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Effect of magnon decays on parametrically pumped magnons
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We investigate the influence of magnon decays on the nonequilibrium dynamics of parametrically excited
magnons in the magnetic insulator yttrium-iron garnet (YIG). Our investigations are motivated by a recent
experiment by Noack ef al. [Phys. Status Solidi B 256, 1900121 (2019)] where an enhancement of the spin-
pumping effect in YIG was observed near the magnetic field strength where magnon decays via confluence
of magnons become kinematically possible. To explain the experimental findings, we have derived and solved
kinetic equations for the nonequilibrium magnon distribution. The effect of magnon decays is taken into account
microscopically via collision integrals derived from interaction vertices involving three powers of magnon
operators. Our results agree quantitatively with the experimental data.
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I. INTRODUCTION

In a recent experiment [1] the parametric excitation of
magnons in the magnetic insulator yttrium-iron garnet (YIG)
was investigated by coupling an oscillating microwave field
into the system and measuring the magnon density via the
inverse spin Hall effect [2]. This effect, which converts a spin
current into an electric field perpendicular to the directions of
the spin current and the spin polarization, is caused by the rel-
ativistic spin-orbit interactions that are also responsible for the
direct spin Hall effect [3]. In solids, this effect is enhanced due
to the strong potential of atomic nuclei [4]. In the experiment
[1] a thin YIG film was exposed to an oscillating magnetic
field H(t) = Hpe, + H; cos(wot )e,, where the static part Hye,
forces the macroscopic magnetization to be aligned along the
7 axis e,, while the oscillating part with amplitude H; < Hy
drives the magnons in the sample out of equilibrium. Noack
et al. [1] observed that the spin-pumping effect was enhanced
for certain values of the static field Hy, and that the magnon
density in the stationary nonequilibrium state displayed peaks
or dips for those values of Hy where magnon decays due to
the confluence of two parametrically excited magnons with
identical energy and momentum become kinematically pos-
sible. Recall that magnon decays due to the confluence and
the reverse splitting process conserve the total energy and mo-
mentum of the magnons involved in these scattering processes
[5.6].

In this work we provide a quantitative microscopic ex-
planation for the experimental observations of Ref. [1]. It
turns out that, therefore, a proper understanding of magnon
damping under nonequilibrium conditions in YIG is crucial.
We therefore construct a kinetic theory of pumped magnon
gases including microscopically derived collision integrals
describing the relevant dissipative effects. While theoretical
investigations of pumped magnon gases in magnetic insulators
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have a long history [5-24], in all works published so far the
effect of collisions on the nonequilibrium magnon dynam-
ics was considered only phenomenologically by introducing
(by hand) a relaxation rate into the kinetic equations for the
magnon distribution functions. Although the relevant micro-
scopic collision integrals have been derived within the Born
approximation in Ref. [11], to our knowledge a microscopic
treatment of the effect of magnon collisions on the nonequi-
librium dynamics of magnons is still missing in the literature.
An alternative method to investigate the dynamics of pumped
magnons in YIG is based on the numerical solution of the
stochastic non-Markovian Landau-Lifshitz-Gilbert equation
with a microscopically derived noise and dissipation kernel
[25]. The approach based on kinetic equations adopted here
has the advantage that it allows us to identify the experi-
mentally relevant confluent scattering processes directly in
the collision integral. Still, the resulting nonlinear integro-
differential equations are very complicated and can only be
solved numerically. Moreover, the derivation of the collision
integrals starting from an effective spin Hamiltonian for YIG
is a demanding technical problem because the distribution
function of the magnon gas in YIG with external pumping
has an off-diagonal component so that we have to deal with
various types of anomalous cubic interaction vertices. While
in principle the collision integrals can be derived diagrammat-
ically using the Keldysh formalism [26], to keep track of all
terms contributing to the collision integrals we have found it
more convenient to use an unconventional method developed
in Ref. [27] based on a systematic expansion of the collision
integrals in terms of connected equal-time correlation func-
tions.

The rest of this paper is organized as follows. In Sec. II
we introduce the effective Hamiltonian describing pumped
magnons in YIG, which is the starting point for our investi-
gations. In Sec. III we derive collisionless kinetic equations
for the magnon distribution functions in YIG. We also discuss
the usual phenomenological strategy of introducing dissipa-
tive effects into the collisionless kinetic equations, derive the

©2021 American Physical Society
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resulting stationary nonequilibrium distributions for YIG, and
show that the experimental results of Noack et al. [1] cannot
be explained within this approximation. In Sec. IV we de-
rive the collision integrals containing the cubic vertices using
an expansion in powers of connected equal-time correlations
[27]. Our numerical results for the stationary nonequilibrium
solution including the effects of the cubic vertices are pre-
sented in Sec. V. Finally, in Sec. VI we summarize our results
and present our conclusions. To make this work self-contained
we have added three appendices with technical details. In
Appendix A we outline the derivation of the Hamiltonian
of pumped magnons in YIG following mainly Refs. [28,29].
In Appendix B we review the method of deriving kinetic
equations via an expansion in terms of connected equal-time
correlations developed by Fricke [27], and in Appendix C we
give the explicit expressions for the relevant collision integrals
for YIG obtained with this method.

II. HAMILTONIAN FOR PUMPED MAGNONS IN YIG

In the experimental setup of Ref. [1] a thin stripe of YIG
is exposed to an oscillating microwave field in the paral-
lel pumping geometry where the oscillating component of
the magnetic field is parallel to its static component. At
the energy scales of interest, the magnon dynamics can be
described by the following time-dependent effective Hamil-
tonian [5,6,19,20,28-31]:

1 o (o3 o
HO) = =53 ) [is* + DL Isis]

ij ap

— [ho + hy cos(ant)] Y _ S5, 2.1)

where the indices i, j label the N sites of a cubic lattice and
o, B denote the three spin components x, y, z of the spin opera-
tors S¥. The nearest-neighbor exchange couplings connecting

lattice sites r; and r; are denoted by J;;, while Df}’3 denotes the
matrix elements of the dipolar tensor defined in Eq. (Al) of
Appendix A. The last term in Eq. (2.1) represents the coupling
of the spins to a static magnetic field Hj and a time-dependent
microwave magnetic field H, oscillating with frequency wy,
where hg = wHy and h; = uH, are the corresponding Zee-
man energies. The geometry of the system and our choice of
the coordinate system are shown in Fig. 1. The Hamiltonian
(2.1) can be bosonized using the Holstein-Primakoff trans-
formation [32] as described in Appendix A. We expand the
resulting bosonized Hamiltonian in powers of the inverse spin
quantum number 1/,

H(t) = Ho(t) + Hat) + Hs + Ha + OS™?),  (22)

where H,, contains n powers of the boson operators. Explicit
expressions for the terms in the expansion (2.2) are given in
Refs. [20,24,28,29] and are reproduced in Appendix A. It is
convenient to use a canonical (Bogoliubov) transformation to
diagonalize the time-independent part of #,(¢), which then
assumes the form given in Eq. (A10). For our purpose it is
sufficient to further simplify H,(¢) by dropping all nonreso-
nant terms which are explicitly time dependent in the rotating
reference frame defined by the canonical transformation (2.9)

FIG. 1. Sketch of along YIG stripe oriented along the z axis with
width w in the y direction and thickness d = aN in the x direction.
Here a is the lattice spacing and N is the number of lattice sites in
the x direction. In this work we consider wave vectors k in the y-z
plane with 6, being the angle between k and the static magnetic field
H 0= H()ez.

below [20,24,29]. In this approximation,

1 . .
Ho(t) = Z |:eka;;ak + EVke_"”“’a;a'_k
k

1 .
+ EVk*e”"‘)’a_kak} (2.3)
where a; and a,t annihilate and create magnons with momen-

tum k and energy €. For small k the magnon energy can be
approximated by [28,33,34]

& = /o + Pk + (1 — fi) A sin® 6llho + ok + fiAl,
(2.4)
while the pumping energy V; can be written as

hi A

Z—Fﬂ+ﬂ—ﬁmﬁﬁl
€K

Vi = (2.5)
Here, p is the exchange stiffness of long-wavelength magnons
[28], the dipolar energy scale
4T u2S

A=TH

0 (2.6)
is determined by the effective magnetic moment p and the
effective spin S [see Eq. (A18)], and the form factor f; for a
thin stripe of YIG shown in Fig. 1 is given by [28,33]

1 — e ki
"= "
where d is the thickness of the YIG stripe. We parametrize the
in-plane wave vector as

Q2.7)

k = kye, + k.e. = |k|(sin Oxe, + cos Ge.), (2.8)

where 6y is the angle between the wave vector k and the static
magnetic field Hye, as shown in Fig. 1.

The explicit time dependence of the quadratic part of
the Hamiltonian (2.3) can be removed via a canonical
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transformation to the rotating reference frame

.o

N o v iy s
ar = e'2'ay, a,’( =e'2'a. (2.9)

The quadratic part of the Hamiltonian then becomes
[20,24,29]

where

Ek=€k—a)()/2 (211)

is the shifted magnon energy in the rotating reference frame.
It turns out that in this frame the cubic and the quartic
parts of the magnon Hamiltonian acquire an explicit time
dependence. Explicitly, after Bogoliubov transformation and
Fourier transformation the cubic and quartic parts of the
magnon Hamiltonian are in the rotating reference frame of

_ V*
H, = Z |:Ek a, dy + —Zz,'c Tk + Ta kaki| (2.10) the form
k |
- 1 1 ..
H3(t) — Z 8k1+k2+k3 [ l—vaua 7tw0f/2ai1&2a3+zrla’aza; lwot/ZaT aT 2[13
kl ko ks
1 aaa ,—3iwgt /2 ~ 1 aaa 31&) t/2~F ~t ~7
+ = TRREEL OLaGras + 31F1’2, “calal,al, (2.12)
7 1 1 aaaa ~t ~t 1 —iwot ;paaaa  ~t
Ha(t) = N Z Ok, ey +hes +hg.0 (2,)2 155,40 1a ,a3as + 3_3 23, 4“ G203
ky.ko k3 kg ’
1 iwopt ;raaaa =T =T =t ~ 1 —2iwot ;raaaa = o~ o~ o~ 1 2iwgt haaaa  ~T =
+ e [%554alal,a a4 + T 55 4t1a0azas + T %5400 1a 2a 3a 4 (2.13)

where we have introduced the short notation k; — i for the
momentum labels. In Egs. (A14) and (A15) of Appendix A
we explicitly give the rather cumbersome expressions for the
vertices appearing in Eqgs. (2.12) and (2.13). At first sight it
seems that within the rotating-wave approximation we should
drop all oscillating terms in Eqgs. (2.12) and (2.13). However,
as will be shown in Sec. IV, the collision integrals originating
from the cubic part #3(t) of the Hamiltonian contain products
of two cubic vertices, so that some of the time-dependent
factors in Eq. (2.12) cancel in the collision integrals and at this
point we do not neglect the oscillating terms in Eq. (2.12).
We conclude this section with a cautionary remark about
the validity of the spin Hamiltonian (2.1) which describes only
the lowest (acoustic) branch of the magnon spectrum. Since
YIG is a ferrimagnetic insulator with a rather large number
of spins per unit cell, the magnon spectrum has also several
high-energy (optical) branches [5] which are not taken into
account via the spin Hamiltonian (2.1). It turns out, however,
that in thermal equilibrium at room temperature these optical
magnons have a much lower occupancy than the low-energy
magnons, so that at the energy scales probed in the experiment
[1] we can safely neglect the optical magnons. In principle,
we cannot exclude the possibility that nonequilibrium scatter-
ing processes lead to a significant population of the optical
magnons. In fact, a recent calculation of the inverse spin Hall
voltage and the spin Seebeck effect in YIG by Barker and
Bauer [35] suggests that optical magnons can significantly
contribute to spin transport. On the other hand, in Ref. [35]
it is also shown that the inclusion of the optical magnons
does not qualitatively change the predicted inverse spin Hall
voltage. Since in this work we do not attempt to calculate the
absolute size of the inverse spin Hall voltage but consider only
the magnon density (which is expected to be proportional to
the inverse spin Hall voltage), for our purpose it is sufficient
to work with the effective low-energy spin Hamiltonian (2.1).

(

The high-energy magnon bands can at least partially be taken
into account by considering the parameters in Eq. (2.1) as ef-
fective quantities which include renormalization effects due to
the optical magnon bands. This argument is further strength-
ened by the fact that the Hamiltonian (2.1) correctly describes
the dynamics of nonequilibrium magnon condensation in YIG
[25].

III. COLLISIONLESS KINETIC EQUATIONS AND §
THEORY WITH PHENOMENOLOGICAL DAMPING

Before deriving in Sec. IV kinetic equations for the dis-
tribution functions of magnons in YIG including the relevant
collision integrals, it is instructive to consider first the col-
lisionless limit. As recently pointed out in Ref. [24], for a
complete description of the nonequilibrium time evolution of
the magnon distribution in YIG, we should take into account
that in the presence of a time-dependent microwave field the
magnon annihilation operators can have a finite expectation
value exhibiting a nontrivial dynamics. In the rotating refer-
ence frame we define

Ur(t) = (@ (1)) = e ag(t)) = ™"y (1),

where the time evolution is in the Heisenberg picture and (. . . )
denotes the nonequilibrium statistical average. In addition, we
should consider the time evolution of the connected diagonal
and off-diagonal distribution functions

n5(t) = (8aj (1)8ax (1)) = (5@, (t)dax(1)),

3.1

(3.2)

Pat) = (8a_(t)8ax(t)) = ™ pi(1),

where day(t) = ar(t) — (ax(t)) = ar(t) — Yx(¢). Note that
the phase factors /2 generated by the transformation to
the rotating reference frame cancel in the diagonal distribution
function ny (¢).

(3.3)
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A. Collisionless kinetic equations

The equations of motion for the distribution functions can
be derived from the Heisenberg equations of motion for the
operators in the rotating reference frame

ida = [ag, H(t)l,
io,a; = [ay, H(®)].

(3.4a)
(3.4b)

To begin with, let us approximate the magnon Hamiltonian by
its quadratic part H, neglecting all magnon-magnon interac-
tions. In this approximation [24],

i +i[Ve(B)" — Ve Bi] =0, (3.52)
O Py + 2Expy, + iVe[2n; +1] =0, (3.5b)
dVk + iExPn + Vi, = 0. (3.5¢)

Unfortunately, these equations do not provide a satisfactory
description of the experimental results of Ref. [1]. In particu-
lar, in the strong pumping regime |Vi| > |Ey| these equations
predict an exponential growth of the magnon distributions
[9,10,20], whereas experimentally one observes a saturation
for sufficiently long times. To describe this saturation we have
to take magnon-magnon interactions into account. This can be
done by employing a time-dependent self-consistent Hartree-
Fock approximation, which in this context is called S theory
[6-8,17,19]. The kinetic equations (3.5) are then replaced by
nonlinear integrodifferential equations, which in the rotating
reference frame take again the form [24]

e + i[Vie(By)" — Viepe] = 0, (3.6a)
3 Py, + 2iExpy + iVi[2n +1] = 0, (3.6b)
WYk + iExY + iViey*, =0, (3.6¢)

where the renormalized magnon energy Ej and the renormal-
ized pumping energy V; depend on the distribution functions
as follows:

~ 1 3
Ee=Ei+ Xq: Teq (S + 1W]). (3.7a)

N 1 .
Ve = Vie+ o > Skq(B+ U—giy). (37D
q

Here, T; 4 and S, are defined via the following matrix ele-
ments of magnon-magnon interaction vertices in Eq. (2.13):

Tig = T4 ke (3.82)
Stg =I5 . (3.8b)

Note that in Eq. (3.7) we have dropped oscillating terms
arising from the vertices of #4(t) in Eq. (2.13) involving time-
dependent factors of =’ and e*?®’  which is consistent
within the rotating-wave approximation.

B. Stationary nonequilibrium distribution
with phenomenological damping

In the experiment by Noack er al. [1], the magnetic
field dependence of the magnon distribution in a stationary
nonequilibrium state of a YIG sample subject to an oscillating

microwave field is measured. Let us now try to explain this
experiment using a simple modification of the collisionless
kinetic equations (3.6) where we introduce (by hand) a phe-
nomenological damping rate y,. Note that without such a
damping rate the solutions of the collisionless kinetic equa-
tions never reach a stationary nonequilibrium state [24]. In
the rotating reference frame the equations of motion for the
magnon operators including the phenomenological damping
Vi are

(3.9a)
(3.9b)

dax (1) = (—iEx — yo)ax — iVid'
da(t) = (Ex — v, + iVyag.

In Refs. [7,8] it was argued that the damping selects the pair
of magnon modes with momentum =k that is characterized
by the smallest damping to be the only significantly occupied
modes, so that the dynamics of these modes is effectively
decoupled from the other modes. Moreover, it is argued that,
if initially other magnon modes are significantly occupied
as well, after sufficiently long times only this single pair
of magnon modes will survive. This argument justifies the
approximation of replacing the integrals defining the renor-
malized energies in Eq. (3.7) by a single term where the loop
momentum ¢q is equal the external momentum k:

- 1 . ~
Ex ~ Ex + NTk,k(n,i + [, (3.10a)

. 1 . .
Vi =V, —, pS, _ .
[ %+ N e (P + iUk

Neglecting the expectation values of the magnon operators,
Zakharov et al. [7,8] find that the stationary solution of the
collisionless kinetic equations (3.6) with additional damping

is given by
v sz - sz — |Ex|

n, = N—l ;
Tk + 3Skk

P = —nj, (3.11b)

(3.10b)

(3.11a)

provided the pumping is strong enough to compensate the
losses due to damping,

Vil > [l (3.12)

We shall refer to Eq. (3.11) as the stationary solution within S
theory. Taking explicitly the expectation values of the magnon
operators in Eq. (3.10) into account yields the same result
[24,36]
e T2 s
n + W™ = ny,
P+ Ui = —n.
In Fig. 2 we plot the stationary magnon density n° = ), n;,
within S theory obtained from Eq. (3.11) as a function of the
external magnetic field assuming a constant phenomenologi-
cal relaxation rate y; = 2.08 x 107> GHz. For comparison,
we reproduce in Fig. 3 the experimental results for the in-
verse spin Hall effect voltage from Fig. 4(a) of Ref. [1],
which is expected to be proportional to the density of pumped

magnons. Obviously, in a certain range of magnetic fields
the experimental data exhibit characteristic features which

(3.132)
(3.13b)
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FIG. 2. Dependence of the magnon density n*/N = ), n; /N on
the external magnetic field strength H, in the stationary nonequilib-
rium state within S theory given by Eq. (3.11a) for different pumping
strengths. The maximum of Vj, was chosen to be larger than the
relaxation rate y; = 2.19 x 1073 GHz. To describe the experiment
of Noack et al. [1] we have performed our calculations for a thin YIG
film with thickness d = 22.8 um (corresponding to N = 18422)
subject to a microwave field with frequency wy = 13.857 GHz.

are missed by S theory, which explains only the average lin-
ear growth of the observed magnon density with increasing
magnetic field. An obvious reason for the failure of S theory
is that the phenomenological damping introduced by hand
neither takes into account the kinematic constraints nor the
microscopic magnon dynamics responsible for the dissipative
effects which are essential for the emergence of a stationary
nonequilibrium state in the pumped magnon gas. For a satis-
factory explanation of the experimental data [1] reproduced
in the lower part of Fig. 3 we should therefore use kinetic
equations with microscopically derived collision integrals

30 - 1

s (V)

10 1

800 900 1000 1100 1200
H, (Oe)

FIG. 3. Experimental results for the inverse spin Hall voltage
Visu reproduced from Fig. 4(a) of Ref. [1].

describing the relevant scattering processes. The collisionless
kinetic equations (3.5) are then replaced by

() + i[Vie)(B())" — Ve Ope ()] = @),

(3.14a)
3 P(t) + 2iEx (P (1) + iVi(O[2n5 (1) + 1] = IV (1),
(3.14b)
k() + iEx()P(t) + iV (OF* (1) = IV (1),
(3.14¢c)

where all interactions beyond S theory are taken into account
via three types of collision integrals: I}'(t), I,f (t), and I,f' ).
These collision integrals should be derived from the Hamilto-
nian (2.2), including the cubic part F5(¢) which determines
the damping to leading order in the small parameter 1/S.
In spite of many decades of theoretical research on pumped
magnon gases [5-24], a complete derivation of the relevant
collision integrals I}/ (¢), I,f(t), and I,;/’ (t) and the subsequent
numerical solution of the resulting kinetic equations cannot
be found in the literature. In the rest of this work we will
solve this technically very complicated problem using an un-
conventional approach to nonequilibrium many-body systems
developed by Fricke [27] which we review in Appendix B.

Before deriving in the following section explicit micro-
scopic expressions for the collision integrals in Eq. (3.14) let
us generalize the construction of a stationary solution with
phenomenological damping discussed above by assuming that
the collision integrals are of the form

L) = y'm(), (3.15a)
K@) =y pe(), (3.15b)

where y;' and y,f’ are assumed to be constant in time and
independent of the magnon distribution functions. For sim-
plicity we assume that the expectation values of the magnon
operators are negligible and set I,f () = 0. In this case the
stationary nonequilibrium solution of Eq. (3.14) can easily
be obtained analytically. The imaginary part of ykp can be
grouped together with the renormalized magnon energy Ej
and we therefore modify the expression for the renormalized
magnon energy as follows:

8 1 1
Ei = By — Slmy + > Tiegng(t). (3.16)
q

For |Vi| > }‘yk”Reyk” the stationary nonequilibrium solution
of Eq. (3.14) is then given by

n = | Pxl (3.17a)

» viRey, . [wRey)
=—1./1- ,  (3.17b
P (\/ 4Vk2 +1 4Vk2 |Pk| ( )

V2 — 1viRey{ — |Ecl\/ v /Rey!

Tik + 3Skk

AR

(3.17¢)
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FIG. 4. Diagrammatic representation of contributions to the col-
lision integral I} () given in (4.1) which determine the time evolution
of the connected diagonal distribution function ny (¢). For simplicity,
we do not draw the two conjugated diagrams obtained by flipping
the direction of each arrow corresponding to the complex-conjugated
terms in Eq. (4.1). The symbols have the following meaning: Outgo-
ing arrows represent creation operators, incoming arrows represent
annihilation operators, and the black dots represent external or inter-
action vertices. The left diagram contains two external vertices and
the interaction vertex F,‘Zf‘;fqu; the empty circle (correlation bubble)
represents the correlation (&;Zz}:_ qEzk)C. As the lines between the cor-
relation bubble and the interaction vertex in the left diagram form
a pair of equivalent lines we have to insert a prefactor of % in front
of the first vertex in Eq. (4.1). The right diagram contains the vertex
rpe ., and the correlation (agaq_kak)f.

the tha.t ff)r %y,f = %yk” = Y We recover.the §tati0nary so-
lution within conventional S theory [7,8] given in Eq. (3.11).
Contrary to the case without collision integrals, the result for
nonvanishing expectation values v differs as the collision

integrals cannot be written in the form y;' (m; + [k |?).

IV. COLLISION INTEGRALS

In this section we present a microscopic derivation of the
collision integrals ;! (¢), I,f (t), and I,:/’ (t) appearing in the ki-
netic equations (3.14). Given the fact that for YIG the effective
spin § &~ 14 is rather large [28], we work to leading order
in 1/S where only the cubic part H5(2) of the Hamiltonian
in Eq. (2.12) has to be taken into account. The assumption
that the experimentally observed fine structure of the inverse
spin Hall signal shown in Fig. 3 can be explained with the
help of the scattering processes described by the cubic vertices
contained in H3(¢) is also supported by the fact that the peaks
and dips of the observed signal as a function of the magnetic
field agree with the points where the splitting processes (in
which one magnon is absorbed and two magnons are emitted)
and the confluence processes (in which two magnons are
absorbed and one magnon is emitted) described by the vertices
in #3(t) become kinematically possible [1]. Note that a finite
cubic part H+(1) of the magnon Hamiltonian arises entirely
from dipole-dipole interactions. The corresponding scatter-
ing processes conserve energy and momentum, but do not
conserve the number of magnons [37]. As we do not expect
magnon-phonon interactions, magnon-defect interactions, and
interactions with thermal optical magnons to be responsible
for the effect observed in the experiment [1] we neglect these
interactions.

In principle, the collision integrals can be derived using
the Keldysh formalism [26]. However, the Keldysh formalism
has the disadvantage that it produces two-time correlations,
whereas in our case we are only interested in equal-time cor-
relations. Although the reduction of two-time correlations to
equal-time correlations can be achieved by means of standard

FIG. 5. One of the diagrams contributing to the equation of mo-
tion of the three-point correlation (&;ZJZ_ ,0)°. This diagram, which
corresponds to the term explicitly written out in Eq. (4.2), con-
tains the interaction vertex F;’,‘"’;’(f ok and the four-point correlation
(&;ZJL q&q’ dr—q)°. As the lines between the correlation bubble and the
interaction vertex are a pair of equivalent lines this diagram should
be weighted by an extra factor of %

methods such as the generalized Kadanoff-Baym ansatz [38],
in view of the complexity of the collision integrals for YIG
we find it more efficient to use a method involving only equal-
time correlations at every step of the calculation. We therefore
use the method developed by Fricke [27], which allows us
to to derive directly a hierarchy of coupled kinetic equations
for equal-time correlations and provides us with a systematic
scheme for decoupling the correlations for arbitrary order. To
make this work self-contained, in Appendix B we outline the
main features of this method.

A. Collision integrals due to cubic interaction vertices

Consider first the diagonal collision integral [;/(¢) appear-
ing in the kinetic equation (3.14a) for the connected part
n.(t) of the diagonal magnon distribution. Using the method
developed in Ref. [27] (which we review in Appendix B) and
omitting for simplicity the time arguments, we find

i l . —iw ~T~T ~ \cC
L) = ﬁ Z [EFZ;‘ZI,k—qe Ot/z(a;ak_qak) —c.c.
q

+ (Toaa ) e} ag i) —c.c.:|, (4.1)
where we have used momentum cqnservation to carry out
one of the summations. Here, (a;a,:_qaky' and (@), k)
are connected equal-time correlations involving three magnon
operators. In the graphical representation of Eq. (4.1) shown
in Fig. 4 these correlations are represented by empty circles
with three external legs (correlation bubbles). Note that the di-
agrams shown in Fig. 4 differ from Feynman diagrams as they
represent contributions to the differential equations for the
correlations at a fixed time. Next, we express the three-point
correlations in Eq. (4.1) in terms of the four-point correlations
using the equation of motion. As a representative example, let
us consider the correlation (&;&;7 quk)C in the first term on the
right-hand side of Eq. (4.1) and explicitly evaluate only the
diagram shown in Fig. 5. The other terms entering the equa-
tion of motion corresponding to the remaining diagrams have
the same form and are represented by the dots in Eqgs. (4.2)—
(4.4) below. The calculations leading to the collision inte-
grals are analogous for all terms. The equation of motion
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implies
[j +ilex — €4 — & q)] (al ak qak = Z |: ,‘j‘fl‘f’k_q )*e’wol/z(&('laz qaqlak )+ :| 4.2)
q
Integrating Eq. (4.2) over the time we obtain
(aydy _,de) Z [ / dt'e” a1 ) e @lal_ aglg) + - } (4.3)
Finally, substituting Eq. (4.3) into Eq. (4.1) we obtain
L) = 11\7 Z [% /t: dr’ cos [(ex — €g — ex—g)(t — TRy (TR ) (@ha)_ agan—g) + - i|
7.9
2 1 - - - .
> —00 |:§8(ek — € — ek_q)l”,f;‘;‘fk_q(lﬂ,‘(’;‘f]“,yk_q) (a ; a RTINS R -i|, 4.4)
9.4

where in the last step we have taken the limit ty — —oo and
the ellipses denote the contributions of the other diagrams.
The other terms entering this equation represented by the dots
are of the same form. Note that the terms with two annihilation
operators or two creation operators within the two-particle
correlations are complex. Therefore, there appears an expo-
nential function with imaginary-valued argument instead of
the cosine function leading in the thermodynamic limit to a
term of the same form as in Eq. (4.4) without the factor of 2.
In this way, all terms entering the equation of motion for the
one-particle distribution functions can be obtained from the
diagrams. A complete list of all diagrams contributing to the
equation of motion of the three-point correlations (&Z&L q&k)”
and (a}d, @)* is shown in Fig. 18 of Appendix C.

The approach outlined above can also be used to obtain
the off-diagonal collision integral Z]'(¢) in the kinetic equation
(3.14b) for the off-diagonal distribution function pj (7). In
this case there are only two diagrams containing the relevant
vertices shown in Fig. 6. The corresponding expression for the
off-diagonal collision integral is

1 1, . .
TS

—qaq—ka—k>c

i€ @ ag i) ] (4.5)

k-q q-k

FIG. 6. The two diagrams contributing to the time evolution of
the off-diagonal distribution function py = (G_xdx). The diagrams
correspond to the two terms on the right-hand side of Eq. (4.5).
The left diagram contains the interaction vertex I"Z_‘j,f‘_q;k and the
correlation (@_,d,—xd_x)¢. The left diagram should be multiplied by
a factor of % because the lines between the correlation bubble and the
vertex are equivalent. The right diagram contains the vertex I'j% o
and the correlation (a;aq_ka_k)f.

(

The correlation (d_4d, k) in the first term leads for large
times to a delta function of the form §(ex + €, + €x—4). Keep-
ing in mind that the magnon dispersion ¢ is positive for all
momenta, this term does not contribute to the off-diagonal col-
lision integral ;' (¢ ) for large times. The diagrams contributing
to the correlation (a;&q_k&_k)c have already been discussed in
the context of the diagonal collision integral [}/ (¢) (see Fig. 18
in Appendix C). Finally, the collision integral I,:/’ () entering

the kinetic equation (3.14) for the expectation values v of the
magnon operators vanishes,

@) =0, (4.6)

because there is no diagram contributing to the time evolution
of Y (¢) that is quadratic in the three-point vertices.

B. Decoupling of the equations of motion
for the connected correlations

So far, we have expressed the contributions to the collision
integrals involving the various types of three-point vertices in
terms of connected four-point correlations. The next step is
to decouple the hierarchy of equations of motion by replacing
the connected four-point correlations by one-point and con-
nected two-point correlations. Keeping in mind that the only
nonvanishing distribution functions are ny, p;, and Iﬁk we find

= — 1@y au) (@)ag) + 2\a,a) (ap) (dg)
+21ay) () (@hag) — 3'@y) (@) (ah) (dg)

= —ngng + [y |* + ng Yl
=3Pl [, .

Analogous expressions can be written for the other four-point
correlations, so that the collision integrals can be expressed
in terms of the two types of two-point correlations n;(¢) and
Py (t) and the nonequilibrium expectation values ¥ (¢) of the
magnon operators. It is convenient to decompose the collision
integrals as

4.7

I = I,fm I,fout, (4.82)
Iy —I,fm I,fom, (4.8b)
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where I i, is the in-scattering or arrival term, and Iy o is the
out-scattering or departure term. The explicit expressions for
the various contributions to the collision integrals are rather
cumbersome and are given in Egs. (C1)—(C4) of Appendix C.
Within the rotating-wave approximation the fast oscillating
terms containing factors of e*’ should be neglected to be
consistent with a similar approximation in the renormalized
magnon dispersion £y and the pumping energy Vj.

V. EXPLANATION OF THE MAGNETIC FIELD
DEPENDENCE OF THE INVERSE
SPIN HALL SIGNAL IN YIG

Having derived explicit expressions for the collision in-
tegrals [;/(t) and Ilf (t), we can now construct stationary
solutions of the kinetic equations (3.14) and determine the
nonequilibrium magnon distribution which is proportional to
the inverse spin Hall signal observed in the experiment [1]. As
discussed in Sec. III B, in order to understand the magnetic
field dependence of the inverse spin Hall signal we need
a microscopic understanding of the momentum-dependent
magnon damping. In this section we first calculate the magnon
damping in thermal equilibrium which we need in the subse-
quent calculation of the collision integrals. We then present
an approximate solution of the kinetic equations (3.14) with
microscopic collision integrals derived in Sec. [V and obtain
excellent agreement with the experiment [1].

A. Magnon damping in thermal equilibrium

In thermal equilibrium with temperature 7 the normal
magnon distribution is given by the Bose-Einstein distribution

1

est/T —1°

ng = 5.1
The magnon damping in equilibrium can then be obtained
from the imaginary part of the magnon self-energy obtained
within the imaginary-time (Matsubara) formalism. Alterna-
tively, the magnon damping y;' in equilibrium can be obtained
by writing the departure term of the collision integral as

1,201“ = Yy g, 5.2)

where for simplicity we consider only the normal (diagonal)
part Ij' | of the collision integral. To simplify the explicit
evaluation of the damping y;’ let us assume that the momen-
tum k is sufficiently large so that we can neglect the effect of
dipole-dipole interactions on the magnon dispersion. In this
regime the long-wavelength magnon dispersion is determined
by the exchange interaction

& = \JA; = |Bel> = Akl = ho + pk?, (5.3)
with exchange stiffness
p =JSd>. (5.4)

In the expressions for the magnon dispersion given in Ap-
pendix A [see Eqs. (A9c) and (A11)] we can then set By = 0
and V4 = 0. According to Ref. [28], for the effective exchange
energy in YIG is J &~ 1.29 K, the effective spin is § & 14.2,
and the lattice constant is a ~ 12.376 A. The Bogoliubov
transformation from Holstein-Primakoff bosons by to magnon

FIG. 7. Feynman diagrams representing the contributions to the
magnon self-energy which generate (a) the confluent and (b) the
splitting contributions to the magnon damping given in Egs. (5.6)
and (5.7). Here, the arrows represent the magnon propagators and
the dots represent the cubic interaction vertices.

operators aj is then not necessary so that we may identify
the corresponding vertices g4 =T’ | . Moreover, in
the regime where the magnon dispersion is dominated by the
exchange energy we may neglect the diagonal elements of the
dipolar tensor D,‘:ﬁ defined in Eq. (A.19). In the geometry
shown in Fig. 1 the only nonzero elements of the dipolar
tensor are then D, = D,” [see Eq. (A19d)]. This greatly sim-
plifies all quantities appearing in the kinetic equations for the
magnon distribution. To get a rough estimate for the order of
magnitude of the damping, let us also neglect the contributions
from the off-diagonal distribution pg(¢) and the expectation
values ¥ of the magnon operators to the collision integral

I oo 10 Eq. (5.2). In this approximation we obtain
yl? = ykn,con + yl:l,split’ (55)
where the contribution from the confluent process is
b4
y]:l,con = ﬁ Za(ek - kaq - Gq)
q
- 2
x| Miig—q | (g + mi—q + 11, (5.6)
and the contribution from the splitting process is
2r
ykn,split = W ; S(ex + €q—k — €g)
a 2
X D% k] gk — ng). (5.7)

Note that these expressions can also be obtained directly from
the diagonal part of the imaginary frequency magnon self-
energy X (k, iw) via analytic continuation

y,? = —-ImX(k, ¢ + l()+) (5.8)

The Feynman diagrams for the self-energy corrections associ-
ated with the confluence and the splitting processes are shown
in Fig. 7. For vanishing wave vector k = 0 the confluent
contribution has been carefully evaluated by Chernyshev [39].
Here, we are only interested in the range of wave vectors k
where the magnon dispersion is dominated by the exchange
energy so that it can be approximated by e = hg + pk°.
Keeping in mind that in our geometry the only nonvanishing
matrix elements of the dipolar tensor are D;* = D, and using
Eq. (A19d) we find that the relevant cubic interaction vertex
in Egs. (5.6) and (5.7) is given by
aaa bbb

S )z
Flekzﬂks = Fqukzqk,w = \/;(Dkyz + D;ci)

_ A (kakZZ +k3yk3z>
V2s\ & k)

(5.9)
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where the energy scale A associated with the dipolar inter-
action is defined in Eq. (2.6). Since the experiment [1] has
been performed at room temperature which is large compared

J

ng = T/e,,

Ng—g =~ T/Ek,q.

with the typical magnon energies, we may approximate the
equilibrium magnon distribution in Egs. (5.6) and (5.7) by a
Rayleigh-Jeans distribution

(5.10)

Shifting the integration variable ¢ = ¢’ + k/2 in Eq. (5.6), we obtain for the ratio of the confluent magnon damping to the

magnon energy at high temperatures

Vien _ T (A
— = —| — ) O(k| — k)Feon(k/x), 5.11
° 8J<h()S) (k| — ) Feon(k /1c) ( )
where the threshold momentum « is defined by
K2 — 2]10/,0, (512)

and the dimensionless function Fe,,(p) is defined via the integral

2w d‘/’ 1

Fcon(p) = /0

p? — lcoso)(p. +

p* — 1sing)

(14 30+ 2,7~ D[+ 30— 4,/ — 7]

% |:(py+

where ¢, = e, cos g + e; sing. At the threshold momentum

P +q,v/p° =17

k = «k this reduces to

Fcon(i‘) =10 A2< ;2

log2 (5.14)

A numerical evaluation of Fi,,(py, p; = 0) is shown in Fig. 8.
A rough estimate for the order of magnitude of the confluent
magnon damping for YIG at room temperature is given by the
prefactor in Eq. (5.11), which yields [1]

Veeo . T (A 290K 1750 G \?
x 167\ heS) — 16 x 1.29 K\ 1000 G x 14
= 14 x (0.125)* ~ 0.22. (5.15)
0.0025
0.002
S 00015 -
>
Q
§
L 0.001
0.0005 1
0 ‘
1 1.5 2 25 3 3.5 4
Py

FIG. 8. Numerical evaluation of the function F,,(py, 0) defined
in Eq. (5.13) as a function of p, = k,/«. For large p, we find that

Fan(py. 0) o 1/t

(py = VPP = Tcos@)(p. — /PP = 1 Sinfp)T
N . (.13)
(P — /7 — 17

(

This indicates that at room temperature the damping due to
magnon confluence can be substantial.

Next, consider the contribution from the splitting pro-
cess to the magnon damping in equilibrium represented by
Fig. 7(b). With the same approximations as above we obtain

Vespit _ 5 2 / d%q 8(hy —2pk - q)

€k (2 )? €q€q-+k
A% L
X E[ vk, + 4,4.1°. (5.16)
2e-05
n
— ycon/ T
n
— ysplit/
1.5e-05
~
=~ 1e-05r1
S
5e-06
0 ; ; ;
800 900 1000 1100 1200

H, ©e)

FIG. 9. Magnetic field dependence of the magnon damping in
thermal equilibrium due to the confluence and the splitting processes.
The plotted damping rates y, and y;; are obtained from Egs. (5.11)
and (5.16) by averaging over all momenta k satisfying €, = wy. For
the calculation we have assumed a film thickness of d = 22.8 um
and a pumping frequency wy = 13.857 GHz.
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0.08

0.07 10dB |

0.06 | 1

0.04 - 1

0.03

0.02

FIG. 10. Magnetic field dependence of the stationary magnon
density within S theory given by Eq. (3.11a) for the same parameters
as in Fig. 9. The continuous lines are obtained assuming a constant
magnon damping y; = 2.19 x 1073 GHz, while the dashed lines are
obtained by substituting the equilibrium magnon damping shown in
Fig. 9 into Eq. (3.11a).

Setting for simplicity k, = 0, we see that the § function en-
forces g, = qB = ho/(2pky). The condition |q8| < m/a then
reduces to |k,| > hoa/(2mp) = k2a/(4m). With ka < 1, it is
clear that the splitting contribution to the magnon damping has
a much lower threshold than the confluent contribution. Using
the quadratic approximation (5.3) for the magnon dispersion
and the definition (5.12) of ¥ we find that for parametrically
pumped magnons with €; = wp/2 the condition |k| > k is
satisfied for

(5.17)

where the upper bound w(/6 coincides with the magnetic
field strength below which the confluent damping process is
kinematically possible. On the other hand, for 4y > w/6 the
damping is dominated by the splitting processes.
Unfortunately, the approximations made in this section
are only valid for small pumping energy |Vi|, whereas
the experiment [1] has been performed in the regime of
parametric instability where |Vi| > |E|. Therefore, we
expect that the estimates for the magnon damping in this
section are not relevant for the experiment of Ref. [1]. This is
also confirmed by the linear magnetic field dependence of the
damping due to the confluent and the splitting processes in
thermal equilibrium shown in Fig. 9, which can be obtained
by numerically evaluating Eqgs. (5.6) and (5.7). In Fig. 10 we
show the corresponding magnon density obtained by inserting
this damping into the expression (3.11a) for the magnon

J

distribution predicted by S theory. Obviously, the magnetic
field dependence is linear in a wide range of fields and shows a
small discontinuity at Hy &~ 820 Oe where the condition (5.17)
is violated. By comparing Fig. 10 with the experimental result
for the inverse spin Hall voltage shown in Fig. 3, we conclude
that by inserting the equilibrium magnon damping into the
S theory result for the stationary magnon density of the
pumped magnon gas we cannot explain the experimental
results.

B. Solution of the Kinetic equations
with microscopic collision integrals

In this section we show that the experimental results can
be explained when the effect of collisions on the stationary
distribution of the pumped magnon gas is taken into ac-
count microscopically within a nonequilibrium many-body
approach where we approximately solve the kinetic equations
(3.14) with collision integrals given in Appendix C. As it
stands, this system of nonlinear integrodifferential equations
is very complicated and we have not been able to solve it di-
rectly. Fortunately, we have found an approximation strategy
which is sufficiently simple to allow for a numerical solution
of the kinetic equations while it still contains the relevant
physical processes which determine the detailed form of the
experimentally observed inverse spin Hall signal. Our strat-
egy is to divide the magnons into the following two groups
corresponding to different regimes in momentum space and
different energy windows:

(1) Parametric magnons are directly excited by the os-
cillating microwave field via parametric resonance. From §
theory [7,8,24] we know that only magnons in a small area of
the momentum space near the resonance surface defined by
€ = wy/2 are generated by the parametric pumping so that it
is justified to assume that all parametric magnons fulfill the
resonance condition € = wyp/2.

(2) Secondary magnons are created by confluence process
of two parametric magnons. As a consequence, their energy
€x = wy is twice as large as the energy of parametric magnons.

Assuming that the nonequilibrium magnon dynamics is
dominated by these two groups of magnons, we can approx-
imate the distribution of all other magnons in the collision
integrals by the thermal equilibrium distribution. These ap-
proximations significantly simplify the collision integrals as
the arguments of the delta functions only vanish if two of the
energies correspond to parametric magnons and the other one
to secondary magnons. The complexity of evaluating the colli-
sion integrals numerically is then greatly reduced. Neglecting
the expectation values of the magnon operators we find from
the general expressions for the collision integrals given in
Appendix C that the collision integrals associated with the two
different magnon groups can be written as

D M A B A TR
q
)
+Re[( Z;aka,q—k)* 20—76;k,q(ﬁ512))*ﬁ;l—)k]i|’ (5.18a)
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n® _ 2r 1 aaa 2/ (1), (1)
Ik - W Z |:§|Fk;q,q—k (nq nqu
e,,:'io/z
€k—q=wo/2

— nflz)[l + nfll) + nf{qu])

_ = % (2) / ~(1)\* a *a ~(2) [ ~(1) \*
- Re[rl(cl;[i:qu( tfll;c;cafq,k) p;c )(P; )) + (Fl(clf;qfk) Fl(cug];k,qp;c )(p;c—)q) ]]’ (5']8b)
w27 a ' * (1) (2 )
B = L i) A )
wen
€g-k=wo/2
a 2 1) o Lo o
_|F2T;c;k,q| Px <1+nqk_ ) ;)—p;))], (5-18¢)
7 —o, (5.18d)

where n,((l) and ﬁ;{l) refer to the magnon distribution functions

of parametric magnons and n,(cz) and ﬁ;{z) refer to the secondary
magnon group. When summing over the loop momentum
g, we have to implement the conditions € = €, = wy/2,
€, = wp in the collision integrals of the parametric magnon
group, and the conditions €; = wg and €; = €44 = wo/2 for
the secondary magnon group. When all of these conditions
can be fulfilled simultaneously, there is only one possible
combination of wave vectors so that only a single term con-
tributes to the sums in Eq. (5.18). In order to calculate the
collision integrals numerically, we thus have to find the spe-
cific combination of wave vectors that fulfill momentum and
energy conservation. Then, we interpolate linearly between
the magnon distribution functions defined on a finite grid in
momentum space and evaluate the expressions (5.18). It is
also possible that for certain parameters the conservation laws
cannot be fulfilled, so that the collision integrals vanish in
our approximation. All other magnons which do not belong
to the above two groups are assumed to be in thermal equi-
librium where the stationary distributions are given by the
Bose-Einstein distribution (5.1) with 7 = 290 K. We take the
contribution of these equilibrium magnons to the damping of
the nonequilibrium magnons into account using the equilib-
rium damping rates derived in Sec. V A.

To obtain a self-consistent solution of the kinetic equa-
tions (3.14) with collision integrals given by Eq. (5.18), we
use the following iterative procedure: Initially, we completely
neglect the collision integrals and use the stationary distribu-
tion (3.17) of the kinetic equations with phenomenological
damping ¥ = y{ = yo = 2.87 x 107 GHz to construct the
initial seed for the iteration. We then substitute the resulting
stationary distribution back into our microscopic expressions
(5.18) for the collision integrals and calculate a new estimate
for the collision integrals. Next, we use the result to recalcu-
late a refined estimate for the stationary solution of the kinetic
equations (3.17). To obtain new values for nonequilibrium

. (1)
damping rates y,f(” and y  we assume that the terms pro-

portional to n,(cl) and ﬁ;{l) dominate the collision integrals and

estimate ;" and 3 " by 7 /n" and 17 v /B\". The result
is again substituted into the right-hand side of the collision
integrals (5.18) and the procedure is iterated again. Gradually,

we obtain corrections to the initial estimate of the magnon

(

distribution in the stationary nonequilibrium state. To control
the convergence of this algorithm we estimate the error by
evaluating the derivatives d,ny and 9, p given by the equations
of motion (3.14) and summing up the absolute values for every
magnon mode. This expression should vanish if our estimates
for the magnon distributions approach the exact stationary
solutions. If this estimated error tends to zero during the iter-
ation, our algorithm has produced a self-consistent stationary
solution of the kinetic equations (3.14). Note that the vanish-

ing of the off-diagonal collision integral I}/ ' associated with
the secondary magnons implies that the stationary solution of
the kinetic equation (3.17a) has the property that n,(cz) vanishes
independently of the value of [3}(2).

In Fig. 11 we show our numerical results for a YIG film

with thickness d = 22.8 um (corresponding to N = 18423)

0.025

0.02

0.015

n/N

0.01

0.005

0 ‘ ‘ ‘
800 900 1000 1100
H, (Oe)

1200

FIG. 11. The magnon density obtained by the procedure de-
scribed in Sec. VB for a thin YIG film of thickness d = 22.8 um
and wy = 13.857 GHz is plotted over the external field strength H,
for four different pumping strengths. The parameter for the pumping
strength is (Vi, — yo)x, with the average taken over all momenta k,
of parametric magnons. Our theoretical result shown in this figure
should be compared with the experimental results by Noack ez al. [1]
reproduced in Fig. 3.
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in a microwave field with frequency wy = 13.857 GHz for
four different pumping strengths between 7 and 12 dB, where
the parameter controlling the pumping strength is (Vi, — vo)x,
with the average taken over all momenta k; of parametric
magnons. The magnon density shown in Fig. 11 is approxi-
mated by taking the sum over all magnon modes used for the
calculations,

Ny
n = Zn (5.19)
i=1

where the momentum dependence of the magnon distribution
functions is parametrized by the angle 6; = 6, of the in-plane
wave vectors defined in Eq. (2.8) and we use Ny = 40 angles
of equal size in the interval [0, 77 /2]. The wave vectors k| and
k, of parametric and secondary magnons for a given angle
0; are calculated by solving the equations €, = wp/2 and
€x, = wo numerically for k; and k, with magnon dispersion
given by Eq. (2.4). Apart from a small offset in the over-
all field strength by about 50 Oe, the main features of the
experimentally observed line shape of the inverse spin Hall
signal shown in Fig. 3 are reproduced remarkably well by
our calculation. Recall that S theory with phenomenological
constant damping cannot explain this line shape. In particular,
the experimentally observed dip around Hy ~ 1050 Oe for
small pumping strength which evolves into a peak at the
same field for larger pumping strength is reproduced by our
method. Note, however, that in the experiment these features
appear at a slightly lower field of Hy ~ 1000 Oe. A possible
explanation for this discrepancy in the overall field strength is
the influence of cubic crystallographic and uniaxial anisotropy
fields which can modify the saturation magnetization. It is
therefore plausible that the experimentally relevant value of
the saturation magnetization differs from the value of 1750 G
assumed in our calculation which can explain the 50-Oe shift
in the position of the peaks and dips in the upper and lower
parts of Fig. 11.

To show that dip and the peak are related to the confluent
magnon damping, we have plotted in Fig. 12 the cumulative
damping rates y" = Zf\il y{" and Rey? = Zivz‘*l Rey/ for the
stationary nonequilibrium state we have obtained from our
kinetic equations. Obviously, the peaks in the cumulative
magnon damping are observed at the same magnetic field
strength where the enhancement of the magnon density takes
place. Not all magnon modes show these enhancements. The
distribution functions for most of the magnon modes still
increase linearly with the external field strength and only
a few magnon modes around 6; ~ 40° have peaks between
Hy = 1050 and 1100 Oe.

It is interesting to compare the order of magnitude of
the cumulative nonequilibrium damping " shown in the
upper panel of Fig. 12 with the established value of the
Gilbert damping used in phenomenological approaches for
YIG [40-42]. Usually, the momentum-dependent damping yx
is parametrized in terms of a dimensionless damping param-
eter o = yi/(2¢€x), where ¢ is the magnon dispersion [40].
According to Refs. [41,42] for thermal acoustic magnons in
YIG the typical value of « is for small wave vectors of or-
der 107*. On the other hand, our cumulative nonequilibrium
damping y" in the upper panel of Fig. 12 is typically of order

(a) 041

0.08 |

0.02

800 900 1000 1100 1200
H, (Oe)

0.15

Rey’ (GHz)
o

0.05 |

800 900 1000 1100 1200
H, (Oe)

FIG. 12. The damping defined by Eq. (3.15) in the stationary
nonequilibrium state shown in Fig. 11 is plotted over the external
field strength H, for the same parameter values as in Fig. 11.

0.02 GHz, which yields a dimensionless damping parameter
a ~ 1.4 x 1073, We conclude that the nonequilibrium damp-
ing obtained within our microscopic approach is roughly an
order of magnitude larger than the accepted phenomenologi-
cal value of the equilibrium damping of thermal magnons in
YIG.

The rather complicated dependence of the nonequilibrium
magnon density on the external magnetic field shown in
Fig. 12 cannot be reproduced within conventional S theory
where the microscopic collision integrals are replaced by a
phenomenological relaxation rate. In the relevant parameter
regime, S theory predicts a linear dependence of the magnon
density on the external field strength as shown in Fig. 2.
Note also that within S theory the damping is assumed to
be strong so that only magnon modes near the maximum of
the pumping energy Vj at 6y = 90° are significantly occupied.
In fact, the magnon modes which we have identified to be
responsible for the observed peaks and dips are assumed
to be suppressed by the phenomenological damping in S
theory. Thus, it is evident that the experimentally observed
structures in the nonequilibrium magnon density are caused
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by the confluence and splitting decay processes; the kine-
matic constraints controlling these processes are fully taken
into account in our collision integrals which couple pairs
of parametric magnons at special wave vectors depending
on the external field strength. The mathematical structure of
the equations of motion is complicated and leads to peak
structures appearing in the collision integrals at certain field
strengths. This in turn gives rise to similar structures in
the field-dependent magnon density close to magnetic fields
where confluent magnon decay is kinematically possible.

VI. SUMMARY AND CONCLUSIONS

In this work we have derived and solved kinetic equations
for pumped magnons in YIG with collision integrals describ-
ing dissipative effects associated with magnon decays. The
collisionless limit of these equations has recently been dis-
cussed in Ref. [24]. However, to explain recent experimental
data [1] for the magnetic field dependence of the inverse spin
Hall voltage in the stationary nonequilibrium state of pumped
magnons in YIG, a microscopic understanding of magnon de-
cays is crucial. We have derived the relevant collision integrals
due to cubic interaction vertices using a systematic expan-
sion in powers of connected equal-time correlations [27]. We
have obtained the collision integrals for the diagonal and
off-diagonal distribution functions containing terms which are
linear and quadratic in the magnon distribution functions as
well as the expectation values of the magnon operators. In
previous works, these collision integrals were not taken into
account due to their complexity or were only derived within
Born approximation [11] and evaluated in thermal equilib-
rium.

We have found a way to numerically solve the result-
ing kinetic equations within an approximation where only
two groups of magnons are assumed to be driven out of
equilibrium: parametric magnons that are generated by the
pumping, and secondary magnons that are involved in con-
fluence and splitting processes described by the microscopic
collision integrals. We have explicitly constructed the station-
ary nonequilibrium solution of the kinetic equations for the
pumped magnon gas.

Our results show in a large parameter regime a roughly
linear magnetic field dependence of the magnon density, in
agreement with previous results obtained within a collision-
less kinetic theory. However, near the magnetic field strength
where magnon decays (confluence and splitting processes)
become kinematically allowed, we have obtained peak and
dip structures in the magnon density, in good agreement with
the experiment by Noack et al. [1], where the nonequilibrium
magnon density has been measured via the inverse spin Hall
effect.
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APPENDIX A: HAMILTONIAN FOR PUMPED
MAGNONS IN YIG

Here we derive the magnon Hamiltonian for the paramet-
rically pumped magnon gas in YIG following mainly Ref.
[28]. We start from the effective spin Hamiltonian for YIG
[5,6,19,20,28-31] given in Eq. (2.1). The exchange couplings
Jij assume the value J =~ 1.29 K for all pairs of nearest-
neighbor spins located at lattices sites r; and r;, and the dipolar
tensor is [28,37]

2
D?jﬂ =(1- 8,,)| o
where p is the magnetic moment of the spins, r;; =r; —r;,
and #;; =r;;/|r;;|. After Holstein-Primakoff transformation
[32] and expansion in powers of 1/S the spin Hamiltonian is
mapped onto an effective boson Hamiltonian of the form (2.2)
where the terms 7{; can be expressed in terms of Holstein-
Primakoff bosons b; and b!. The zeroth-order contribution
Ho(¢) can be dropped as it does not contain any boson op-
erators. Transforming to momentum space,

1 .
bi=—=) iy,
e

where N is the total number of lattice sites, the contributions
to the Hamiltonian up to fourth order in the bosons can be
written as [29]

[3re#f, — 8], (A1)

(A2)

B .
Halt) = Y [Acblb+ S jp + bibo)]
k

+ hy cos (wot) Z b; b, (A3a)
k
Hi = 1 Z Oky +her +k ol[l"{’bzbng bybs
- 1 TK2+K3, 32,37 —1
JN k1 kz k1 2!
+ T b b, bs], (A3b)

1 1
Hy = — Sty o bt bt bsb
4 NkIZh ky+-+ks,0 |:(2 )2 1,2:3,4 304

1
T b7 babsbs + 7

1
3‘ beh[% 4bl bv b b4}

(A3c)

The vertices in (A3a)—(A3c) can be expressed in terms of the
Fourier transforms of the exchange and dipolar couplings

Jp = Ze—ik.r,-,]ij’
i
_ —ik-ri; B
=) e,
i

The coefficients Ay and By in Eq. (A3a) are

(Ada)

(A4b)

1 :
Ag = ho+ Sy — Ji) + S[Dgz — E(D’;f + ng)},
(A5a)
2iDy’ — Dy,

S
By = —E[D;-‘ — (ASb)
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while the cubic vertices depend only on the dipolar tensor as

follows:
FEbb _ § DY — iD¥ + DY — iD¥
123 =\ 5% T P ks Wi,

+ %(Df,y - iDgx)}, (A6a)
MY = (135)" (A6b)
and the quartic vertices are
F?f’%zl = —% Jiei+ks + Jioties + Tk +ky + iyt
+ DIZcZ]Jrkz + Dlzc;+k; + Dk1+k4 + Dlzci+k4
- Z (Jr, — 21);;)], (A7a)
i=1

_ 1 .
Bobb LTy ey gy XX Ay Y
F1;2,3,4 - 4[ ky 2le2 Di2 + Dk3 21Dk3 lyks

+Dy — (ATb)

M = (Tihs)"

2iD; — Dy,
(A7c)

Next, we diagonalize the time-independent part of H,(¢) by
introducing magnon annihilation and creation operators ay

J

and a;z via the Bogoliubov transformation

by Uy —Ug Ay
= * , A8
(bik) <_Uk Uk aT—k (A%
where
A
W bl 3 (A9a)
2£k
Ak — &k

= — | —, (A9b)

TR 2
& = ,/A,% — |Bg|?. (A9c)

In terms of the magnon operators the time-dependent term
in Eq. (A3a) leads to off-diagonal terms, so that the total
quadratic Hamiltonian reads as [29]

— A

Ha(t) = Z [€kakak + T
X

Ar . — A
+ hy cos (a)ot)(—ka,"ak - 5"—")]
Ek 28k
+ Z [Vi cos (wot)aja’, + Vi cos (wot )a_gag |,
2

(A10)

with pumping energy
hy By
Vik = — . (A11)
28k
Expressing also the cubic and quartic parts of the Hamiltonian
in terms of magnon operators we obtain [29]

1 1 1 1
E Sty +hr-+e3,0 |:2F1 2, RYARTOYER 2F1“2“3aila_2a3 + ;Ff,azuﬁal@@ + yrilazaﬂilf 2 3
k] Ko ks : :
(A12)
1
Hy = — E 5k1+k2+k3+k4, |:(2')2 Fflmza(; 4aT 1aT [aszas + — 30 lewzat; 4aT 142a3ay
kiko k3 ks
1 1
aaaa T T T aaaa .t T T T
T3yt 12340140 304+ T li2540aasas + — 47 123441020304 (A13)
with cubic vertices given by
aaa bbb bbb bbb bbb bbb bbb
123 = —F1;273v1u2u3 — F2;1’3U2u1M3 — F3;1’2v3u1u3 + F172;3v1v2u3 + F2’3;1v2v3u1 + F1’3;2v1v3u2, (Al4a)
aaa bbb bbb bbb bbb bbb bbb
F];2,3 = Fl-2 sUupu3 + F2;1,3v1v2u3 + F3;1,2v1v3u2 — F3,2;1v3v2v1 — Fl,2;3v2u1u3 — F1,3;2U3M1M2, (A14b)
aaa aaa
ris, = (rig)", (Al4c)
aaa __ aaa \*
{4, = (M%) (Al4d)
and quartic vertices
19409 4 = D28 yurupvyve + YRS sunuzvovg + DI sunuavavs + D78 yuousvivg
+ F2’4;1’3M2M4U1U3 + F3’4;1‘2u3u4v1v2
bbbb bbbb bbbb bbbb
— F4;1’2,3u1u2u3v4 — F3;1,2.4u1u2u4v3 — F2;1,3,4M1M3M4U2 — F1;2’3’4u2u3u4v1
bbbb bbbb bbbb bbbb
— 3530 uv2v3vs — 5 v 0308 — T3 5u3v10004 — Y575 4 uaviv203, (Al5a)
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bbbb

aaaa  __ bbbb bbbb bbbb
F1;273’4 = —F2’1;3’4M2U1U3U4 — F3’1;2,4u3v1v2v4 — F4’1;2’3u4v1v2v3 — F2’3;1’4u2u3u1v4

bbbb bbbb
— F2,4;1$3u2u4u1v3 — F3.4;1’2M3M4M1U2

bbbb bbbb bbbb bbbb
+ F1;2’3,4u1u2u3u4 + F4;3’2’1u3u2vlv4 + F3;4,2’1u4u201v3 + F2;4’3’1u4u3v1v2

+ F{’f_’z”_’}g;4u4u1v2v3 + F{;?gﬁz3u3u1v2v4 + Ff?fjﬁgzuzulvgm + Fff?’;;lvwmvl, (A15b)
s = TP ngusug + D Jungvsvy + T35 Suusvavs + T3 ipusvsv)
+ Fg”;igyluzungl + Fg;’i’;’lvlvsz‘;
— TI2 Lusvavivg — TEOY ugvavivs — T ususugvy — TP Suyusugv)
— D3 wpvsvgvy — TP unvsvgvy — T2 suigusvg — DY g, (Al5c)
154 = T4, (A
s, = (145.)" (A15)

Finally, let us give simplified expressions for the Fourier trans-
forms J; and Dzﬁ for the geometry shown in Fig. 1 which
reduce the complexity of the coefficients Ay and By and the
higher-order vertices. For the energy scales probed in the
experiment [1] it is sufficient to retain only the lowest magnon
band, so that we can derive the dispersion from an effective in-
plane Hamiltonian. The simplest approximation for the lowest
transverse mode is the uniform mode approximation where we
approximate the transverse modes by plane waves [28]. This
approach is valid if the thickness d of the YIG film is small
compared to the extensions in the y and z directions. Then, we
find

A = hg + JS[4 — 2 cos(kya) — 2 cos (k.a)]

oo e
Bo= 5 (0 1Y), (A1)

where
A= 4”525 (A18)

is the dipolar energy and the Fourier-transformed elements of
the dipolar tensor are [28]

Dy = 47;52 % - fki|, (A19a)
pp = L s u].
Dy = 4’;52 % — (1 = fi)cos> ek], (A19¢)
DF =DY = —27;—52 sin (26,), (A19d)
DY =D =0. (Al9)

The form factor f is given in Eq. (2.7). For in-plane wave
vectors D;° = D} is the only nonzero off-diagonal matrix
element of the dipolar tensor. Within these approximations,

(

the expressions for the magnon energy €; and the pumping
energy Vi reduce to Egs. (2.4) and (2.5) of the main text.

APPENDIX B: EXPANSION IN POWERS
OF CONNECTED CORRELATIONS

In this Appendix we review the method of deriving kinetic
equations in terms of connected equal-time correlations de-
veloped by Fricke in Ref. [27]. In the following, we refer
to this method as the Fricke approach. In Sec. IV we have
used this method to derive the leading contributions of the
cubic interaction vertices to the collision integrals appearing
in the kinetic equations (3.14). While it is also possible to
use the Keldysh formalism [26] for this task, the Fricke ap-
proach is more efficient for our purpose because it produces
directly a hierarchy of coupled kinetic equations involving
only equal-time correlations and provides us with a system-
atic decoupling scheme for correlations of arbitrary order.
Note also that the Fricke approach generates an expansion
of the collision integrals in powers of connected equal-time
correlations and is therefore very convenient for including
the effect of time-dependent non-Gaussian correlations in the
nonequilibrium dynamics; in contrast, the Keldysh formalism
relies on the perturbative expansion in terms of single-particle
Green functions.

1. Equations of motion

Consider the bosonic many-body system with second-
quantized Hamiltonian H which may explicitly depend on
time. In the Heisenberg picture the time dependence of an
operator A(t) is given by the Heisenberg equation of motion

d
i—A(t) = [AQ), H]. B1)
dt
The expectation value of A(t) is given by
(A)r = Tr[poA(1)], (B2)

where the density matrix py specifies a mixture of states at the
initial time #. The time dependence of the expectation value
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is described by

.d

i—(A) = ([A, H]);. (B3)

dt
Writing H = H} + V, where the one-particle part H) contains
the terms that are quadratic in the bosonic operators and V
describes interactions, we obtain

i%(A» —([A, Hy]), = (A VD). (B4)
The contribution of the one-particle Hamiltonian Hj to the
time evolution of the system is easy to handle. In order to
derive the contribution of the right-hand side of Eq. (B4) con-
taining the interaction Hamiltonian V/, it is useful to introduce
connected correlations.

2. Connected correlations

In order to express expectation values of an arbitrary set
of bosonic operators at the same time in terms of connected
equal-time correlations, we introduce the cluster expansion.
Following again Ref. [27], let us consider a set of bosonic
operators B; labeled by a set of integers i € N. The explicit ex-
pressions for the connected correlations contain sums over all
partitions P of an index set / defined as the set of all nonempty
disjoint subsets J of I with (J,.pJ = I. Furthermore, we
define B; = B;, ... B;, as the product of all operators with
indices iy, ..., g, where iy < --- < iy and I = {i}, ..., i;}. In
our case, the B; are bosonic field operators, i.e., linear com-
binations of bosonic creation operators b; and annihilation
operators b;. They obey the commutation relations

[bi.b;1=0, [b;,b}]=35. (B5)

Since the operators do not commute in general, we keep track
of their ordering by requiring that the indices i; within the sets
I are ordered as denoted above [27].

The connected correlations (...
sively as follows [43]:

B =[] (B6)

PeP; JeP

}¢ can be defined recur-

where P; refers to the set of all partitions of /. With the help of
Eq. (B6) we can write n-point correlation functions as sums
over all partitions P of the index set I with each summand
being the product of all correlations of the subsets J € P. Note
that the correlations preserve the ordering of the indices in the
sets J. It is also possible to obtain an explicit expression for
the connected correlations [27,43]

B =Y (=) '@p—1][B). B
PepP; JeP

where #I denotes the cardinality of the set / which we will
refer to as the order of the correlations. For example, the
connected correlations up to third order are [27]

(B1)" = (B1), (B8a)
(B1B2)" = (B1By) — (B1)(Ba), (B8b)

(B1B2B3)° = (B1ByB3) — (B1B2)(B3) — (B1)(B2B3)
— (B1B3)(B2) + 2(B1)(B2)(B3). (B8c)

The commutation relations (B5) imply that correlations with a
permuted sequence of field operators differ. Using (biby) =
(b1by) — (b1){by) it follows that the connected one-particle
correlations are

(bibj) = (b;by)°,
(bib}) = 8ij + (bbi)".

(B9a)
(BYb)

On the other hand, in correlations of order greater than two
the field operators permute trivially [27]:

(oobibj..) = (... .bjb...),
(. bib} . ) = (.. Dlbi.. )

(B10a)
(B10b)

We note that only connected correlations of order n = 2 obey
a nontrivial commutation relation and are thus a special case.
For this reason, we will refer to one-particle connected corre-
lations as contractions. As we will see later, contractions play
an important role for this method. A proof of Egs. (B10a) and
(B10b) can be found in Refs. [27,43].

The definition of the cluster expansion can also be extended
to fermionic field operators in such a way that we obtain
analogous equations. Then, the correlations of order n # 2
anticommute [27] and hence sign rules have to be included.
In this work we are only interested in bosonic operators.

3. Linked-cluster theorem

We are interested in the time evolution of n-point func-
tions (B;); = (By...By),, where B; are linear combinations
of bosonic field operators with i € I. First, we simplify the
interaction Hamiltonian V' in Eq. (B4) by assuming the form
V = Bg. This can be justified by the fact that the equation of
motion (B4) is a linear combination of the Bg. The linked-
cluster theorem discussed in this Appendix still holds for the
full interaction Hamiltonian with the form of V = ), vk Bk.

The equation of motion of the expectation value (Bj) is
given by [27]

d
i—(Br); = {[B;, V]); = (BiBx — BxBy);,

yr (B11)

where we have chosen / and K to be disjoint without loss
of generality. As the connected correlation obeys nontrivial
commutation relations in general, we have to keep track of
the sequence of indices of the operators inside the expectation
values in Eq. (B11). Therefore, we define I + K as the set
I UK with the order relation given by the order relations of
I and K, respectively, and the conditioni < kViel, k € K.
Note that the sets / + K and K + [ are identical; their order
relation differs though. For J € I + K we define J as the
identical set J but with order relation of K + 7, following Ref.
[27].

It can be shown that there is a linked-cluster theorem for
the equation of motion of the connected correlations which is
given by [27]

‘%(B»;: > (H<Bf>§'—1"[<3f>:'), (B12)

PePf, \JeP jep
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k'1 kl
o—p—  ——0

FIG. 13. External vertices represent annihilation operators with
wave vector k) or creation operators with wave vector k.

where Py ¢ is the set of all connected diagrams and is defined
by

Py ={PePyklVJeP:JNK#V}. (B13)

The right-hand side of Eq. (B12) can be further simplified. We
have seen in the above section that only contractions which
are one-particle connected correlations obey nontrivial com-
mutation relations. Therefore, the correlations (B;){ and (Bj)f
differ only for contraction and are identical for connected
correlations of order n # 2. Obviously, the term within the
brackets on the right-hand side of Eq. (B12) is nonzero only if
it contains at least one contraction, so that in a diagrammatic
representation (see below) only diagrams that contain contrac-
tions of external vertices with the interaction vertex contribute
to the equation of motion of connected correlations.

4. Diagrams

The diagrams introduced here differ from Feynman dia-
grams because they represent differential equations for the
correlations. As a consequence, each diagram contains only
one interaction vertex. Moreover, each diagram describes the
time evolution of a particular correlation at time ¢ so that
there is no time or energy integration involved [27]. Also,
we introduce a graphical symbol, the correlation bubble [44],
representing the time-dependent correlations.

Let us now introduce the graphical elements of the dia-
grams. External vertices (Fig. 13) represent annihilation or
creation operators. At least one external vertex is contracted
with an interaction vertex (Fig. 14) which represents the inter-
action associated with a certain matrix element. Contractions
(Fig. 15) are connected one-particle correlations. They are
represented by their own graphical element as they play a
special role for this method. Connected correlations of order
n # 2 are represented by correlation bubbles (Fig. 16) [27].
As there is not necessarily a conservation of particle numbers

FIG. 14. Interaction vertices describe the interactions. They are

connected with matrix elements v, ... j-

k'l k 1

—

FIG. 15. The contraction (b;, by, )¢. Contractions are connected
1

correlations of order two. If the order is larger than two, they are
correlation bubbles (see Fig. 16).

for bosons, the number of incoming lines can differ from the
number of outgoing lines for interaction vertices and correla-
tion bubbles.

Now we explain the rules for obtaining the time deriva-
tive of the n-point function (b, ... bkybz, ... b};,l ); due to

interactions from the diagrams, where n=r + 5. The cluster
expansion of ([bg, .. 'bk.\-b,tf .. .b;{, , V1); leads to all possible
r 1

diagrams where vertices are connected with contractions and
correlation bubbles. The resulting diagrams contain r + s ex-
ternal vertices and only one interaction vertex [27]. The fact
that there is only one interaction vertex simplifies the diagram-
matic rules; there are no rules regarding time ordering.

We start with the rule for the prefactor. From Eq. (B4) we
get a factor of (—i). Furthermore, we can write the interaction
Hamiltonian in the form

1
— i
V= 151 2 Vit ib; -

by .. by (B14)

Usually, the interaction matrix elements v;, IR fulfill
symmetry properties, causing the prefactor of 1/(r!s!) to drop
out because permutating annihilation and creation operators
in the interaction term give the same contribution. However,
there exists an exception: if two lines connected to a corre-
lation bubble point into the same direction, permutating the
operators yields the same graph and thus the prefactor remains
[27].

1 1
. 4:; R
k. k,

FIG. 16. Correlation bubbles represent connected correlations, in
this case (b, ... bkyb,t/ . b;(, )¢. Note that the order of the connected
r 1

correlation has to be larger than two. Otherwise, it is a contraction
(see Fig. 15).
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to correlations

FIG. 17. Schematic diagram showing the interaction vertex. In
total r 4 s lines connect the interaction vertex with external vertices.
The other lines go to correlation bubbles.

The diagrammatic expansion of the equation of motion for the
n = r + s point function has the following structure:

d A
E'H(Ek]"' cot e e — e — ekrr) (bk, o bksbk’, - bk’,)t
. 1
= -1 Z 2_n‘ Z Vil eosip s jiees j;Xdiagram» (B15)
diagrams . .
Iyeeny 1
Jlseees Js

where Xgiagram 18 the collision term containing the contrac-
tions and correlations and n, denotes to the number of
equivalent pairs of lines. By comparing Eq. (B15) with the
general structure (B12) of the linked-cluster expansion we

J

notice that the collision term contains the difference of the
partitions of (b, ...byb,, ...b]'(,V), and the partitions of
r 1

(Vbi, ...bib), ...
n # 2 obey trivial commutation relations, there will only be
a difference of these two terms due to contractions. As a
result, the collision term is a product of a several factors:
First of all, Xgiagram contains all correlations which are denoted
by correlation bubbles. Furthermore, there are contributions
from contractions. Contractions starting and ending at the
interaction vertex give a normal-ordered contribution in the
form —(b,;bkj),", contractions between external vertices give

b; ;. As connected correlations of order
1

an anti-normal-ordered contribution of the form (b, bi)f. Fi-
J

nally, there is a contribution from the remaining contractions
connecting the external vertices with the interaction vertex.
Labeling the diagram as shown in Fig. 17, this contribution
has the form [27]

[{beii ) - by (= (b i) - (= (i 1))

= (= {Bhbu)y) - (= (0 b )b by )y - (b1, b )]
(B16)

Diagrams without at least one contraction connecting an
external vertex and an interaction vertex can be omitted
because the contributions of these diagrams vanish due to
the fact that only contractions obey nontrivial commutation
relations. Also, we only consider connected diagrams as un-
connected diagrams do not contribute to the time evolution of
the correlations according to the linked-cluster theorem (B12).

APPENDIX C: COLLISION INTEGRALS FOR PUMPED MAGNONS IN YIG

Here, we use the general formalism outlined in Appendix B to derive the collision integrals due to the cubic interaction
vertices in the kinetic equations (3.14) describing the pumped magnon gas in YIG. The diagrams contributing to the correlations
(a;a}i_ )¢ and (a;aq,kak)" are shown in Fig. 18. Recall that these diagrams are different from Feynman diagrams as they
describe the time evolution of correlations. Therefore, they only contain one interaction vertex and there is no time or energy
integration associated with the diagrams. The diagrams shown in Fig. 18 represent contributions to the connected three-point
correlations which determine the collision integrals as described in Sec. IV [see Eqs. (4.1) and (4.5)]. For the collision integrals

associated with the diagonal distribution function we obtain for the arrival term

1 . 2 . 2
n aaa c. c aaa c c
kin = 7 Z Ea(gk — &g = &) |Tigu—q | Mg + 8ok + eig = ) [Tg [ g (1 + 14
_ _ . - 1, . .
aaa aaa —iwot [~T ~ ~7  ~ \C aaa Flod o ~ ~ \C
+8(ex — &g — e1-)Tigaq D 3y +‘1’z—k,0[rq’|;—q’2,ke ’ <aqaq*kafq’2a4’u> + E(Fk;qi-q;) (g aq-sdig; g, i|
4,4,

_ 1, . -
aaa * aaa * jwot =TT = ~ \C
+ (e + €k — €)(Tgid'ys) 2 :5q1+q;k,0[§(rk;q;,q;) e <aqak7qaq/1a‘l’z> +
4.9

aaa ~f~t =~ ~f |\
q,l;kﬁq,2<aqakiqaq/]a_q,2> i”, (CDH
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k-q+q'

q a q a-k

FIG. 18. Diagrammatic representation of all terms contributing to the time evolution of the correlation (a;a,L 40k (left set of diagrams)
and to the correlation (a;aq,kak)" (right set of diagrams).

and for the departure term

21 1 _ X X X - X
o =~ Z 58(8,, — &g — £k,q)|1“,‘c‘;‘;”fk7q|2n§c(l + ng + n,‘HI) + 8(ek + gk — 8,I)|F;’;‘;€‘fq k| nk(nfl E— nfl)
q

N
T - P S U [ . O R e
k g~ ¢k—q) kg k—q 71+4,-k.0| 51 g¢:q; 4,€ xlg— —ky Ay,
9,95
_ . 1 _ .
aaa L _ raaa iwot Tt o N Z(paaa “apata_an )
+ (Fq’l;fq’z,q) <akaq_kaq,la_q> F —q.q—k€ <aka a_g, a‘l’z) Z(quk;fq’l,q’z) (akaqa—‘llaqz>

_ aaa Gaa * oot (= =T =T o \C
+8(ex + gk — £q)( qk.q— 0 28’11“ _k0|: qi;q;,q) ¢! Gy _ qaqﬁ“‘h)

ql QQ
4 Ly Naway_ala’ ) + L pgaa (aaia,a’ )
) a4, —,\ kg% “—g, 2 k—qiq),—q,\ %%y “—g)
1 . . ‘
— (Taaa foot [~ T~ = \C aaa * dwpt [~ =Tt ~ \€
+ 2( q’z;q’l,qu) ¢ (akaqaq’laqz) + q’l;q’z,qu) ¢ (akaqaq,laq/2> ‘ (€2

For the collision integrals of the off-diagonal distribution function we obtain for the arrival term

B, = _2{6(8k+8q k= ) g ka1 g rartg (1 +1g_g)

_ _ 1 _
aaa aaa iwot [~ ~ i‘ c aaa *laf o~ -~ o~ c
+ E S(ex + gk — 8q)8k+q’l—q’2,()qu;q,kI:Fq’l;q’z,ke 0 (aqaq kdq,a A > + E(Fk;q’l,—q’z) (aqaqfk“qi“—q» . (@)
9.9
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and for the departure term
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