic crystal up to
first nearest neighbors, and equalizing it to Eq. (18), one finds
for SC, BCC, and FCC [36,37]

SC : l (r0) = −V0b2

2N
, r0

∂l

∂r

∣∣∣∣
r=r0

= −V0b1

N
,

BCC : l (r0) = −3V0b1

8N
, r0

∂l

∂r

∣∣∣∣
r=r0

= 3V0

8N
(b1 − 3b2),

FCC : l (r0) = V0

2N

(
b2

2
− b1

)
,

r0
∂l

∂r

∣∣∣∣
r=r0

= V0

N

(
b1 − 3b2

2

)
. (21)

Here, we neglected the quadrupole contribution to the magne-
toelastic energy [38]. This approximation is reasonable when
q(r0) � l (r0). In Sec. III, we show that BCC Fe and FCC
Ni fulfill this condition. Next, as we did previously, inserting
Eq. (21) into the Bethe-Slater curve and its derivative and

setting δl = r0 allow us to obtain

δl = r0,

αl = e

8

[
2l (r0) − r0

∂l

∂r

∣∣∣
r=r0

]
,

γl =
r0

∂l
∂r

∣∣
r=r0

r0
∂l
∂r

∣∣
r=r0

− 2l (r0)
. (22)

These are the Bethe-Slater parameters in terms of b1 and
b2 [via Eq. (21)] to model the anisotropic magnetostriction
within the Néel model.

Lastly, we show the parametrization of the exchange inter-
action via the first term in the Néel model [Eq. (9)] to simulate
TC and ωs. From the analysis of the Néel model up to first
nearest neighbors one finds [36]

SC : J (r0) = kBTC

2
, r0

∂J

∂r

∣∣∣∣
r=r0

= ωs(c11 + 2c12)V0

3N
,

BCC : J (r0) = 3kBTC

8
, r0

∂J

∂r

∣∣∣∣
r=r0

= ωs(c11 + 2c12)V0

4N
,

FCC : J (r0) = kBTC

4
, r0

∂J

∂r

∣∣∣∣
r=r0

= ωs(c11 + 2c12)V0

6N
,

(23)

where kB is the Boltzmann constant. The relation between
J (r0) and TC was obtained using the mean-field approximation
(MFA). Alternatively, one can also use the relation between
the exchange parameter and spin-wave stiffness coefficient
D to simulate the desired magnon dispersion [43]. Inserting
Eq. (23) into the Bethe-Slater curve and its derivative and
setting δJ = r0 allow us to obtain

δJ = r0,

αJ = e

8

[
2J (r0) − r0

∂J

∂r

∣∣∣∣
r=r0

]
,

γJ =
r0

∂J
∂r

∣∣
r=r0

r0
∂J
∂r

∣∣
r=r0

− 2J (r0)
, (24)

where the cutoff radius Rc,J must be in between the first and
second nearest neighbors. Notice that a similar procedure to
this one could be used if a function with three parameters
different to the Bethe-Slater curve is chosen to describe the
functions l (r), q(r), and J (r) in SD-MD simulations.

C. Volume dependence of magnetic moment

A widely used approximation in SD consists of constrain-
ing the magnitude of atomic magnetic moments to a constant
value [16,17], which is a good approximation for many prac-
tical applications. However, the magnitude of the atomic
magnetic moments can change significantly when the volume
of the system changes greatly. This effect can be analyzed in
terms of the Landau expansion around the critical point where
the magnetization becomes zero [44]. The Landau expansion
contains only even powers of magnetization to fulfill the
time-reversal symmetry. For instance, the Curie temperature
(Tc) is a critical point where the magnetization becomes zero
due to the disorder of magnetic moments induced by thermal
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fluctuations. Another critical point is the volume per atom vc

where magnetic moment collapses [μ(vc) = 0] [34]. Moruzzi
identified three types of transitions for the magnetic moment
collapse [34,35]. Here, we discuss the type I transition where
the behavior is continuous across vc. In particular, we explore
a possible parametrization of the magnetic moments based
on the Landau energy to take into account its volume de-
pendence. For a system with N atoms with equal magnetic
moments μ we can write the Landau expansion close to vc as

HL(v) =
N∑

i=1

(
Aiμ

2
i (v) + Biμ

4
i (v)

) + O(μ6)

= N (Aμ2(v) + Bμ4(v)), (25)

where A and B are parameters, and v is the volume per atom
of the system. The analysis of the Landau expansion yields
[34,35]

μ(v) ∝ √
v − vc. (26)

This square root dependence describes well the magnetic mo-
ment behavior very close to vc. However, for many practical
applications the equilibrium volume at zero-pressure [v0] is
significantly far from vc, so that one needs to include addi-
tional terms in Eq. (26). In order to do so, we perform a Taylor
expansion of the square of magnetic moment μ2 around vc,
that is

μ2(v) = μ2(vc) + ∂μ2

∂v

∣∣∣∣
v=vc

(v − vc)

+ 1

2

∂2μ2

∂v2

∣∣∣∣
v=vc

(v − vc)2

+ 1

6

∂3μ2

∂v3

∣∣∣∣
v=vc

(v − vc)3 + O((v − vc)4), (27)

where μ2(vc) = 0. Making a square root on both sides of this
equation we have

μ(v) =
√

αμ(v − vc) + βμ(v − vc)2 + γμ(v − vc)3

· �(v − vc),
(28)

where

αμ = ∂μ2

∂v

∣∣∣∣
v=vc

βμ = 1

2

∂2μ2

∂v2

∣∣∣∣
v=vc

γμ = 1

6

∂3μ2

∂v3

∣∣∣∣
v=vc

. (29)

The Heaviside step function �(v − vc) was introduced in
Eq. (28) to ensure that the magnetic moment is zero at vol-
umes lower than vc. The Taylor expansion was considered up
to the third order which is enough to correctly describe the
magnetic moment of BCC Fe and FCC Ni within the range
of volume per atom discussed in this work (v < 20 Å3/atom).
For cases with larger volume per atom than 20 Å3/atom one
might need to include higher order terms in the Taylor expan-
sion. In the vicinity of the critical volume [(v − vc)/vc � 1]

FIG. 1. Schematic of the volume and hydrostatic pressure de-
pendence of magnetic moment. Symbols μb and μi represent the
magnetic moment for bulk at zero-pressure and isolated atom,
respectively.

Eq. (28) becomes Eq. (26), so that the result derived from the
Landau expansion is recovered [34].

Alternatively, instead of considering the volume depen-
dence for the parametrization of the magnetic moment μ(v),
one could consider the pressure dependence of magnetic mo-
ment μ(P). In this case, one could apply a similar procedure
but now performing the Taylor expansion around the critical
pressure Pc where the magnetic moment collapses. Note that
the function μ(P) could only be evaluated in this way from Pc

up to the negative pressure P′ at which the pressure is reversed
due to the large interatomic distance, see Fig. 1. In this model,
longitudinal fluctuations of magnetic moments at finite tem-
perature would naturally emerge from the fluctuations of the
volume per atom or pressure.

III. SPIN-LATTICE MODEL FOR BCC Fe AND FCC Ni

In this section, we build a SD-MD model for BCC Fe and
FCC Ni based on the methodology presented in Sec. II. The
construction of the model is split into the following stages in
order to systematically compute each term in Eq. (1), where
the magnetic Hamiltonian is given by Eq. (8).

A. Interatomic potential

In the model we set the modified embedded atom method
(MEAM) potentials developed by Asadi et al. [45] and Lee
et al. [46] for the interatomic potential V (ri j ) of BCC Fe and
FCC Ni, respectively. These potentials give an elastic tensor
very close to the experimental one at zero temperature. In this
first stage, it is convenient to find the equilibrium volume and
bulk modulus given by the model including only the MEAM
potential. To do so, we compute the energy of a set of con-
ventional unit cells with different volume using the software
LAMMPS [18] with the SPIN package [26], and we fit it to
the Murnaghan equation of state (EOS) [47,48]. We verify that
the pressure in the selected equilibrium state is lower than
5 × 10−5 GPa. In Fig. 2, we present the calculation of the
energy versus volume curve for the conventional unit cell (2
atoms/cell for BCC Fe and 4 atoms/cell for FCC Ni). The
equilibrium volume and bulk modulus found with this pro-
cedure is v0 = 11.586754 Å3/atom and B = 166.73 GPa for
BCC Fe, and v0 = 10.903545 Å3/atom and B = 188.85 GPa
for FCC Ni. Hence, the equilibrium distance to the first nearest
neighbor is r0 = 2.4690386 Å for BCC Fe and 2.4890153 Å
for FCC Ni. At this stage, it is also convenient to compute
the elastic constants. To do so, we evaluate the elastic ten-
sor with software AELAS [49] interfaced with LAMMPS at
the equilibrium volume v0 including the MEAM potential.
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FIG. 2. Calculation of the equation of state for (top) BCC Fe and
(bottom) FCC Ni with the SD-MD model including only the MEAM
potential.

The developed interface between AELAS and LAMMPS is
available on GitHub repository [50]. Here, we make use of
the program Atomsk to convert some input files [51]. The
calculated values and experimental ones are shown in Table II.
We see that these interatomic potentials give a very similar
elastic tensor to the experiment.

TABLE I. Parameters of the SD-MD model for BCC Fe and FCC
Ni.

SD-MD model parameters BCC Fe FCC Ni

αμ (μ2
B atom/Å3) 1.49057 0.172931

βμ (μ2
B atom2/Å6) −0.0978406 −0.021997

γμ (μ2
B atom3/Å9) 0.0026366 0.00096755

vc (Å3/atom) 6.39848 5.36535

α
(I)
J (meV/atom) −12.5921 8.35847

γ
(I)

J 2.81897 −0.098217
δ

(I)
J (Å) 2.4690386 2.4890153

R(I)
c,J (Å) 2.6 2.6

α
(II)
J (meV/atom) 50.996a 19.46a

γ
(II)

J 0.281a 0.00011a

δ
(II)
J (Å) 1.999a 1.233a

R(II)
c,J (Å) 4.5a 4.5a

αl (μeV/atom) 392.747 179.396
γl 0.824409 1.39848
δl (Å) 2.4690386 2.4890153
Rc,l (Å) 2.6 2.6

αq (μeV/atom) 28.5189 −49.1335
γq 1.05331 1.1186
δq (Å) 2.4690386 2.4890153
Rc,q (Å) 2.6 2.6

aRef. [26]

B. Magnetic moment

Next, we find the parametrization of the volume depen-
dence of magnetic moment μ(v). Here, we estimate it using
DFT. Namely, the parameters vc, αμ, βμ, and γμ in Eq. (28)
are obtained by fitting this equation to the magnetic moment
versus volume curve given by DFT. The DFT calculations are
performed with VASP code [52–54], which is an implementa-
tion of the projector augmented wave (PAW) method [55]. We
use the interaction potentials generated for the Perdew-Burke-
Ernzerhof (PBE) version [56] of the generalized gradient
approximation (GGA). We set an automatic Monkhorst-Pack
k-mesh [57] gamma-centered grid with length parameter Rk =
60. The interactions were described by a PAW potential with
14 and 16 valence electrons for BCC Fe and FCC Ni, respec-
tively.

The results of these calculations and corresponding fit-
ting curves are shown in Fig. 3. Very similar results were
previously reported by Moruzzi et al. using the augmented
spherical wave (ASW) method [58]. We see that the form of
Eq. (28) describes quite well the data obtained by DFT. In the
case of FCC Ni the deviation between the fitted curves and
DFT data is slightly larger than for BCC Fe. A better fit could
be achieved by adding higher order terms in Eq. (27). The val-
ues of the fitting parameters vc, αμ, βμ, and γμ are presented in
Table I. Inserting these values into Eq. (28) allows us to com-
pute the magnetic moment at the equilibrium volume given
by the SD-MD model including only MAEM potential ob-
tained in Sec. III A (v0 = 11.586754 Å3/atom for BCC Fe and
v0 = 10.903545 Å3/atom for FCC Ni). This calculation gives
μ(v0) = 2.34 μB for Fe and μ(v0) = 0.67 μB for Ni, while
the experimental values are 2.22 μB and 0.606 μB for Fe and
Ni, respectively [37]. We see that this procedure overesti-
mates slightly the magnetic moment, partly because the used
MEAM potential gives v0 larger than the DFT calculation.

The volume dependence of magnetic moment will allow
us to study how magnetization changes under hydrostatic
pressure (normal deformation). Note that in this model the
magnitude of the magnetic moment will not change under
volume-conserving deformations. To check the validity of this
approximation, we run some additional DFT calculations with
VASP using the same setting as before to obtain the magnetic
moment under volume-conserving tetragonal deformation
[59] for BCC Fe. The results are plotted in Fig. 4. We observe
that a significant change of the magnetic moment only takes
place at large tetragonal deformations. We verify that a similar
trend is also observed for other types of volume-conserving
deformations like trigonal deformation [59]. Therefore, to
some extent, the model might be able to describe the behavior
of magnetic moment and magnetization under deformations
that combine an arbitrarily large normal deformation (which
changes the volume preserving the cubic symmetry) with
a small volume-conserving deformation that changes the
crystal symmetry.

C. Exchange interaction

Let us now compute the parametrization of J (r). Firstly,
note that the equilibrium interatomic distance, EOS, and
elastic constants of the ground state (collinear state) are
unchanged after the exchange interaction is added to the
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TABLE II. Calculated and experimental elastic constants, magnetostrictive coefficients, MCA, and MCA under hydrostatic pressure for
BCC Fe and FCC Ni at zero temperature.

Elastic SD-MD Expt. Magnetostrictive SD-MD Expt. SD-MD Expt. SD-MD Expt.
Material constants (GPa) (GPa) coefficients (×10−6) (×10−6) MCA (KJ/m3) (KJ/m3) MCA vs P (GPa−1) (GPa−1)

BCC Fe c11 230.0 230a λ001 25.9 26c K1 54.995 55d 1
K1

∂K1
∂P −0.0727 −0.073e

c12 134.1 135a λ111 −30.3 −30c

c44 116.3 117a

FCC Ni c11 263.9 261.2b λ001 −61.9 −60c K1 −125.996 −126d 1
K1

∂K1
∂P −0.0279 −0.028e

c12 152.1 150.8b λ111 −35.4 −35c

c44 132.8 131.7b

aRef. [45]; bRef. [46]; cRef. [37]; dRef. [61]; eRef. [62].

SD-MD model thanks to the offset in the exchange energy.
It is interesting to analyze the influence of different types
of parametrization of J (r) on the volume magnetostriction
ωs. Hence, for the parametrization of J (r) we consider the
following two sets of parameters for αJ , γJ , δJ , and Rc,J .

1. Set I: Effective short range exchange

Set I is calculated following the procedure described in
Sec. II B, where the exchange interaction is considered up to
the first nearest neighbors. Hence, it corresponds to an effec-
tive short range exchange interaction. As mentioned above,
the equilibrium distance to the first nearest neighbor at the
ground state is not changed by the exchange interaction due
to the offset in the exchange energy, so that according to
Eq. (24) we set δ

(I)
J = r0 = 2.4690386 Å for BCC Fe and

δ
(I)
J = 2.4890153 Å for FCC Ni. Next, we see in Eq. (23) that

we need as inputs TC , c11, c12, and ωs to compute J (r0) and
∂J/∂r. In general, these inputs can be obtained by theory
or experiment. For instance, here we use the experimental
value of TC (1043 K for BCC Fe and 627 K for FCC Ni)
[37]. For the elastic constants, we will make use of the the-
oretical values obtained by the SD-MD model itself using
only the MEAM potential (see Table II). The experimental
measurement of volume magnetostriction is difficult, and one
can find significant discrepancies between different works
[15,60]. Hence, we will use the theoretical value of ωs at
zero temperature calculated by Shuimizu using the itinerant
electron model [60], that is ωs = 1.16 × 10−2 for BCC Fe
and 3.75 × 10−4 for FCC Ni. Inserting these quantities into

Eq. (24) via Eq. (23) gives α
(I)
J = −12.5921 meV/atom and

γ
(I)

J = 2.81897 for BCC Fe, and α
(I)
J = 8.35847 meV/atom

and γ
(I)

J = −0.098217 for FCC Ni. We set the cutoff R(I )
c,J =

2.6 Å to restrict the exchange interaction to the first nearest
neighbors.

2. Set II: Long range exchange

The second set of parameters (set II) is obtained by fitting
the Bethe-Slater function to the exchange integrals given by
first-principles calculations [26]. The fitted parameters (α(II)

J ,
γ

(II)
J , and δ

(II)
J ) are shown in Table I. The value of α

(II)
J taken

from Ref. [26] has been multiplied by 2 due to the factor 1/2
in the exchange energy given by Eq. (8). Here, we set a large
cutoff R(II)

c,J = 4.5 Å to take into account the exchange inter-
actions beyond first nearest neighbors (long range exchange
interaction). The Bethe-Slater function with parameters from
sets I and II is plotted in Fig. 5. This figure will be analyzed
in the context of volume magnetostriction in Sec. IV B 4.

D. Néel energy

Now we are in a position to calculate the Bethe-Slater
parameters for the dipole and quadrupole terms of the Néel in-
teraction given by Eqs. (22) and (17), respectively. Firstly, we
notice that a key quantity in these equations is the equilibrium
distance to the first nearest neighbors r0, which obviously
depends on the Néel interaction. Fortunately, the energy of
the dipole and quadrupole terms of the Néel interaction for
Fe and Ni are of the order of μeV/atom (see Fig. 7), so

FIG. 3. Calculation of the magnetic moment versus volume under normal deformations obtained with DFT (blue dots) for BCC Fe and
FCC Ni. Red line stands for the fitting curve.

094437-7



NIEVES, TRANCHIDA, ARAPAN, AND LEGUT PHYSICAL REVIEW B 103, 094437 (2021)

FIG. 4. Magnetic moment under a volume-conserving tetragonal
deformation of BCC Fe (c/a = 1) calculated with DFT.

that they are much lower than the total energy (eV/atom).
As a result, these terms only induce a very small change in
r0 when they are included in the SD-MD model. This fact
allows us to use r0 given by the SD-MD model including only
the MEAM potential and exchange interaction to calculate the
Bethe-Slater parameters for the dipole and quadrupole terms
of the Néel interaction. Hence, according to Eqs. (17) and
(22), we can set δl = δq = r0 = 2.4690386 Å for BCC Fe and
δl = δq = 2.4890153 Å for FCC Ni.

Once r0 is determined, we calculate αq and γq using
Eqs. (13), (14), and (17). Here, we set the experimental
values of K1 and (1/K1)(∂K1/∂P) approximately at zero

FIG. 5. Calculation of the Bethe-Slater function J (r) for (top)
BCC Fe and (bottom) FCC Ni using the two sets of parameters given
in Table I. Vertical dashed line stands for the equilibrium distance of
the first nearest neighbors r0.

FIG. 6. Calculation of the Bethe-Slater function l (r) and q(r) for
(top) BCC Fe and (bottom) FCC Ni using the parameters given in
Table I. Vertical dashed line stands for the equilibrium distance of
the first nearest neighbors r0.

temperature, that is K1 = 55 KJ/m3 and (1/K1)(∂K1/∂P) =
−7.3 × 10−2 GPa−1 for BCC Fe and K1 = −126 KJ/m3 and
(1/K1)(∂K1/∂P) = −2.8 × 10−2 GPa−1 for FCC Ni [61,62].
As we see in Eq. (17), we also need the bulk modulus. In prin-
ciple we could set its experimental value or the one given by
the EOS of this SD-MD model that was obtained in Sec. III A.
In this work we choose the second option in order to describe
more accurately the relation between volume and pressure of
the SD-MD model. Inserting all these quantities in Eq. (17)

FIG. 7. Calculation of the Néel energy with LAMMPS and (top)
Eq. (32) and (bottom) Eq. (31) for different values of the lattice
parameters.
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via Eqs. (13) and (14) leads to αq = 28.5189 μeV/atom and
γq = 1.05331 for BCC Fe, and αq = −49.1335 μeV/atom
and γq = 1.1186 for FCC Ni.

Lastly, we calculate the Bethe-Slater parameters for the
dipole term (αl and γl ) using Eqs. (21) and (22). In this case
we need the values of the anisotropic magnetoelastic constants
b1 and b2. These constants are related to the magnetostrictive
coefficients (λ001 and λ111) and elastic constants (ci j) via
[39,40]

b1 = − 3
2λ001(c11 − c12),

b2 = −3λ111c44. (30)

To calculate b1 and b2 we use the experimental magnetostric-
tive coefficients λ001 = 26 × 10−6 and λ111 = −30 × 10−6

for BCC Fe, and λ001 = −60 × 10−6 and λ111 = −35 × 10−6

for FCC Ni at zero temperature [37]. For the values of the
elastic constants we choose the calculated ones with the
SD-MD model including only the MEAM potential (see Ta-
ble II). Doing so, we get b1 = −3.74166 MJ/m3 and b2 =
10.4643 MJ/m3 for BCC Fe, and b1 = 10.0611 MJ/m3 and
b2 = 13.9398 MJ/m3 for FCC Ni. If we insert these values in
Eq. (22) via Eq. (21), then we obtain αl = 392.747 μeV/atom
and γl = 0.824409 for BCC Fe, and αl = 179.396 μeV/atom
and γl = 1.39848 for FCC Ni.

The Bethe-Slater parameters for the constructed SD-MD
models are shown in Table I, while the corresponding Bethe-
Slater functions for l (r) and q(r) using these parameters are
plotted in Fig. 6. We see that l (r0) is approximately two orders
of magnitude greater than q(r0). However, note that after tak-
ing into account all first nearest neighbors the Néel quadrupole
and dipole energies can be of the same order of magni-
tude close to the cubic symmetry (see Sec. IV A). Figure 6
also contains interesting information about the dependence
of MCA and magnetoelasticity on the distance between first
nearest neighbors. For instance, we see that if we decrease the
distance between first nearest neighbors from the equilibrium
value r0 (high hydrostatic pressure regime) for both BCC Fe
and FCC Ni, then the sign of q(r) changes, which implies
a change in the sign of K1, see Eq. (13). Similarly, if we
increase the distance between first nearest neighbors for BCC
Fe (r0 > 3 Å), then the sign of l (r) changes switching the sign
of b1, see Eq. (21). In general, the physical interpretation of
q(r) and l (r) far from the equilibrium value r0 should be done
with caution since we only involved up to the first derivative
of these functions evaluated at r0 in their parametrization.
In this sense, the only meaningful region around r0 may be
where first order Taylor expansion at r0 of the Bethe-Slater
functions of q(r) and l (r) is a good approximation. Including
up to the first derivative of q(r) and l (r) in their parametriza-
tion might be enough for many practical purposes since the
distance between first nearest neighbors oscillates close to
the equilibrium value at finite temperature below the melting
point.

IV. RESULTS

A. Tests of the Néel interaction

Before evaluating the magnetoelastic properties of the SD-
MD model, it is convenient to check that the implementation

of the Néel interaction Eq. (4) in the SD-MD simulation is
correct. To this end, we propose some tests by comparing
the numerical results of the SD-MD simulation with simple
analytical solutions. For instance, if we consider a BCC struc-
ture with Néel interactions up to first nearest neighbor in a
collinear state along s = (0, 0, 1), then from Eq. (6) we have

HNéel(0, 0, 1) = 16Nq(r0)

45
, (31)

where N is the number of atoms in the system, r0 is the
distance to nearest neighbor that is related to the lattice pa-
rameter a via r0 = a

√
3/2. This equation allows us to verify

the quadrupole term. Let’s now apply to this system with
s = (0, 0, 1) a tetragonal deformation along the z axis, where
the lattice parameter is c in this direction, and a along both the
x axis and y axis. From Eq. (6) we obtain

HNéel(0, 0, 1) = −4Nl (r0)

[ (
c
a

)2

2 + (
c
a

)2 − 1

3

]

− 16Nq(r0)
[
2
(

c
a

)4 − 12
(

c
a

)2 + 3
]

35
[
2 + (

c
a

)2]2 , (32)

where

r0 = a

2

√
2 + ( c

a

)2
. (33)

This equation allows to check both the dipole and quadrupole
terms. In the limit c/a −→ 1, Eq. (32) becomes Eq. (31)
ensuring the continuity of the Néel energy under structure
deformation. In Fig. 7, we verify that the calculation of the
Néel energy with LAMMPS is the same to Eqs. (31) and (32)
using the Bethe-Slater parameters of BCC Fe given in Table I.
Similar tests could also be performed for other magnetic mo-
ment directions and deformations.

B. Magnetic properties at zero temperature

In this section, we evaluate the magnetization and MCA
under pressure, anisotropic magnetostrictive coefficients, vol-
ume magnetostriction, and saturation magnetization at zero
temperature given by the developed SD-MD models for BCC
Fe and FCC Ni in Sec. III. We include MEAM potentials,
exchange and Néel energies, and volume-dependent magnetic
moment in the following calculations. Magnetic collinear
states will be used since we are interested in properties at zero
temperature. All simulations are performed with the SPIN
package of LAMMPS [26].

1. Ground state

Firstly, we determine the equilibrium volume of the full
SD-MD model (including the Néel interaction) for the con-
ventional unit cell of BCC Fe and FCC Ni. To this end, we
calculate the energy versus volume curve, and we fit it to the
Murnaghan EOS in the same way as it was done in Fig. 2
previously. Here, we also set the magnetic moments along
the easy direction ([1,0,0] for BCC Fe and [1,1,1] for FCC
Ni) in order to get the minimum energy of the quadrupole
term of Néel interaction. The equilibrium volume found with
this procedure is v0 = 11.5867635 Å3/atom for BCC Fe and
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FIG. 8. Calculation of the MCA energy for BCC Fe and FCC Ni with SD-MD simulation (blue points) and Eq. (11) using the experimental
K1 (red line). Magnetic moments are constrained on the XY plane.

v0 = 10.9035445 Å3/atom for FCC Ni. We verify that pres-
sure is lower than 5 × 10−5 GPa in these equilibrium states.
As we anticipated in Sec. III, the dipole and quadrupole Néel
interactions induce a very small change in the equilibrium
volume when is included in the SD-MD model.

2. Magnetocrystalline anisotropy

Next, we compute the MCA energy at this equilibrium
volume by setting the magnetic moment along different di-
rections in the XY plane. In Fig. 8 we show a comparison
between the MCA energy calculated by SD-MD simula-
tions with LAMMPS and Eq. (11) using the experimental
value (K1 = 55 KJ/m3 for BCC Fe and K1 = −126 KJ/m3)
[61]. The direct evaluation of K1 with the SD-MD model
through Eq. (12) gives 54.995 KJ/m3 for BCC Fe and
−125.996 KJ/m3 for FCC Ni. As we see, the SD-MD model
with the Bethe-Slater parameters given by Table I reproduces
very well the first-order experimental MCA.

Now we study the effects of hydrostatic pressure on the
MCA for this SD-MD model. To facilitate the compari-
son between the model and experiment, we first convert
(1/K1)(∂K1/∂P) to an integral form, that is

1

K1

∂K1

∂P
= ζ −→

∫ K1(P)

K1(0)

dK1

K1
=

∫ P

0
ζdP, (34)

where ζ = −7.3 × 10−2 GPa−1 is the experimental value
measured up to P = 0.5 GPa at T = 77 K for BCC Fe [62],
while for FCC Ni is ζ = −2.8 × 10−2 GPa−1. Solving this
integral we have

K1(P)

K1(0)
= eζP, (35)

where in the low pressure regime (ζP � 1) it can be
written as

K1(P)

K1(0)
≈ 1 + ζP + O(P2). (36)

In Fig. 9 we show the ratio K1(P)/K (0) versus pressure gener-
ated by the SD-MD model of Fe and Ni, and the experimental
behavior given by Eq. (35) and its low-pressure approximation
Eq. (36). The linear fitting to the data generated by the SD-MD
model up to P = 0.5 GPa gives (1/K1)(∂K1/∂P) = −7.27 ×
10−2 GPa−1 for BCC Fe and −2.79 × 10−2 GPa−1 for FCC
Ni, which is in very good agreement with the experimental

values [62]. Note that Eq. (35) and MCA results of the model
beyond the range of pressure between 0 GPa and 0.5 GPa
should be taken with caution due to the lack of experimental
data.

3. Anisotropic magnetostriction

Now, we compute the anisotropic magnetostrictive co-
efficients using the SD-MD model. To this end, we apply
the method proposed by Wu and Freeman [63,64] as imple-
mented in the program MAELAS [42,59]. In this method,
the anisotropic magnetostrictive coefficients for cubic systems
(point groups 432, 4̄3m, m3̄m) are calculated as [59]

λ001 = 4
(
l001
1 − l001

2

)
3
(
l001
1 + l001

2

) , λ111 = 4
(
l111
1 − l111

2

)
3
(
l111
1 + l111

2

) , (37)

where l001
1 and l001

2 are the equilibrium cell lengths along
the length measuring direction β = (0, 0, 1) under a tetrag-
onal deformation with collinear magnetic moment directions
s1 = (0, 0, 1) and s2 = (1, 0, 0), respectively. Similarly, l111

1
and l111

2 are the equilibrium cell lengths along the length
measuring direction β = (1/

√
3, 1/

√
3, 1/

√
3) under a trig-

onal deformation with magnetic moment direction s1 =
(1/

√
3, 1/

√
3, 1/

√
3) and s2 = (1/

√
2, 0,−1/

√
2), respec-

tively. In order to obtain the equilibrium cell lengths l001
1 and

l001
2 , one needs to evaluate the energy for a set of volume-

conserving tetragonal distorted unit cells. Next, the energy
versus the cell length along β = (0, 0, 1) for each magnetic
moment direction s1 = (0, 0, 1) and s2 = (1, 0, 0) is fitted to
a quadratic function

E (x)
∣∣s j

β=(0,0,1) = ã jx
2 + b̃ jx + c̃ j, j = 1, 2, (38)

where ã j , b̃ j , and c̃ j are fitting parameters. The minimum of
this quadratic function for magnetic moment direction s1(2)

corresponds to l001
1(2) = −b̃1(2)/(2ã1(2)), and it is the equilib-

rium cell length. Similarly, the equilibrium cell lengths l111
1

and l111
2 are obtained by applying a set of volume-conserving

trigonal deformations and performing a quadratic fitting of the
energy versus the cell length along β = (1/

√
3, 1/

√
3, 1/

√
3)

with magnetic moment directions s1 = (1/
√

3, 1/
√

3, 1/
√

3)
and s2 = (1/

√
2, 0,−1/

√
2).

We have developed an interface between the software
MAELAS [59] and LAMMPS [26] in order to apply this
method and extract the magnetostrictive coefficients easily.
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FIG. 9. Calculation of K1(P)/K1(0) under hydrostatic pressure using the developed SD-MD model (blue dots) for BCC Fe and FCC Ni.
The green and red lines stand for the experimental behavior given by Eq. (35) and its low-pressure approximation Eq. (36), respectively [62].

This interface is publicly available on GitHub repository [65].
In Fig. 10 we show the quadratic curve fit to the energy
versus cell length along [0,0,1] with magnetic moment di-
rection s1 = (0, 0, 1) to calculate λ001 for BCC Fe. We also
plot the energy difference between states with spin directions
s1 = (1, 0, 0) and s2 = (0, 0, 1) against the cell length along
[0,0,1]. The corresponding plot for λ111 is presented in Fig. 11.
We obtain λ001 = 25.9 × 10−6 and λ111 = −30.3 × 10−6,
while the experimental values [37] at T = 4.2 K are λ001 =
26 × 10−6 and λ111 = −30 × 10−6. The results for FCC Ni
are plotted in Figs. 12 and 13. Here, we get λ001 = −61.9 ×
10−6 and λ111 = −35.4 × 10−6, while the experimental val-
ues [37] at T = 4.2 K are λ001 = −60 × 10−6 and λ111 =

FIG. 10. Calculation of λ001 for BCC Fe using MAELAS inter-
faced with LAMMPS. (top) Quadratic curve fit to the energy versus
cell length along β = (0, 0, 1) with spin direction s1 = (0, 0, 1) un-
der a volume-conserving tetragonal deformation. (bottom) Energy
difference between states with spin directions s2 = (1, 0, 0) and s1 =
(0, 0, 1) against the cell length along β = (0, 0, 1).

−35 × 10−6. Therefore, the developed SD-MD model for Fe
and Ni also exhibits magnetostrictive properties very similar
to the experiment. Additionally, this calculation reveals that
the method proposed by Wu and Freeman [63,64] is an ex-
cellent approach to obtain the magnetostrictive coefficients
as long as both the elastic and magnetoelastic energies are
properly described by the model. This fact could not be ver-
ified before for λ111 of BCC Fe due to a possible failure of
density functional theory calculations [59,66–68]. In Table II
we present a summary of the results given by the SD-MD
model for the MCA, MCA under hydrostatic pressure, and
anisotropic magnetostrictive coefficients.

FIG. 11. Calculation of λ111 for BCC Fe using MAELAS inter-
faced with LAMMPS. (top) Quadratic curve fit to the energy versus
cell length along β = (1/

√
3, 1/

√
3, 1/

√
3) with spin direction s1 =

(1/
√

3, 1/
√

3, 1/
√

3) under a volume-conserving trigonal deforma-
tion. (bottom) Energy difference between states with spin directions
s2 = (1/

√
2, 0, −1/

√
2) and s1 = (1/

√
3, 1/

√
3, 1/

√
3) against the

cell length along β = (1/
√

3, 1/
√

3, 1/
√

3).
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FIG. 12. Calculation of λ001 for FCC Ni using MAELAS inter-
faced with LAMMPS. (top) Quadratic curve fit to the energy versus
cell length along β = (0, 0, 1) with spin direction s1 = (0, 0, 1) un-
der a volume-conserving tetragonal deformation. (bottom) Energy
difference between states with spin directions s2 = (1, 0, 0) and s1 =
(0, 0, 1) against the cell length along β = (0, 0, 1).

FIG. 13. Calculation of λ111 for FCC Ni using MAELAS inter-
faced with LAMMPS. (top) Quadratic curve fit to the energy versus
cell length along β = (1/

√
3, 1/

√
3, 1/

√
3) with spin direction s1 =

(1/
√

3, 1/
√

3, 1/
√

3) under a volume-conserving trigonal deforma-
tion. (bottom) Energy difference between states with spin directions
s2 = (1/

√
2, 0, −1/

√
2) and s1 = (1/

√
3, 1/

√
3, 1/

√
3) against the

cell length along β = (1/
√

3, 1/
√

3, 1/
√

3).

FIG. 14. Calculation of ωs with the SD-MD model for
(a),(b) BCC Fe and (c),(d) FCC Ni using the two sets of parameters
given in Table I to describe the exchange interaction J (r).

4. Volume magnetostriction

The volume magnetostriction is generated by the presence
of ferromagnetism in the magnetic material (exchange mag-
netostriction). It can be calculated as [74]

ωs(T ) = v0(Ms(T )) − v0(0)

v0(0)
, (39)

where v0(Ms(T )) and v0(0) are the equilibrium volume per
atom in the magnetized and demagnetized (paramagnetic)
states, respectively. In the magnetized state, the magnetization
is equal to the saturation magnetization Ms at temperature
T . Hence, the quantity v0(Ms(T )) at zero temperature was
already calculated in Sec. IV B 1. To compute v0(0) we apply
a similar procedure. Namely, we first calculate the energy of
a supercell with magnetic moments oriented randomly (de-
magnetized state) for different values of the lattice parameter
a, preserving the cubic crystal symmetry. Next, we fit the
energy versus volume curve to the Murnaghan EOS. We use
a supercell with 20 × 20 × 20 conventional unit cells with
periodic boundary conditions for both BCC Fe (16 000 atoms)
and FCC Ni (32 000 atoms). We perform this calculation using
set I and II of parameters given in Table I to describe the
exchange interaction J (r). The results are depicted in Fig. 14.
Set I gives ωs = 1.18 × 10−2 for BCC Fe and 3.71 × 10−4

for FCC Ni, reproducing fairly well the theoretical values
calculated by Shimizu [60] (ωs = 1.16 × 10−2 for BCC Fe
and 3.75 × 10−4 for FCC Ni) that we used to compute the
Bethe-Slater parameters for J (r) in Sec. III C. Set II leads to
ωs = −2.23 × 10−2 for BCC Fe and −5.37 × 10−3 for FCC
Ni, so they have the opposite sign from the results given by
set I. According to Eq. (23), these results may be understood
in terms of ∂J/∂r at the first-nearest neighbors (r = r0) since
ωs ∝ ∂J/∂r. In Fig. 5, we observe that set I gives ∂J/∂r > 0
at r = r0 for both Fe and Ni, while set II gives ∂J/∂r < 0 at
r = r0. Note that Eq. (23) is derived assuming only exchange
interactions up to first-nearest neighbors, and set II has a large
cutoff that includes exchange interactions beyond first-nearest
neighbors. Wang et al. performed first-principles calculations
of J (r) finding a change in the sign of ∂J/∂r close to r = r0,
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TABLE III. Calculated volume magnetostriction ωs with the SD-
MD model for BCC Fe and FCC Ni using set I and II of parameters in
Table I to describe J (r). Theoretical and experimental results found
in literature are also shown for comparison.

SD-MD SD-MD Theory Expt.
Set I Set II

(×10−4) (×10−4) (×10−4) (×10−4)

BCC Fe 118 −235 116a 4b

683c

FCC Ni 3.71 −53.7 3.75a 10.95e

45.7c 3.24f

−5.1d

−2.7b

aRef. [60]; bRef. [69]; cRef. [70]; dRef. [71]; eRef. [72]; fRef. [73].

and ∂J/∂r > 0 for the second nearest neighbors [75]. Previous
theoretical and experimental works reported a positive volume
magnetostriction for BCC Fe [60,69,70], while for FCC Ni
one can find contradictory results with positive [60,70,72,73]
and negative [69,71] values. This discrepancy for Ni could be
related to the methodology used to estimate ωs, as Shimizu
pointed out [60]. A summary of these results is presented
in Table III. As seen in Fig. 5, there is a maximum of J (r)
close to r0 for Ni using set I, so that a small increase in
the lattice parameter would change the sign of ∂J/∂r and
consequently the sign of ωs. Lastly, we point out that the
isotropic magnetostrictive coefficient of cubic crystals (λα)
and magnetoelastic constant b0 are related to the volume mag-
netostriction as [59,76]

ωs = (λα + 1)3 − 1 = 3λα + O([λα]2),

λα = −b0 − 1
3 b1

c11 + 2c12
. (40)

Hence, we see that the isotropic magnetostriction is greater
than the anisotropic one for both BCC Fe and FCC Ni. For
instance, ferromagnetic FCC FeNi alloys at concentrations
around Fe65Ni35 show large enough volume magnetostriction
to cancel the normal thermal expansion (Invar effect) over a
broad range of temperatures [15].

5. Saturation magnetization

The saturation magnetization at zero temperature is com-
puted using the following equation

μ0Ms(v) = μ0μ(v)

v
, (41)

where μ(v) is calculated using Eq. (28) with the parameters
shown in Table I. At the equilibrium volume of the SD-MD
model it gives μ0Ms(v0) = 2.35 T for BCC Fe and 0.71 T
for FCC Ni. The experimental values at zero temperature are
μ0Ms = 2.19 T for BCC Fe and 0.64 T for FCC Ni [37].
We see that the model slightly overestimates the saturation
magnetization. Next, we evaluate Ms for different volumes
applying normal deformations. The results of this calculation
are shown in Fig. 15. Here, we also included the data given by
DFT that we obtained in Sec. III B. We observe that the overall
behavior of Ms is well described by the model. As we increase

FIG. 15. Saturation magnetization against volume and pressure
calculated with the SD-MD model including a volume-dependent
magnetic moment (red squares) for BCC Fe and FCC Ni. Blue
dots and green triangles stand for DFT and experimental data,
respectively.

the volume above the equilibrium volume v0, the pressure
becomes negative and Ms is decreasing. The condition that
causes Ms to decrease with volume is

∂Ms

∂v
< 0 −→ ∂μ

∂v
<

μ

v
. (42)

On the other hand, if we decrease the volume below the equi-
librium volume then the pressure is positive. At high positive
pressure, Ms becomes zero when the volume per atom is lower
than the critical volume (v < vc) where magnetic moment
collapses (μ = 0).

V. CONCLUSIONS

Many aspects of magnetoelastic phenomena are not fully
understood yet due to the complexity of the materials at large
scale. Advanced modeling techniques and associated numeri-
cal tools based on a bottom-up multiscale approach could help
to get a better understanding of magnetoelastic phenomena in
magnetic materials across length scales. In this sense the SD-
MD simulations using the Néel model could play an important
role linking the atomic and macroscopic scales. Aiming at
exploring this possibility, we showed a general methodology
to build SD-MD models to describe MCA under hydrostatic
pressure, anisotropic magnetostriction, volume magnetostric-
tion, and saturation magnetization. To illustrate the method,
we successfully applied it to BCC Fe and FCC Ni at zero
temperature.

We aim at transposing our methodology to other materials
and crystal structures. For example, in magnetic oxides and
4 f magnets, the MCA can correspond to energies orders
of magnitude larger than in magnetic 3d metals. Our ap-
proach could be used to map the subsequent interactions and
build mesoscale models that will help reveal the influence of
magnetism on large-scale thermoelastic materials properties.
Possible extensions of these models might also be useful to
study morphic effects [77,78].
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Although this work focused on bulk magnetoelasticity,
similar effects have been shown to be important for smaller
scale, finite-size systems [21]. Previous studies have been
investigating the relevance of the Néel model to simulate
surface effects in 3d magnetic metals [79,80]. Future work
could leverage our framework to develop surface interaction
models for spin-lattice simulations of magnetic nanoparticles
[81], as well as models for magnetic alloys [36,82].

The results presented in this work also raise interesting
questions for future research on how these models will per-
form at finite temperature and under magnetic field and stress.
In particular, it would be interesting to study the possible
correlations between the thermal variation of the magnetoe-
lastic constants and the magnetization given by these models
[83–85].
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APPENDIX: DERIVATION OF ∂q/∂r

In this Appendix we show the steps to obtain the final
expression for ∂q/∂r given by Eq. (14). Firstly, we write the
derivative of q(r) with respect to the first nearest neighbor
distance r in Eq. (13) as

q(r) = −ξV K1

N
−→ r0

∂q

∂r

∣∣∣
r=r0

= −ξr0

N

∂ (V K1)

∂r

∣∣∣
r=r0

, (A1)

where r0 is the equilibrium distance to the first nearest neigh-
bors, N is the number of atoms in the volume V , and ξ is equal
to −1/2, 9/16, and 1 for SC, BCC, and FCC, respectively.
Next, we work out this equation in the following way

r0
∂q

∂r

∣∣∣∣
r=r0

= −ξr0

N

∂ (V K1)

∂r

∣∣∣∣
r=r0

= −ξr0

N

[
K1

∂V

∂r
+ V

∂K1

∂r

]
r=r0

= −ξr0

N

∂V

∂r

∣∣∣∣
r=r0

[
K1 + V

∂K1

∂V

]
r=r0

= −ξr0

N

∂V

∂r

∣∣∣∣
r=r0

[
K1 + V

∂P

∂V

∂K1

∂P

]
r=r0

, (A2)

where

SC :
ξr0

N

∂V

∂r

∣∣∣∣
r=r0

= −3

2
r3

0 ,

BCC :
ξr0

N

∂V

∂r

∣∣∣∣
r=r0

= 3
√

3

4
r3

0 ,

FCC :
ξr0

N

∂V

∂r

∣∣∣∣
r=r0

= 3√
2

r3
0 . (A3)

Lastly, we make use of the definition of the bulk modulus B =
−V (∂P/∂V ) in Eq. (A2). Doing so, we obtain Eq. (14).

[1] P.-W. Ma and S. Dudarev, Handbook of Materials Modeling:
Methods: Theory and Modeling (Springer, Cham, 2020), pp.
1017–1035.

[2] F. T. Calkins, A. B. Flatau, and M. J. Dapino, Journal
of Intelligent Material Systems and Structures 18, 1057
(2007).

[3] N. Ekreem, A. Olabi, T. Prescott, A. Rafferty, and M. Hashmi, J.
Mater. Proc. Technology 191, 96 (2007), advances in Materials
and Processing Technologies, July 30th–August 3rd 2006, Las
Vegas, Nevada.

[4] V. Apicella, C. S. Clemente, D. Davino, D. Leone, and C.
Visone, Actuators 8, 45 (2019).

[5] M. Dapino, Encyclopedia of Smart Materials (John Wiley and
Sons, Inc., New York, 2000).

[6] M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener,
R. E. Rottmayer, G. Ju, Y. Hsia, and M. F. Erden, Proc. IEEE
96, 1810 (2008).

[7] I. L. Prejbeanu, M. Kerekes, R. C. Sousa, H. Sibuet, O. Redon,
B. Dieny, and J. P. Nozières, J. Phys.: Condens. Matter 19,
165218 (2007).

[8] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys.
Rev. Lett. 76, 4250 (1996).

[9] T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell,
U. Atxitia, O. Chubykalo-Fesenko, S. El Moussaoui, L. Le
Guyader, E. Mengotti, L. J. Heyderman et al., Nat. Commun.
3, 666 (2012).

[10] A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and
A. Poredoš, Magnetocaloric Energy Conversion (Springer In-
ternational Publishing, Cham, 2015).

[11] E. C. Abenojar, S. Wickramasinghe, J. Bas-Concepcion, and
A. C. S. Samia, Prog. Nat. Sci.: Mater. Inte. 26, 440 (2016),
special issue for Nano Materials.

[12] Y. Zhou, J. Tranchida, Y. Ge, J. Murthy, and T. S. Fisher, Phys.
Rev. B 101, 224303 (2020).

[13] N. Bäcklund, J. Phys. Chem. Solids 20, 1 (1961).
[14] M. Jaime, A. Saul, M. Salamon, V. Zapf, N. Harrison, T.

Durakiewicz, J. Lashley, D. Andersson, C. Stanek, J. Smith
et al., Nat. Commun. 8, 1 (2017).

[15] E. Wasserman, Handbook of Ferromagnetic Materials, Vol. 5
(Elsevier, Amsterdam, 1990), pp. 237–322.

094437-14

https://doi.org/10.1177/1045389X06072358
https://doi.org/10.1016/j.jmatprotec.2007.03.064
https://doi.org/10.3390/act8020045
https://doi.org/10.1109/JPROC.2008.2004315
https://doi.org/10.1088/0953-8984/19/16/165218
https://doi.org/10.1103/PhysRevLett.76.4250
https://doi.org/10.1038/ncomms1666
https://doi.org/10.1016/j.pnsc.2016.09.004
https://doi.org/10.1103/PhysRevB.101.224303
https://doi.org/10.1016/0022-3697(61)90132-9
https://doi.org/10.1038/s41467-017-00096-4


SPIN-LATTICE MODEL FOR CUBIC CRYSTALS PHYSICAL REVIEW B 103, 094437 (2021)

[16] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A.
Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202
(2014).

[17] O. Eriksson, A. Bergman, L. Bergqvist, and J. Hellsvik, Atom-
istic Spin Dynamics (Oxford University Press, New York, 2017).

[18] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[19] I. Stockem, A. Bergman, A. Glensk, T. Hickel, F. Körmann, B.

Grabowski, J. Neugebauer, and B. Alling, Phys. Rev. Lett. 121,
125902 (2018).

[20] P.-W. Ma, C. H. Woo, and S. L. Dudarev, Phys. Rev. B 78,
024434 (2008).

[21] D. Beaujouan, P. Thibaudeau, and C. Barreteau, Phys. Rev. B
86, 174409 (2012).

[22] P.-W. Ma, S. Dudarev, and C. Woo, Comput. Phys. Commun.
207, 350 (2016).

[23] X. Wu, Z. Liu, and T. Luo, J. Appl. Phys. 123, 085109 (2018).
[24] J. Fransson, D. Thonig, P. F. Bessarab, S. Bhattacharjee, J.

Hellsvik, and L. Nordström, Phys. Rev. Mater. 1, 074404
(2017).

[25] D. Perera, D. M. Nicholson, M. Eisenbach, G. M. Stocks, and
D. P. Landau, Phys. Rev. B 95, 014431 (2017).

[26] J. Tranchida, S. Plimpton, P. Thibaudeau, and A. Thompson,
J. Comput. Phys. 372, 406 (2018).

[27] D. Perera, M. Eisenbach, D. M. Nicholson, G. M. Stocks, and
D. P. Landau, Phys. Rev. B 93, 060402(R) (2016).

[28] M. Strungaru, M. O. A. Ellis, S. Ruta, O. Chubykalo-Fesenko,
R. F. L. Evans, and R. W. Chantrell, Phys. Rev. B 103, 024429
(2021).

[29] R. Skomski, Simple Models of Magnetism (Oxford University
Press, New York, 2008).

[30] J. C. Slater, Phys. Rev. 35, 509 (1930).
[31] J. C. Slater, Phys. Rev. 36, 57 (1930).
[32] A. Sommerfeld and H. Bethe, in Aufbau Der Zusammenhängen-

den Materie (Springer, Berlin, Heidelberg, 1933), pp. 333–622.
[33] P.-W. Ma and S. L. Dudarev, Phys. Rev. B 86, 054416

(2012).
[34] V. L. Moruzzi, Phys. Rev. Lett. 57, 2211 (1986).
[35] J. Kübler, Theory of Itinerant Electron Magnetism (Oxford

University Press, New York, 2009).
[36] S. Chikazumi, Physics of Ferromagnetism (Oxford University

Press, New York, 2009).
[37] R. C. O’Handley, Modern Magnetic Materials (Wiley, New

York, 2000).
[38] D. S. Chuang, C. A. Ballentine, and R. C. O’Handley, Phys.

Rev. B 49, 15084 (1994).
[39] A. Clark, Handbook of Ferromagnetic Materials, Vol. 1 (Else-

vier, Amsterdam, 1980), pp. 531–589.
[40] J. R. Cullen, A. E. Clark, and K. B. Hathaway (VCH Publish-

ings, New York, 1994), Chap. 16—Magnetostrictive Materials,
pp. 529–565.

[41] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Perga-
mon, London, 1959).

[42] https://github.com/pnieves2019/MAELAS.
[43] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno,

Phys. Rev. B 64, 174402 (2001).
[44] L. Landau and E. Lifshitz, in Electrodynamics of Continuous

Media (Second Edition), edited by L. Landau and E. Lifshitz,
Vol. 8 of Course of Theoretical Physics (Pergamon, Amsterdam,
1984), pp. 130–179.

[45] E. Asadi, M. Asle Zaeem, S. Nouranian, and M. I. Baskes, Phys.
Rev. B 91, 024105 (2015).

[46] B.-J. Lee, J.-H. Shim, and M. I. Baskes, Phys. Rev. B 68,
144112 (2003).

[47] F. D. Murnaghan, Proc. Nat. Acad. Sci. USA 30, 244 (1944).
[48] C. L. Fu and K. M. Ho, Phys. Rev. B 28, 5480 (1983).
[49] S. Zhang and R. Zhang, Comput. Phys. Commun. 220, 403

(2017).
[50] https://github.com/pnieves2019/MAELAS/tree/master/

Examples/LAMMPS/AELAS.
[51] P. Hirel, Comput. Phys. Commun. 197, 212 (2015).
[52] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[53] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
[54] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[55] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[56] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[57] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188

(1976).
[58] V. Moruzzi and P. Marcus, Handbook of Magnetic Materials,

Vol. 7 (Elsevier, Amsterdam, 1993), pp. 97–137.
[59] P. Nieves, S. Arapan, S. H. Zhang, A. P. Kadzielawa,

R. F. Zhang, and D. Legut, Comput. Phys. Commun.,
arXiv:2009.01638 [Comput. Phys. Commun. (to be published)].

[60] M. Shimizu, J. Phys. Soc. Jpn. 44, 792 (1978).
[61] M. Getzlaff, Fundamentals of Magnetism (Springer, Berlin,

Heidelberg, 2008).
[62] A. Sawaoka, J. Phys. Chem. Solids 36, 267 (1975).
[63] R. Wu and A. J. Freeman, J. Appl. Phys. 79, 6209 (1996).
[64] R. Wu, L. Chen, and A. Freeman, J. Magnetism Magnetic

Materials 170, 103 (1997).
[65] https://github.com/pnieves2019/MAELAS/tree/master/

Examples/LAMMPS/MAELAS.
[66] M. Fähnle, M. Komelj, R. Q. Wu, and G. Y. Guo, Phys. Rev. B

65, 144436 (2002).
[67] N. J. Jones, G. Petculescu, M. Wun-Fogle, J. B. Restorff,

A. E. Clark, K. B. Hathaway, D. Schlagel, and T. A. Lograsso,
J. Appl. Phys. 117, 17A913 (2015).

[68] T. Burkert, O. Eriksson, P. James, S. I. Simak, B. Johansson,
and L. Nordström, Phys. Rev. B 69, 104426 (2004).

[69] F. Richter and U. Lotter, Phys. Status Solidi (b) 34, K149
(1969).

[70] J. F. Janak and A. R. Williams, Phys. Rev. B 14, 4199 (1976).
[71] Y. Tanji, J. Phys. Soc. Jpn. 31, 1366 (1971).
[72] F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).
[73] C. Williams, Phys. Rev. 46, 1011 (1934).
[74] S. Khmelevskyi and P. Mohn, Phys. Rev. B 69, 140404(R)

(2004).
[75] H. Wang, P.-W. Ma, and C. H. Woo, Phys. Rev. B 82, 144304

(2010).
[76] A. Andreev, Handbook of Magnetic Materials, Vol. 8 (Elsevier,

Amsterdam, 1995), pp. 59–187.
[77] J. Rouchy and E. du Tremolet de Lacheisserie, Z. Phys. B:

Condens. Matter 36, 67 (1979).
[78] E. du Tremolet de Lacheisserie and J. Rouchy, J. Magn. Magn.

Mater. 28, 77 (1982).
[79] R. Yanes, O. Chubykalo-Fesenko, H. Kachkachi, D. A. Garanin,

R. Evans, and R. W. Chantrell, Phys. Rev. B 76, 064416 (2007).

094437-15

https://doi.org/10.1088/0953-8984/26/10/103202
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1103/PhysRevLett.121.125902
https://doi.org/10.1103/PhysRevB.78.024434
https://doi.org/10.1103/PhysRevB.86.174409
https://doi.org/10.1016/j.cpc.2016.05.017
https://doi.org/10.1063/1.5020611
https://doi.org/10.1103/PhysRevMaterials.1.074404
https://doi.org/10.1103/PhysRevB.95.014431
https://doi.org/10.1016/j.jcp.2018.06.042
https://doi.org/10.1103/PhysRevB.93.060402
https://doi.org/10.1103/PhysRevB.103.024429
https://doi.org/10.1103/PhysRev.35.509
https://doi.org/10.1103/PhysRev.36.57
https://doi.org/10.1103/PhysRevB.86.054416
https://doi.org/10.1103/PhysRevLett.57.2211
https://doi.org/10.1103/PhysRevB.49.15084
https://github.com/pnieves2019/MAELAS
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.91.024105
https://doi.org/10.1103/PhysRevB.68.144112
https://doi.org/10.1073/pnas.30.9.244
https://doi.org/10.1103/PhysRevB.28.5480
https://doi.org/10.1016/j.cpc.2017.07.020
https://github.com/pnieves2019/MAELAS/tree/master/Examples/LAMMPS/AELAS
https://doi.org/10.1016/j.cpc.2015.07.012
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
http://arxiv.org/abs/arXiv:2009.01638
https://doi.org/10.1143/JPSJ.44.792
https://doi.org/10.1016/0022-3697(75)90020-7
https://doi.org/10.1063/1.362073
https://doi.org/10.1016/S0304-8853(97)00004-8
https://github.com/pnieves2019/MAELAS/tree/master/Examples/LAMMPS/MAELAS
https://doi.org/10.1103/PhysRevB.65.144436
https://doi.org/10.1063/1.4916541
https://doi.org/10.1103/PhysRevB.69.104426
https://doi.org/10.1002/pssb.19690340261
https://doi.org/10.1103/PhysRevB.14.4199
https://doi.org/10.1143/JPSJ.31.1366
https://doi.org/10.1103/PhysRev.60.597
https://doi.org/10.1103/PhysRev.46.1011
https://doi.org/10.1103/PhysRevB.69.140404
https://doi.org/10.1103/PhysRevB.82.144304
https://doi.org/10.1007/BF01333955
https://doi.org/10.1016/0304-8853(82)90031-2
https://doi.org/10.1103/PhysRevB.76.064416


NIEVES, TRANCHIDA, ARAPAN, AND LEGUT PHYSICAL REVIEW B 103, 094437 (2021)

[80] R. Skomski, IEEE transactions on magnetics 34, 1207
(1998).

[81] G. Dos Santos, R. Aparicio, D. Linares, E. N. Miranda, J.
Tranchida, G. M. Pastor, and E. M. Bringa, Phys. Rev. B 102,
184426 (2020).

[82] L. Néel, J. Phys. Radium 15, 225 (1954).

[83] E. du Tremolet de Lacheisserie and R. Mendia Monterroso,
J. Magn. Magn. Mater. 31-34, 837 (1983).

[84] R. F. L. Evans, U. Atxitia, and R. W. Chantrell, Phys. Rev. B
91, 144425 (2015).

[85] R. F. L. Evans, L. Rózsa, S. Jenkins, and U. Atxitia, Phys. Rev.
B 102, 020412(R) (2020).

094437-16

https://doi.org/10.1109/20.706496
https://doi.org/10.1103/PhysRevB.102.184426
https://doi.org/10.1051/jphysrad:01954001504022500
https://doi.org/10.1016/0304-8853(83)90704-7
https://doi.org/10.1103/PhysRevB.91.144425
https://doi.org/10.1103/PhysRevB.102.020412

