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Effects of screened Coulomb interaction on spin transfer torque
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In a magnetic multilayer, magnetizations can be manipulated by spin transfer torque. Both spin transfer torque
and its reciprocal effect, spin pumping, are governed by spin mixing conductance. The magnitude of spin
mixing conductance at the interface of nearly magnetic metal has been theoretically shown to be enhanced
by electron-electron interaction. However, experiments show both increasing and decreasing values of spin
mixing conductance for metals with larger electron-electron interaction. Here we take into account the effect of
electron-electron interaction on the screening of the Coulomb interaction at the magnetic interface to correctly
describe the experiment.
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I. INTRODUCTION

Since the discovery of the giant magnetoresistance effect
in magnetic multilayers, the research area of spintronics that
manipulate and control spin current has emerged [1,2]. In
a bilayer of ferromagnet insulator and nonmagnetic metal,
magnetizations dynamics can be manipulated by spin current
and vice versa [3]. The former phenomenon is known as
spin transfer torque [4]. On the other hand, spin pumping is
interfacial spin current generation by dynamic magnetization
of a ferromagnetic layer into an adjacent nonmagnetic metal
[5]. The physics of spin pumping can be understood in terms
of exchange interaction between magnetization and a spin-
polarized conduction electron [6]. The conduction electrons
of the adjacent nonmagnetic metal is spin polarized via ex-
change interaction with the ferromagnetic [7]. An adiabatic
precession of the magnetization pumps a spin current from a
ferromagnet to a nonmagnetic layer with a polarization [8]

J = G↑↓m × ṁ, (1)

where m is the magnetization direction and G↑↓ is a complex
value with a comparably small imaginary term [9,10].

The basic models of spin pumping employ a noninteracting
description of the nonmagnetic metal [6,7]. While this is cer-
tainly appropriate for free-electron-like metals, it is less so for
nearly magnetic metals, such as Pd and Pt. The nearly mag-
netic metals are characterized by large Stoner enhancement

SE = 1

1 − UN (εF )
(2)

in their magnetic susceptibilities [11]. Here U is Hub-
bard parameter that represent the electron-electron interaction
strength and N (εF ) is the density of state at Fermi energy.
The effects of large Stoner enhancement on magnetic suscep-
tibility have been thoroughly studied [11–13]. However, the
studies exploring the effects of electron-electron interaction
on spin mixing conductance are still few [14]. Reference [15]
predicts that spin mixing conductance is proportional to the

square of Stoner enhancement

G↑↓ ∝ SE2. (3)

However, this theoretical prediction does not fit quantitatively
well with Ref. [16]. Furthermore, Ref. [17] shows that the spin
pumping into Pd generates a smaller spin current than into Pt
even though the Stoner enhancement of Pd is larger.

The spin mixing conductance also governs the reciprocal
effect, the spin transfer torque. When the metallic layer has
a finite spin accumulation μ, which represent the difference
of spin dependent electrochemical potential, there is a spin
current transfer from the nonmagnetic interface into the fer-
romagnetic interface, with polarization that can be written
in term of spin mixing conductance [4]. The generated spin
transfer torque is

τ = G↑↓m × (m × μ). (4)

In equilibrium, the spin currents associated spin transfer
torque balances the spin pumping. In spin Seebeck effect, the
balance is destroyed by a thermal gradient [18]. The net spin
current is then converted into electromotive force by the spin-
orbit interaction of the nonmagnetic layer. A spin Seebeck
device requires a nearly magnetic metal, such as Pd and Pt, as
a nonmagnetic layer that converts the spin current into electric
current [19]. Therefore, a better understanding of spin mixing
conductance of nearly magnetic metal is required.

In this article we analyze the effect of the screened
Coulomb interaction on the spin transfer torque. We first
analyze the screening of the exchange interaction on nearly
magnetic metal. We then validate the expression of spin trans-
fer torque that arises from the exchange interaction between
the magnetic moment of ferromagnetic layer and the spin of
conduction electron in nearly magnetic metal that has a finite
spin accumulation. Finally, we show the effect of the screened
Coulomb interaction on the spin mixing conductance.
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FIG. 1. The interface of magnetic and nearly magnetic metal can
be modeled as a ferromagnetic layer that consists of magnetic ions
and an interacting conduction electron with spin accumulation.

II. SCREENED-EXCHANGE INTERACTION WITH
ELECTRON-ELECTRON INTERACTION CORRECTION

In the second quantization, the interactions in the nearly
magnetic system near the interface as illustrated in Fig. 1 can
be written with the following s-d Hamiltonian with Hubbard
interaction:

H =
∑
pα

εpa†
pαapα + U

∑
pqk

a†
p+q↑ap↑a†

k−q↓ak↓

− h̄

2

∑
pαβ

μ · σαβa†
pαapβ

− JU

∑
pqαβ

∑
jα′β ′

d†
jα′d jβ ′σα′β ′ · σαβa†

p+qαapβ, (5)

where d†
jα (d jα ) is the creation (annihilation) operator of d

electron with spin α, a†
pα (apα ) is the creation (annihilation)

operator of conduction electron with wave vector p and spin
α, σ is Pauli vectors, and εp = h̄2 p2/2m is the energy of the
conduction electron. The second term is the electron-electron
interaction, characterized by the Hubbard parameter U . The
third term is the spin-dependent energy shift due to spin
accumulation μ. In the magnetic multilayer there is a spin
accumulation on the nearly magnetic metal that accommo-
dates nonlocal spin transfer [20,21]. The last term is the s-d
exchange interaction of conduction electron with localized
spin

∑
jα′β ′

d†
jα′d jβ ′σα′β ′ ≡ S,

with exchange constant JU ,

JU =
∫

dr1dr2ψ
∗
kF

(r1)ψ∗
d (r2)V (|r1 − r2|)ψkF (r2)ψd (r1),

(6)

where ψ∗
d (r) = ∑

lm R(r)Ylmr̂ is the wave function of the d
electron and R(r) =

√
8ζ 7/45r2e−ζ r is the Slater wave func-

tion.
While Ref. [15] has discussed the effect of the electron-

electron interaction on spin mixing conductance, the effect
on the exchange constant JU was overlooked. We need to
take into account the U dependency of JU to give a more
accurate estimation. The dependency of JU to U arises from
the screening of Coulomb interaction. A screened Coulomb

FIG. 2. Exchange constant JU as a function of λ/ζ (black
line). For large λ, the exchange constant approaches JU = e2

ε0λ2 =
J0[1 − UN (εF )] (blue line).

interaction can be expressed in term of Yukawa potential

V (r) = e2 exp (−λr)

4πε0r
, (7)

where screening constant λ is

λ2 =q2V (q)

(q)

1 − U
(q)
, (8)


(q) = lim
q�k

∑
k,σ

fk,σ − fk+q,σ

Ek+q − Ek + i0+ , (9)

and V (q) is the Fourier transformation of V (r). λ is related
to density of state at Fermi energy N (εF ) of noninteracting
metal as [22]

λ2 = e2ε−1
0 N (εF )

1 − UN (εF )
. (10)

Here we note that λ(U = 0) ≡ λ0

√
e2ε−1

0 N (εF ). Substituting
the spherical harmonic expansion of screened Coulomb po-
tential [23–25]

e−λ|	r1−	r2|

|	r1 − 	r2| =λ

∞∑
l=0

il (λr<)kl (λr>)
l∑

m=−l

Ylm(�1)Y ∗
lm(�2), (11)

into Eq. (6), we arrive at the expression for JU ,

JU = e2λ2

ε0

∫ ∞

0
r2dr

∫ ∞

0
r′2dr′R(r)i2(λr>)R(r′)k2(λr<).

(12)

Here r> = max(r, r′), r< = min(r, r′). in and kn are the mod-
ified spherical Bessel functions of the first and second kind,
respectively. For a well-localized spin (ζ � kF ) the value of
JU can be shown to be as follows:

JU = e2

ε0λ2

1 + 8 ζ

λ
+ 27 ζ 2

λ2 + 48 ζ 3

λ3 + 219ζ 4

5λ4 + 72ζ 5

λ5 + ζ 6

5λ6(
1 + ζ

λ

)8 .

(13)

When the ferromagnetic layer is metallic, such as Permal-
loy (Py) [17], we can take a strong screening limit (λ � ζ ).
In this case, the value of JU approaches the following value as
illustrated in Fig. 2:

lim
λ�ζ

JU = e2

ε0λ2
= J0[1 − UN (εF )], (14)
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where J0 = [N (εF )]−1 is the exchange constant for U = 0.
Here one can see that the large Stoner enhancement greatly
reduces the exchange interaction. On the other hand, when the
ferromagnetic layer is an insulator, such as Y3Fe5O12 (YIG)
[16], the screening is weaker [23,26].

III. SPIN-ACCUMULATION-INDUCED ANISOTROPIC
SPIN DENSITY

In the linear response regime, the exchange interaction
dictates that the spin density σ of the conduction electron
respond linearly to perturbation due to exchange interaction

σi(r) = JU

∫
drdtχi j (r − r′, t − t ′)S j (r′, t ′), (15)

where i, j ∈ {x, y, z}. The susceptibility

χi j (r, t ) = i

h̄
(t )〈[σi(r, t ), σ j (0, 0)]〉 (16)

can be determined by evaluating its time derivation

∂χi j (r, t )

∂t
= i

h̄
(t )

〈[
1

ih̄
[σi(r, t ), H], σ j (0, 0)

]〉
. (17)

By substituting the Hamiltonian in Eq. (5) and writing the
susceptibility as χi j (r, t ) = ∑

pq eiq·r−iωtχi j (p, q, ω), we can
derive the exact expression of χi j in the static limit ω → 0 for
all i, j combinations:

∑
p

⎛
⎝χxx(p, q, 0) χxy(p, q, 0) χxz(p, q, 0)

χyx(p, q, 0) χyy(p, q, 0) χyz(p, q, 0)
χzx(p, q, 0) χzy(p, q, 0) χzz(p, q, 0)

⎞
⎠

=
⎛
⎝ χ1(q) h̄μzχ2(q) h̄μyχ2(q)

−h̄μ1χ2(q) χ1(q) h̄μxχ2(q)
h̄μyχ2(q) −h̄μxχ2(q) χ1(q)

⎞
⎠ (18)

such that

χi j (r, t ) =
∑

q

eiq·r−iωt
∑

p

χi j (p, q, 0)

= δ(t )
∑

q

eiq·r[δi jχ1(q) + h̄εi jkμkχ2(q)]. (19)

One can see that the susceptibility is anisotropic. In the
limit of small spin-accumulation h̄μ � εF , the induced spin
density takes the following form:

σ(r) =
∑

k

eik·rJU [χ1(k)S + h̄χ2(k)S × μ], (20)

where χ1(k), χ2(k) and their inverse Fourier transform χ1(r),
χ2(r) are

χ1(k) = χ0(k)

1 − Uχ0(k)
,

χ2(k) = φ0(k)

[1 − Uχ0(k)]2 ,

χ1,2(r) =
∫

dk
(2π )3

eik·rχ1,2(k). (21)

Here χ0 is the static susceptibility of a metal with U = 0,

χ0(k) = lim
η→0

∑
p

fp − fp+k

εp+k − εp + iη

= N (εF )

(
1 + 4k2

F − q2

4kF k
log

∣∣∣∣k + 2kF

k − 2kF

∣∣∣∣
)

(22)

and

φ0(k) = lim
η→0

∑
p

fp − fp+k

(εp+k − εp + iη)2

= N 2(εF )
π2k2

F

h̄

(2kF − k)

k
. (23)

Incidentally, χ0 and φ0 can also be obtained by taking the
limit of small h̄ω � εF to the dynamic susceptibility of metal
with noninteracting conduction electrons limh̄ω�εF χ (k, ω) =
χ0(k) + iωφ0(k).

IV. SPIN TRANSFER TORQUE BY SPIN ACCUMULATION

Torque acting on magnetic moment M = −MsS/|S| can be
obtained as

τ = 1

ih̄
[M,−JU S · σ(r = 0)]. (24)

By substituting Eq. (20) into Eq. (24) we arrive at the follow-
ing spin transfer torque that has a similar form with Eq. (4):

τ = S × (S × μ)JU Msχ2(r = 0)

= S × (S × μ)JU Ms

∫
dk

(2π )3

φ0(k)

[1 − Uχ0(k)]2 . (25)

The spin transfer torque can be obtained by substituting
Eq. (23) into Eq. (25). The enhancement of spin mixing con-
ductance can be seen from the enhancement of spin transfer
torque τ:

G↑↓
G0

= τ

τU=0
= JU

J0

∫ 2kF

0

kdk

2k2
F

(
1

1 − Uχ0(k)

)2

, (26)

where the spin mixing conductance G0 for noninteracting
electron gas is well studied in Refs. [7,15]. The relative mag-
nitude of G↑↓ is shown in Fig. 3.

Here we note that Eq. (3) arises if the effect of exchange
interaction is overlooked and the integral in Eq. (26) is over-
simplified:

G↑↓
G0

∼ JU

J0

1

[1 − UN (εF )]2 .

In this case Refs. [16,17] seem to yield contradictive results.
By taking into account the changes of JU and numerically
evaluating Eq. (26), we show that the discrepancy can be
explained in term of different strengths of screening at the
interface.

In the limit of U → 0, the spin mixing conductance is
determined by χ2 = φ0. In this case, our result approaches
the value of spin mixing conductance that is theoretically
derived for spin pumping in Ref. [7]. This convergence is
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FIG. 3. Enhancement of spin mixing conductance G↑↓ as a func-
tion of UN (εF ). G0 = 0.5 Å−2. For nearly magnetic metals with
UN (εF ) → 1, the spin mixing conductance reduces to zero. We
can see that data of Refs. [16,17] are for λ0 � ζ (black line) and
λ0 = ζ/2 (red line), respectively. Reference [17] used Permalloy
(Py) as the ferromagnetic layer and Py and Pd as the nearly magnetic
metal layer (NM). On the other hand, Ref. [16] used Y3Fe5O12 (YIG)
as the ferromagnetic layer and Au, Ag, Cu, Ta, W, and Pt as the nearly
magnetic metal layer (NM). The values of UN (εF ) for NM are taken
from Ref. [11].

a proof of reciprocal relation between spin transfer torque
and spin pumping. We note here that if JU is independent of
U , the spin mixing conductance will monotonically increase
as a function of the Stoner enhancement factor as predicted
by Ref. [15]. However, the dependency of JU to U [see
Eq. (13)] suppressed the spin mixing conductance as shown
in Fig. 3.

Figure 3 shows the spin mixing conductance for the inter-
face of ferromagnet and nearly magnetic metal with various
values of UN (εF ). The red line shows the quantitative agree-
ment of our result and the spin mixing conductance of bilayer
of a insulating ferromagnet [Y3Fe5O12 (YIG)] and a nearly
magnetic metal (Au, Ag, Cu, Ta, W, or Pt). On the other
hand, the black line shows the spin mixing conductance of a
bilayer of metallic ferromagnet [Permalloy (Py)] and a nearly
magnetic metal (Pd or Pt) [17]. We can see that data of Py|NM

match the strong-screening case with λ0 � ζ , because the
interface is metallic. On the other hand, YIG|NM matches the
weak-screening case with λ0 = ζ/2.

V. CONCLUSION

To summarize, we discuss the effect of screened Coulomb
interaction on the spin transfer torque at the interface of the
ferromagnet and the nearly magnetic metal. As the metal
becomes nearly magnetic, the electron-electron interaction,
characterized by the Hubbard parameter U , and the screening
of the Coulomb interaction increase. To correctly describe
G↑↓, we take into account the U dependency of the exchange
constant in Eq. (13) that arise from the screening of Coulomb
interaction at the interface. The large electron-electron in-
teraction of nearly magnetic metals affect the spin mixing
conductance through the exchange constant JU and the spin
susceptibilities χ1, χ2 [Eq. (21)].

We show the reciprocal relation between spin transfer
torque and spin pumping in the small spin accumulation
limit and showed that χ2, the susceptibility that corresponds
to the spin mixing conductance for spin transfer torque, is
also the one that is responsible for the spin pumping in dy-
namic RKKY theory. By taking into account the changes
of JU and numerically evaluating Eq. (26), we show that
the discrepancy of the increasing/decreasing values of spin
mixing conductance in Refs. [16,17] arises from the different
strength of screening at the interface. In the case of nearly
magnetic metals with strong screening of exchange interaction
at the interface, the spin mixing conductance is monotoni-
cally decreasing as the electron-electron interaction increase.
Figure 3 shows that a metallic ferromagnetic layer gives a
strong screening while an insulating ferromagnetic layer gives
a weak screening. Insulating ferromagnet enhances the con-
ductance for a nonmagnetic metal with small UN (εF ) � 1.
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