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We investigate the creep of domain walls (DWs) in the combination of in-plane (IP) and out-of-plane magnetic
fields in a series of epitaxial Cu(2 nm)/Pd(0–3 nm)/Co(0.7 nm)/Pd(3 nm) samples. Measured velocity curves,
v(Hx ), are fitted with an extended dispersive elasticity model, which considers the dependence of both the
elastic energy of the DWs and a velocity prefactor in the creep law on the IP magnetic field. The results of the
calculations indicate that strong asymmetry in the v(Hx ) curves in the investigated system is primarily defined
by the dependence of the velocity prefactor on the IP magnetic field, which may be related to a chiral damping
effect. The effective energy of the Dzyaloshinskii-Moriya interaction (DMI) increases with increasing thickness
of the Pd bottom layer from −0.16 ± 0.03 to 0.19 ± 0.05 mJ/m2. We attribute the complex dependence of the
effective DMI energy on the thickness of the Pd bottom layer in the epitaxial Pd/Co/Pd(111) system and the
existence of the nonzero DMI in the symmetric Pd(3 nm)/Co(0.7 nm)/Pd(3 nm) samples to unequal strains in the
bottom Pd/Co and top Co/Pd interfaces. The elastic strains in the interfaces varying depending on the thickness
of the Pd bottom layer strongly influence the magnitude and even the sign of the contributions to the net DMI
energy from each interface.
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I. INTRODUCTION

The Dzyaloshinskii-Moriya interaction (DMI) is an in-
triguing phenomenon that has recently attracted significant
interest due to the possibility of using it in racetrack mem-
ory devices [1,2]. The DMI has a predominate contribution
from the interfaces in multilayered heavy metal-ferromagnetic
(FM) structures because the inversion symmetry is broken in
the interface layers [3]. This type of DMI in multilayered
structures or superlattices is referred to as an interfacial DMI.
The interfacial DMI may stabilize chiral Néel domain walls
(DWs) [4]. Chiral Néel DWs are effectively displaced by the
current pulses due to a spin-orbit torque effect with the direc-
tion of the DW propagation relative to the current direction
depending on the sign of the DMI [5]. Chiral Néel DWs reach
larger velocities under the influence of the current pulses than
achiral Bloch DWs [6,7].

The net interfacial DMI in symmetric multilayered systems
should be absent because the effective contributions to the
DMI from the bottom and top interfaces should compen-
sate each other. Experimental data for the most investigated
symmetric systems with perpendicular magnetic anisotropy
(PMA), Pt/FM/Pt and Pd/FM/Pd, indicate that the weak DMI
in symmetric systems is a more common phenomenon [8–12].
The nonzero DMI in symmetric systems is often explained
by different properties of bottom and top interfaces, such as
strains [13], structural quality [14], roughness, and sharpness
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[11]. Rather strong DMIs were reported in some symmet-
ric systems: –0.8 mJ/m2 in Pt(5 nm)/Co(0.7 nm)/Pt(5 nm)
[14]; –1.3 mJ/m2 in Pt(4 nm)/Co(0.7 nm)/Pt(2 nm) [13]. It
is noteworthy that the large DMI values in the systems were
measured by the asymmetry of DW propagation in a creep
regime under the influence of out-of-plane (OOP) and in-
plane (IP) magnetic fields by the method originally introduced
by Je et al. [8]. They found that the velocity curves v(Hx )
of the DWs that are perpendicular to the IP magnetic field
are symmetric relative to the DMI field and demonstrate
a minimum if the applied magnetic field compensates the
DMI effective field. However, both Brillouin light scattering
investigations [9] and spin-orbit torque efficiency measure-
ments [15] did not indicate any sizable DMI in the symmetric
Pt/Co/Pt system. In this case, the study of Jué et al. [16]
deserves special attention. The authors explained v(Hx ) asym-
metry in Pt/Co/Pt trilayers not by the DMI, but by a chiral
damping that influenced the DW mobility. This asymmetric
chiral contribution was considered in some of the latest studies
concerning DW propagation in a combination of OOP and IP
magnetic fields [17,18].

In this paper, we investigate the symmetric epitaxial
Pd/Co/Pd(111) system and provide insights into the reason
for the strongly asymmetric v(Hx ) curves found in this system
previously [19]. We consider a series of Pd/Co/Pd samples
with a constant Co thickness of 0.7 nm and a variable Pd
bottom layer thickness. Experimental data are fitted by the
extended dispersive stiffness theoretical model. The obtained
results are discussed and compared with similar results mea-
sured in various systems.
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II. EXTENDED DISPERSIVE STIFFNESS MODEL

Consider a general creep law for DWs in the form postu-
lated by Jeudy et al. in Ref. [20]:

v(Hz, Hx, T ) = v0(Hx, T ) exp

(
− �E

kBT

)
, (1)

where v(Hz, Hx, T ) is a velocity of the DW, v0(Hx, T ) is a
characteristic velocity of the DW at Hz = Hd , Hd is a depin-
ning field, T is the absolute temperature, kB is the Boltzmann
constant, and

�E = kBTd

[( Hz

Hd

)−1/4

− 1

]
, (2)

is an energy barrier with kBTd equal to a characteristic pinning
energy scale.

Considering low velocities under the driving field much
less than the depinning field, Hz � Hd , the unit in Eq. (2) may
be neglected, and the creep law takes the well-known form

v(Hz, Hx, T ) = v0(Hx, T ) exp

[
−Td

T

( Hz

Hd

)−1/4]

= v0(Hx, T ) exp[−ζ (μ0Hz )−1/4], (3)

where ζ = Td
T (μ0Hd )1/4 responds to the IP magnetic field

dependence of the velocity.
In their pioneering study, Je et al. [8] estimated ζ in Eq. (3)

in the form

ζ (Hx ) = ζ (0)

[
σ (Hx )

σ (Hx = 0)

]1/4

, (4)

where σ is a DW energy density per unit area and ζ (0) is
a constant that does not depend on Hx [8]. The DW energy
density of the DW oriented perpendicular to the IP magnetic
field was supposed to be nondispersive. This means that it
was uniform along the length of the DW. Pellegren et al.
[21] introduced the dispersive stiffness model of DWs. In the
creep regime, the DWs are not displaced by their entire length
but rather by small protrusions at which the pinning energy
barrier is overcome. The arc-shaped deformations of the DWs
under the influence of the driving OOP magnetic field were
considered. In the general case, the DW energy density per
unit length depends on the orientation of the DW’s segment
relative to the IP magnetic field and is nonuniform in the arc-
shaped deformed region of the DW. Considering stretching,
bending, and orientation of the DW in the deformed region,
Pellegren et al. [21] calculated the dispersive elasticity of the
DWs under the action of OOP and IP magnetic fields and
successfully modeled asymmetrical v(Hx ) curves, which re-
produced the experimental results reasonably well. However,
the authors did not find an optimal length of the protrusion
and treated it as a free parameter.

Hartmann et al. [22] thoroughly described and extended
this model. The authors considered triangular-shaped protru-
sions and optimized their lengths depending on the calculated
parameters. They considered exchange energy costs due to the
kinks in the connection of the deformed DW with the straight
DW segments. Unlike the approach of Pellegren et al. [21],
who calculated only dispersive stiffness in the creep model but
found the proportionality constant ζ (0) in Eq. (4) by fitting the

experimental data, Hartmann et al. [22] calculated the energy
barrier �E in the general creep law based on the structural and
scaling parameters, which must take reasonable values.

In most previous studies, it is considered that the IP mag-
netic field changes only the energy barrier �E. However, the
possible dependence of the prefactor v0 on the Hx is usually
neglected [8,14,21–23]. Gorchon et al. [24] expressed the
prefactor v0 in the universal creep law in the form of

v0(Hx, T ) = ξ0 f0 exp

(
Td

T

)
, (5)

where ξ0 is a disorder correlation length and f0 is an attempt
frequency. Jué et al. [16] supposed the attempt frequency
scales with the inverse of the damping f0 ∼ 1/χ , where χ

is a damping parameter. The key concept of their study was
that damping in some systems may be chiral and may depend
on the azimuthal orientation of the magnetization in the DWs.
Lau et al. [17] assumed the following form of the dependence
of the velocity prefactor on the IP magnetic field

v0(Hx, T ) = v∗
0 [1 + χ∗ cos(φ − α)], (6)

where v∗
0 is a velocity independent of Hx, χ

∗ is a chiral damp-
ing weight, the absolute value of which cannot be >1, φ is
an angle between the IP magnetization at the DW and the
direction of IP magnetic field, and α is an angle between a DW
normal and the direction of IP magnetic field. The dependence
of v0 on the IP magnetic field is included in the functions
φ(Hx ) and α(Hx ). Despite Lau et al. [17] did not explain how
the expression for the velocity prefactor had been derived,
they obtained the excellent coincidence between the results
deduced from the fittings of velocity curves and analysis of
Brillouin light spectra.

In this paper, we explain the asymmetrical shape of the
v(Hx ) dependencies measured in epitaxial Pd/Co/Pd(111)
trilayers, both by considering the contributions of the IP mag-
netic field to the energy barrier and the velocity prefactor in
the creep law. The energy barrier �E in Eq. (1) was calculated
using the approach of Hartmann et al. [22]. The approach is
described in detail in the Supplemental Material [25]. We also
recommend familiarization with their study for deeper under-
standing [22]. The velocity prefactor v0(Hx, T ) was calculated
according to the Lau et al. [17] approach by Eq. (6) with α = 0
and taking the dependence φ(Hx ) from the calculations of the
energy barrier.

III. EXPERIMENT

The samples were evaporated in an Omicron ultrahigh
vacuum system, which consisted of a molecular beam epitaxy
chamber and an analysis chamber interconnected with each
other. We used Si(111) substrates misoriented toward [2,11]
by 0.1 °. Before loading into the chamber, Si(111) substrates
were rinsed in isopropyl and distilled water. The substrates
were then heated at 800 K by indirect heating for 12 h. Just
before deposition, the substrates were flash-heated by direct
current at 1400 K three times for 10 s and slowly cooled
down to 300 K. All the metals were evaporated from high
temperature effusion cells.

The growth rates of Cu, Co, and Pd were 0.9, 0.28,
and 0.26 nm/min, respectively. The deposition rates were
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FIG. 1. (a) and (b) Reflection high-energy electron diffraction (RHEED) patterns of Si/Cu(2)/Pd(3) and Si/Cu(2)/Pd(3)/Co(0.7) surfaces,
respectively. (c) Lattice parameter measured in the process of the growth of the layers in Pd(dPd )/Co/Pd trilayers. The beginning thicknesses
of the growth are shifted to negative values for better comparative analysis of the results. aCo0 is a volume lattice parameter of face-centered
cubic (fcc) Co. (d) Strains in the bottom Pd/Co and top Co/Pd interfaces.

monitored by a quartz crystal microbalance, which was cali-
brated by means of reflection high-energy electron diffraction
(RHEED). We detected the oscillations of the intensity of the
specular beam reflection during the growth of Cu on Si(111),
Co on Si(111)/Cu(1 nm), and Pd on Si(111)/Cu(1 nm). We
then calculated the period of oscillations and compared it
with data obtained from the quartz crystal microbalance. The
temperature of the substrates was 340 K during Cu and bottom
Pd layer deposition and 370 K during Co and top Pd layers
deposition. Changes in the temperature of the samples during
the deposition of different materials were caused by different
infrared heating of the samples from the effusion cells.

Epitaxial Pd(dPd)/Co(0.7)/Pd(3) trilayers were grown on
a Si/Cu(2) surface (hereinafter, all thicknesses are in nanome-
ters). The thickness of the bottom Pd layer dPd was varied
from 0 to 3 nm to investigate the origin of the DMI in this
system. In addition, asymmetric Pd(3)/Co(0.7)/Cu(2)/Pd(3)
samples were deposited to define from which interface the
contribution to the DMI is the largest. The thickness of the Co
layer was chosen as 0.7 nm because, for larger Co thicknesses,
the anisotropy in the asymmetric Cu/Co/Pd samples was IP.
The Pd(dPd)/Co(0.7)/Pd(3) samples will be denoted simply
as Pd(dPd) when it comes to the comparison of symmetric
samples only. If the asymmetric Pd/Co/Cu or Cu/Co/Pd sam-
ples are compared with the symmetric Pd/Co/Pd samples, we
will give the full notation of the samples to avoid misunder-
standings. The lattice period of the metal layers during growth
and their structure were analyzed by means of RHEED (Staib
Instruments). RHEED measurements were carried out simul-
taneously with deposition of the samples. Magnetic hysteresis
loops of the samples were measured using a vibrating sample
magnetometer (Lakeshore) with applied magnetic fields of up
to 2 T. The magnetic structure was investigated by a magneto-
optical Kerr effect (MOKE) microscope (Evico-Magnetics).
The MOKE microscope was equipped with a handmade coil
applying OOP magnetic fields and an IP electromagnet. The
OOP coil was used in pulse mode and produced magnetic
fields with an amplitude of up to 50 mT and a width down to 2
ms. The scheme for the measurement of the DW velocity was
as follows. A stable nucleating circular domain was found. A
constant IP magnetic field was switched on. The pulse of the
OOP magnetic field of the calibrated time-length was applied.

The distance at which the DW propagated was measured from
a snapshot of differential magnetic contrast made by the Kerr
microscope.

IV. RESULTS AND DISCUSSION

A. RHEED investigation

A Cu(2) buffer layer was formed on the Si(111) substrate
to prevent intermixing of Pd and Si and to initiate epitaxial
growth of face-centered cubic (fcc) Pd(111). The epitaxial
relationships defined from the RHEED patterns are Cu(111)
|| Si(111) and Cu[11-2] || Si[10-1]. The epitaxial relationships
during growth of the subsequent Pd and Co layers remain
the same as in Cu. Pd(111) grows on Cu(111) and Co(111)
surfaces in the fcc structure. Co grows on the Pd(111) surface
presumably in the fcc structure [29]. The RHEED patterns
from the bottom Pd and Co layers in the Pd(3)/Co(0.7)/Pd(3)
sample are shown in Figs. 1(a) and 1(b), respectively. The
RHEED streaks confirm the well-ordered crystalline structure
of the layers. The evolution of the lattice parameter during the
growth of the structures was measured by RHEED [Fig. 1(c)].
There is a large lattice mismatch between Pd and Cu (Co) of
7.9% (9.6%). The bottom Pd layer is initially largely strained
when it grows on the Si/Cu(2) surface. Stress is gradually
relaxed by the introduction of misfit dislocations in the Pd
layers. The bottom Pd layer demonstrates a volume lattice
parameter at the thickness of 3 nm.

Co layers grown on the top of Pd underlayers are strained.
Strains are partially relaxed during growth of the Co layers.
Therefore, strains on the bottom and on the top of the Co lay-
ers depend on the thickness of the Pd underlayer [Fig. 1(d)].
Since the thickness of the Co layers was only 0.7 nm, the
lattice parameter on the top of the Co layers does not recover
to the volume Co lattice parameter.

B. PMA characterization

The OOP and IP magnetic hysteresis loops of the
Pd(1)/Co(0.7)/Pd(3) sample are shown in Fig. 2(a). The other
samples had similar hysteresis loops. All samples demon-
strated PMA. The anisotropy field HPMA changed depending
on the Pd bottom layer thickness, as indicated in Fig. 2(b).
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FIG. 2. (a) Out-of-plane (OOP) and in-plane (IP) magnetic hysteresis loops of the Pd(1)/Co(0.7)/Pd(3) sample. (b) Dependencies of the
perpendicular magnetic anisotropy (PMA) field and energy of PMA on the thickness of the Pd bottom layer.

In the initial stages of the growth of the Pd bottom layers,
the PMA slightly decreased, which may be explained by the
partial covering of the Si(111)/Cu surface by Pd atoms and
the possible intermixing of Pd with Cu [30]. With further
increasing Pd thickness, the PMA increased, which is ex-
plained by an increase in a magnetoelastic contribution to the
PMA. The general behavior of HPMA, depending on the Pd
bottom layer thickness, is correlated well with the results of
our previous study [29]. The PMA field tends to saturation at
a Pd underlayer thickness of 2 nm.

We used a Co volume magnetization value of 1.42 ×
106 A/m for the calculation of the energy of PMA for all
samples. Magnetically polarized Pd layers adjacent to Co
layers with a net effective thickness of 0.2 nm were neglected
as layers with the magnetization 4.6 times lower than the mag-
netization in Co, Ms,Pd ≈ 3.1 × 105 A/m [31]. In the previous
paper, we showed that a magnetic dead layer is formed at the
interface of Co and Cu with the effective thickness of nearly
0.1 nm [29]. We considered this fact in the calculations of the
Pd/Co/Cu and Cu/Co/Pd samples.

C. Velocity curves v(Hx) of the DWs

The velocities of the left ↓↑ and right ↑↓ DWs driven
by a constant positive OOP magnetic field were measured
as functions of the IP magnetic field. The directions of the
magnetic fields are outlined in Fig. 3(a). The shape of the
v(Hx ) curves did not change when the magnitude of the OOP
magnetic field was varied. All v(Hx ) curves of the selected
sample merged when normalized to the value of the veloc-
ity at a minimum (see the Supplemental Material [25]). The
velocity curves of the Cu/Co/Pd sample are reasonably sym-
metrical with the minima in the |Hx| = 10 mT [Fig. 3(b)]. The
multiple nucleation of domains prevented us from measur-
ing large velocities of the DWs in this sample. The shape
of v(Hx ) curves in the Pd(0.22) sample become asymmetric
because of the appearance of a kink in zero IP magnetic fields
[Fig. 3(c)]. The position of the minimum only slightly shifts
toward larger magnetic fields |Hx| = 15 mT. However, 0.4 nm
of Pd on the bottom of the Co layer is sufficient to change the
shape of v(Hx ) curves significantly. The v(Hx ) curves have
two pronounced kinks: the first kink is observed in zero IP
magnetic fields, and the second kink, which simultaneously

is a minimum, is in |Hx| = 50 mT [Fig. 3(d)]. The v(Hx )
curves became strongly asymmetrical. With an increase in
the thickness of the bottom Pd layer, the following tendency
is observed. The first kink of the v↓↑(Hx ) curves shifts to-
ward negative IP magnetic fields and becomes smoother. The
minimum shifts toward positive IP magnetic fields [Figs. 3(e)–
3(h)]. The difference between the values of the velocities at
the first and second kinks increases with an increase in the
Pd underlayer thickness. The general features of the v(Hx )
curves, which are observed in the Pd/Co/Pd trilayers with
large Pd underlayer thickness, are present in the Pd(3)/Co/Cu
sample [Fig. 3(i)]. The v(Hx ) curves of the Pd(3)/Co/Cu sam-
ple demonstrate kinks and are strongly asymmetrical.

The velocity curves of the samples were fitted by the
extended dispersive stiffness model. The fitting parameters
were the DMI field HDMI, the DW anisotropy field HB, the
correlation length ξ , the chiral damping weight χ∗, and the
velocity v∗

0 . A fitting program searched for the minimal resid-
ual dispersion by means of variation of the fitting parameters.
The fitted v(Hx ) curves are shown in Fig. 3 by solid lines.

D. DMI and chiral damping

The dependence of the effective DMI energy Deff on
the Pd bottom layer thickness is shown in Fig. 4(a). The
DMI energy is defined as Deff = μ0MsλHDMI, where λ =√

A/Keff is a Bloch DW thickness and A = 25 pJ/m is the
exchange constant for Co [19]. The shape of the Deff (dPd)
and HDMI(dPd) dependencies is generally similar; however,
the λ(dPd) function makes differences in the behavior of these
two quantities. The negative effective DMI energy increases
in the magnitude in the Pd bottom layer thickness interval
from 0 to 0.2 nm. With further increase of the Pd bottom
layer thickness, the magnitude of the effective DMI energy
decreases. Here, Deff changes the sign between the thick-
nesses of dPd = 0.6 and 1 nm and increases in the positive
range up to 0.19 ± 0.05 mJ/m2 with dPd = 3 nm, when the
system becomes symmetric by the composition. Note that
the asymmetric Pd(3)/Co/Cu sample has approximately zero
DMI.

With a change in the Pd underlayer thickness from 0 to 0.4
nm, the absolute value of the chiral damping weight increases
abruptly from 0.2 to 0.9 and oscillates near this value with
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FIG. 3. (a) Scheme of the measurements. v(Hx ) curves measured in (b) Cu/Co/Pd, (c) Pd(0.22), (d) Pd(0.4), (e) Pd (0.6), (f) Pd(1), (g)
Pd(2), (h) Pd(3), and (i) Pd(3)/Co/Cu samples. Squares and circles denote experimental points. Solid lines are calculated by the extended
dispersive stiffness model.

a further increase of the bottom Pd thickness [Fig. 4(b)].
Strictly speaking, the physical nature of the asymmetry of
v(Hx ) curves is under debate. In some studies, this effect
is named chirality-induced [15,18] or additional asymmetry
[9]. Elastic strains in the Co layers might play a significant
role in the chirality-induced asymmetry of the v(Hx ) curves.
This assumption is confirmed by an increase of the chiral
damping weight if changing a stacking order in the asymmet-

ric samples from the Cu/Co/Pd to Pd/Co/Cu. In the second
case, the sample is much more strained than in the first case.
However, the behavior of the thickness dependencies of the
chiral damping weight and elastic strains [Fig. 1(d)] is quite
different.

The sign of the chiral damping weight does not change
when the order of the layers changes in the asymmetrical
system, like in the study of Lau et al. [17]. These experimental

FIG. 4. Pd bottom layer thickness dependencies of (a) the effective Dzyaloshinskii-Moriya interaction (DMI) energy, (b) chiral damping
weight. Half-shaded symbols denote data points for the Pd(3)/Co(0.7)/Cu(2) sample.
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TABLE I. Strains in the interfaces and effective DMI energies for
symmetric and asymmetric samples.

Strains, η = (a–aCo0)/aCo0 in

Bottom interface Top interface
Sample (%) (%) Deff (mJ/m2)

Pd(3)/Co(0.7)/Pd 9.4 4.3 0.19 ± 0.05
Pd(3)/Co(0.7)/Cu 9.4 4.3 –0.01 ± 0.02
Cu(2)/Co(0.7)/Pd 1.7 0.9 –0.16 ± 0.03

findings may suggest the possible volume origin of the con-
sidered effect. However, at the same time, the chiral weight is
sensitive to the material deposited on the top of the Co layer.
The chiral weight is 1.5 times more in the Pd(3)/Co/Pd sample
than in the Pd(3)/Co/Cu one in spite of similar strain distribu-
tions in the samples. Further investigation of this system with
variable thickness of the Co layers is needed to investigate the
chiral damping effect more thoroughly.

The origin of the nonzero DMI in the symmetric
Pd(3)/Co(0.7)/Pd(3) sample and the absence of the DMI in
the asymmetric Pd(3)/Co/Cu sample may be related to a dif-
ference in the strains in the bottom Pd/Co and top Co/Pd
interfaces. Comparing the Pd(3)/Co/Cu and Pd(3)/Co/Pd sam-
ples (see Table I) and considering that the DMI in the interface
of Co with Cu is nearly zero because Cu is metal with a
weak spin-orbit coupling, we may conclude that the top Co/Pd
interface is mainly responsible for the existence of DMI in the
symmetric Pd(3)/Co(0.7)/Pd(3) sample. The effective DMI
energies for the both Cu/Co/Pd or Pd(0) and Pd(3)/Co/Pd
samples are primarily defined by the contributions from the
top interfaces. The contributions to the effective DMI energies
from the bottom interfaces are nearly zero for both samples.
However, the top Co/Pd interface is differently strained in
these samples. Therefore, it may be assumed that the increase
in the DMI in the Pd/Co/Pd samples with increasing Pd un-
derlayer thickness is due to the increase in the strains in the
top Co/Pd interface.

The assumption is based on the analysis of only edge
points of the Deff (dPd) dependence. It is better to con-
sider the DMI energy for the entire set of samples for an
analysis. Consider elastic strains as η = [a(dPd)–aCo0]/aCo0.

Then, the effective DMI energy in the Pd/Co/Pd trilayer
is calculated as Deff (dPd) = DPd/Co(η) + DCo/Pd(η). In gen-
eral, knowledge of the only net DMI in the Pd/Co/Pd
system does not allow us to calculate separate contribu-
tions to the effective DMI energy from the bottom Pd/Co
and top Co/Pd interfaces. If we neglect the contribution to
the DMI from the Cu/Co and Co/Cu interfaces, it becomes
possible to evaluate DPd/Co(9.4%) = –0.01 ± 0.02 mJ/m2,
DCo/Pd(4.3%) = 0.18 ± 0.05 mJ/m2, and DCo/Pd(0.9%) =
–0.16 ± 0.03 mJ/m2 just from the analysis of the data ob-
tained from asymmetric Pd/Co/Cu, Cu/Co/Pd, and symmetric
Pd(3)/Co(0.7)/Pd(3) samples. These points are basic for a
calculation of DMI contributions from the bottom and top
interfaces under different assumptions.

Knowing the DCo/Pd values at the limiting values of the
elastic strains, one could assume the form of the DCo/Pd(η)
dependence. Then the effective contribution to DMI from the
bottom Pd/Co interface DPd/Co(η) may be calculated. Sup-
pose a parabolic DCo/Pd(η) dependency. Then the DPd/Co(η)
function takes a parabolic form as well [Fig. 5(a)]. One could
see that the values of DPd/Co and DCo/Pd taken at similar
strains are nearly equal in magnitude but have opposite sign,
which is expected due to a symmetry reason. Therefore, the
complex behavior of the net DMI in the Cu/Pd/Co/Pd series
of samples as the function of the Pd bottom layer thickness
may be explained by universal parabolic dependencies of the
contributions from the bottom and top interfaces to the net
DMI on the strains DPd/Co(η) ≈ –DCo/Pd(η).

A linear (or some other) DCo/Pd(η) dependence may be
assumed [Fig. 5(b)], but it does not significantly change the re-
sult. In this case, the magnitudes of the interface contributions
to the DMI are not equal at same strains, while general be-
havior of the dependencies is conserved. It is quite expectable
since the interfaces may be structurally different, especially if
they are not completely formed. The first three points of the
DPd/Co(η) dependencies are obtained in the samples with the
effective thickness of the Pd bottom layer of 0.4 nm and less.
Based on our previous study [30], we suppose that pure Pd
begins to grow from the thickness of about 0.6 nm. We do
not exclude intermixing of Pd with Cu in the initial stages of
growth. Nevertheless, we may conclude that, firstly, the elastic
strains in the interfaces strongly influence the magnitude and
even the sign of the contributions to the net DMI energy from

FIG. 5. The dependencies of DPd/Co and DCo/Pd on elastic strains calculated under assumption of the (a) parabolic and (b) linear form of
the DCo/Pd(η) function.
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FIG. 6. Pd bottom layer thickness dependencies of (a) domain wall (DW) anisotropy and perpendicular magnetic anisotropy (PMA)
fields, (b) correlation length in the Cu(2)/Pd(0–3)/Co(0.7)/Pd(3) samples. Half-shaded symbols denote data points for the Pd(3)/Co(0.7)/Cu(2)
sample.

each interface. Secondly, the energy of the net effective DMI
is defined by both contributions from the bottom and top inter-
faces which do not compensate each other in any of the con-
sidered samples because the interfaces are differently strained.

The DW anisotropy field Hb is the IP magnetic field ori-
ented along a normal of a Bloch DW, which is needed to be
applied to orient the magnetization inside the Bloch DW per-
pendicular to its plane. The dependence of the DW anisotropy
field on the Pd underlayer thickness is shown in Fig. 6(a), and
it correlates with the Pd thickness dependence of the effective
magnetic anisotropy. The qualitative behavior of the Hb(dPd)
dependence is straightforward. An increase in PMA leads to
an increase in the demagnetizing factor of the Bloch DW and,
consequently, its anisotropy field.

The final considered parameter is the correlation length.
Based on our previous investigation, we expect an increase in
the root-mean-square (RMS) roughness from 0.1 to 0.2 nm
when the Pd underlayer with the thickness of 0.4 nm is de-
posited on the Si/Cu(2) surface [30]. Then the RMS roughness
of Si/Cu(2)/Pd(dPd) does not change significantly up to the
Pd thickness of 0.29 nm. The RMS roughness of the Co layers
with the thickness of 0.7 nm deposited on the Pd underlayers
is nearly the same as the RMS roughness of the Pd underlayers
[29]. The Pd underlayer thickness dependence of the corre-
lation length resembles the Pd thickness dependence of the
RMS roughness, except the point at dPd = 0.2 nm. This may

be explained by correlation between the RMS roughness and
the size of the islands, which corresponds to the magnitude of
the correlation length reasonably well (see the Supplemental
Material [25]).

E. Comparison of the results with literature data

If the chirality-induced asymmetry is zero, then the shape
of the v(Hx ) curves is defined by the dependence of the DW
energy density per unit area on the IP magnetic field, which is
included in an exponential part of the creep law. For definite-
ness, consider the velocity of the left DW v↓↑. An exponential
part of the v(Hx ) curve exp(–�E/kBT ) or v/v0 normalized
to the minimal value calculated by the extended dispersive-
stiffness model for the Pd(3) sample is shown in Fig. 7(a).
The shape of the normalized v/v0 curve is characterized by
a gradual decrease, when the IP magnetic field is changed
from zero to the Hmin value, and a rapid increase, when the
IP magnetic field is less than the Hmin value. It is noteworthy
that the kinks in the normalized v/v0 curves may be rather
smooth in this case and may be difficult to observe in the
experimental v(Hx ) curves. The absolute value of the –HDMI

field is slightly larger than the |Hmin| value in this case. Hence,
the absolute value of the DMI field defined by the position of
the minimum in the v(Hx ) curve will be underestimated in this

FIG. 7. In-plane (IP) magnetic field dependencies of (a) ln(v/v0) and v0 and (b) the resulting velocity v calculated with the chiral damping
weight, χ∗ = –0.95 for the Pd(3) sample. All functions are normalized to their minimal values for scaling. Red dashed lines denote data
calculated for the v↑↓(Hx ) curves.
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FIG. 8. Pd bottom layer thickness dependencies of –HDMI and
in-plane (IP) magnetic fields, at which the minimum and the first
kink are observed in the v↓↑(Hx ) curves.

case. This finding was experimentally confirmed in samples
demonstrating the v(Hx ) curves of such a shape [15,23].

The normalized v0(Hx ) dependence calculated for the
Pd(3) sample is shown in Fig. 7(a) for comparison with
the exponential part. The velocity prefactor changes in the
IP magnetic field interval where DWs have an intermediate
Bloch-Néel structure [16]. Note that the velocity prefactor sat-
urates if |Hx–HDMI| 	 HB. The reason for an incomplete satu-
ration of the velocity prefactor in the area of |Hx–HDMI| = HB

is related to the constant value of α = 8◦ used for the calcu-
lation of the exponential part [21,22]. The normalized v0(Hx )
dependence is asymmetric relative to the DMI field in the IP
magnetic field interval |Hx–HDMI| < HB for the same reason.
See the Supplemental Material [25], in which the v0(Hx ) de-
pendence calculated with the optimized α is considered.

Product of the two aforementioned factors gives the re-
sulting v(Hx ) curve shown in Fig. 7(b). The shape of the
curve is characterized by a rapid decrease in the velocity
with an increase in the IP magnetic field to the Hmin value
and a subsequent gradual increase of the velocity in larger
IP magnetic fields. The velocities equidistant from the –HDMI

field are not equal in any nonzero IP magnetic fields. The
v(Hx ) curves demonstrate three kinks. The first kink is related
to the beginning of a transformation of the magnetic structure
of the DWs from the Néel to Bloch type. In this case, both the
exponent and the velocity prefactor decrease. The second kink
is defined by a strong decrease in the velocity prefactor, which
even overcomes an increase in the exponent. The third kink
and simultaneously the minimum is caused by a saturation
of the magnetic structure of the DW to the Néel type and,
hence, an increase in the exponential factor while the velocity
prefactor becomes constant. Evidently, the –HDMI field must
be in the magnetic field region between the first and third
kinks, in which the transformation of the magnetic structure
of the DW occurs. Indeed, the –HDMI field does not coincide
with the magnetic field μ0Hmin, at which the minimum in the
v(Hx ) curves is observed, except for two beginning points of
the Pd(0) and Pd(0.2) samples, in which the chiral damping
weight is minimal (Fig. 8).

In the case of large chiral damping, the shape of the v(Hx )
curves is mainly defined by the IP magnetic field depen-

dence of the velocity prefactor. Experimental v(Hx ) curves
are strongly asymmetric. Since the asymmetry of the v(Hx )
curves caused by their dispersive stiffness and chiral damping
is multiplied, the relative difference between the minimum
and maximum velocities in Fig. 7(b) reaches two orders
of magnitude. Such strongly asymmetric v(Hx ) curves are
frequently observed in experimental studies of the DWs dy-
namics [9,17,32]. It is noteworthy that the asymmetric v(Hx )
curves obtained in this paper could not be fitted only with
the exponential part of the creep law without considering the
chirality-dependent velocity prefactor.

The obtained results indicate that even rough estimation
of the DMI field only from the position of the minima in the
v(Hx ) curves may lead to wrong results. The v(Hx ) curves
must be measured in a wide range of magnetic fields to an-
alyze their overall shape. It is necessary to detect not only
minima in the v(Hx ) curves but reach the saturation in the
v(Hx ) dependencies. The kinks before the saturation indicate
the complete transformation of DWs from Bloch to Néel type
[15,22] and define the DW anisotropy field.

V. CONCLUSIONS

DW propagation in the creep regime was investigated in
epitaxial Cu(2)/Pd(dPd)/Co(0.7)/Pd(3) structures in simul-
taneously applied IP and OOP magnetic fields. The thickness
of the bottom Pd layer was varied from 0 to 3 nm. The
measured v(Hx ) curves were fitted by an extended dispersive-
stiffness model. With increasing thickness of the Pd bottom
layer >0.4 nm, the v(Hx ) curves became strongly asymmetric.
Analysis of the fittings indicates that the asymmetry in the
v(Hx ) curves is mainly caused by the dependence of the veloc-
ity prefactor in the creep law on the internal magnetic structure
of the DWs, which may be related to the chiral damping effect.
The absolute value of the chiral damping weight increased
from 0.2 to 0.9 with an increase of the thickness of the Pd
bottom layer. The Pd bottom layer thickness dependence of
the effective DMI is complex. With a slight decrease of Deff in
the Pd thickness interval from 0 to 0.23 nm, the effective DMI
energy increased from −0.25 ± 0.04 to 0.19 ± 0.05 mJ/m2

with increasing Pd underlayer thickness from 0.23 to 3 nm.
We related the increase of the effective DMI in the symmetric
system to the dependencies of the contributions to the effec-
tive DMI from the bottom Pd/Co and top Co/Pd interfaces
on elastic strains and asymmetry of the elastic strains in the
bottom and top interfaces.
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