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Ab initio calculations of the phase behavior and subsequent magnetostriction
of Fe1−xGax within the disordered local moment picture
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A holistic approach for studying both the nature of atomic order and finite-temperature magnetostrictive
behavior in the binary alloy Galfenol (Fe1−xGax , 0 � x � 0.25) is presented. The phase behavior is studied via
atomistic modeling with inputs from ab initio calculations, and the ordered phases of interest at nonstoichiometric
concentrations are verified to exhibit B2- and D03-like order. The finite-temperature magnetoelasticity of these
phases, in particular the magnetoelastic constant B1, is obtained within the same ab initio framework using
disordered local moment theory. Our results provide an explanation for the origin of the experimentally observed
peak and subsequent fall in the material’s magnetostriction at x ∼ 0.19, which has been disputed. In addition, we
show that it is possible to enhance the magnetostriction of D03-Fe3Ga by removing a small fraction of electrons
from the system, suggesting that a Fe-Ga-Cu or Fe-Ga-Zn alloy could exhibit greater magnetostrictive properties
than Galfenol.
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I. INTRODUCTION

A material property of interest for use in sensor and
actuator technologies is magnetostriction, the deformation ex-
perienced by a material under the application of an external
magnetic field. It provides a means by which to convert be-
tween mechanical and electrical energy [1]. In recent decades,
the discoveries of materials with exceptional levels of mag-
netostriction, such as Terfenol-D (Tb1−xDyxFe2) [2], have
encouraged a research drive toward both the development of
magnetostrictive devices [3] and the search for new magne-
tostrictive materials [4]. A relatively recent development has
been the discovery of the iron-based alloys Fe-Ga and Fe-Al
(referred to as Galfenol and Alfenol) [5,6]. These materials
are fundamentally less magnetostrictive than Terfenol-D, but
they remain attractive for applications because they are iron-
based, making them relatively inexpensive and mechanically
strong [7].

An intriguing and fundamental question to be understood
is why adding a small amount (around 20%) of a nonmagnetic
element such as Ga can result in such a dramatic increase in
magnetostriction (around an order of magnitude greater for
Galfenol) compared to pure Fe [5]. Presently, the prevailing
theories that describe the origin of this enhancement can be
broadly divided into two fundamental mechanisms: intrinsic
and extrinsic. The latter theory—established in Refs. [8,9]—
attributes the enhancement to the emergence of tetragonal
nanoheterogeneities embedded in the (otherwise cubic) lat-
tice. When a magnetic field is applied to the material, these
nanoheterogeneities align, resulting in distortion of the entire
material along that direction. However, despite there being
a number of studies that report the observation of these so-
called “nanodomains” [10–12], other reports suggest that their

role in Galfenol’s magnetostrictive enhancement is relatively
insignificant [13,14].

The intrinsic mechanism, on the other hand—which we
will be addressing in this study—identifies the enhancement
as resulting from the effect that local Ga ordering has on the
system’s electronic band structure. To describe such a mech-
anism therefore requires either a fully relativistic treatment of
the many-body Schrödinger equation, or a scalar-relativistic
treatment augmented by a second-order perturbation theory
description of the spin-orbit coupling energy [15]. For a
number of years now, calculations of the latter nature have
been employed with increasingly large simulation cells to
calculate the magnetostriction of ordered phases at particular
stoichiometries. These calculations culminated recently with
the use of 128-atom supercells to model disordered Fe1−xGax

structures, which were determined through ab initio calcula-
tions of the system’s ground-state molecular dynamics [16].
The simulations showed that a peak in magnetostriction
occurs at x = 0.19, accurately reflecting experimental mea-
surements [5]. Following from a previous study that reported
D03-type ordering to be detrimental to Galfenol’s magne-
tostriction [17], its rapid development around x = 0.15 in
the molecular dynamics simulations led to the conclusion
that it is the origin of the drop in magnetostriction after the
peak [16].

An alternative method to the use of supercells is to model
compositional disorder with the coherent potential approxi-
mation (CPA) [18], which treats disorder via the determina-
tion of an effective medium with the same average properties
as the disordered system. The CPA was utilized in Ref. [19]
to calculate the electronic structure of different “partially
ordered” Fe1−xGax phases (A2, B2, and D03), however the au-
thors concluded that the use of the CPA could not necessarily
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capture Galfenol’s magnetostrictive enhancement—if it in-
deed originates from short-range Ga ordering. Recently, it
was demonstrated using the CPA that to homogeneously dope
Ga throughout the lattice fails to explain the observed in-
crease in magnetostriction [20]. Nevertheless, calculations of
Galfenol’s magnetostriction have not yet been carried out
on the partially ordered phases where an inhomogeneous
CPA [18] is applied.

For completeness, there is also a desire for models of alloys
and their properties to take a holistic approach. For example,
in the context of ab initio calculations, it is desirable to use
the description of a material’s electronic structure to describe
both the nature of the material’s compositional order and also
subsequent calculations of its physical properties.

Another key challenge to address is the behavior of a mate-
rial’s magnetostrictive properties at finite temperature. In the
context of the rare-earth elements, where electrons are highly
localized [21], a successful description of finite-temperature
magnetoelastic behavior is provided by the single-ion model
of Callen and Callen [22–24]. However, the magnetism of
Fe originates from itinerant electrons, and it is not unrea-
sonable to expect the single-ion model to fail to capture the
relevant physics [25]. To accurately model the temperature
dependence of magnetic properties, it is necessary to take
into account fluctuations of magnetic degrees of freedom
and the subsequent effects of this. A technique that was re-
cently used for the first time to study magnetostriction [20]
is the disordered local moment (DLM) picture [26], which
is based on the Born-Oppenheimer-like assumption [27] that
the timescales of electronic motion and the rearrangement of
local magnetic moments are disparate enough that the de-
grees of freedom of the latter can be considered effectively
frozen. It has been demonstrated to be an effective approach to
this problem [28–31]. Provided ensemble averages are taken
appropriately, this method enables the determination of the
temperature dependence of a variety of magnetic properties
nonempirically.

In this paper, we first present a description of atomic
short-range order in Galfenol based on ab initio calculations
across a range of temperatures and concentrations of Ga. This
approach ensures that any partially ordered, nonstoichiometric
phase of Fe1−xGax that we model is compatible with the
density functional theory (DFT) description of the bonding
in the material provided by its electrons. We identify that the
phases of interest are those exhibiting nonstoichiometric B2-
and D03-like order. Our calculations show that when Galfenol
is annealed below its Curie temperature, the best description
of atomic order in the material is given by a nonstoichiometric
D03-like order.

Having identified the phases of interest, we then present
ab initio calculations of the intrinsic magnetostriction of these
phases within the same framework as is used to study the com-
positional order. These calculations include finite-temperature
effects within the DLM picture. The distortion studied is
tetragonal [001].

Our calculations show that both the B2- and D03-like non-
stoichiometric phases reproduce the experimentally observed
increase in magnetostriction with increasing Ga content.
Further, the D03-like phase also successfully reproduces qual-
itatively the peak and subsequent fall in magnetostriction at

x ∼ 0.19. We attribute this nonmonotonic behavior to the ef-
fects of increasing Ga content on the material’s band structure.

The rest of this paper is structured as follows. In Sec. II
we discuss an atomistic approach for studying compositional
order based on ab initio calculations. We describe a method
for studying the magnetostrictive behavior of partially or-
dered, nonstoichiometric phases, and we also review our
method for calculating the finite-temperature magnetostric-
tion. Then in Sec. III we present the results of our calculations
of the atomic order of Fe1−xGax and subsequent results for
finite-temperature magnetostriction for the ordered phases of
interest. Finally, in Sec. IV we summarize our key findings.

II. THEORY

A. Calculation of compositional order

In this work, we first look to verify that any partially
ordered, nonstoichiometric phase of Fe1−xGax that we model
is compatible with the DFT description of the bonding in
the material provided by its electrons. The composition of
a material can be specified by labels ξiα ∈ {0, 1} to indicate
the type of atom occupying the site, so that {ξiα} represents a
specific configuration. An ensemble average 〈ξiα〉 = ciα gives
the probability of a site at Ri being occupied by an atom of
type α in the material. A Gibbs’ free energy can be written
[26,32–34] for either the paramagnetic or ferromagnetic state
of a material in terms of these compositional site-dependent
order parameters {ciα} and site-dependent chemical potentials
{νiα},

F ({ciα}) = kBT
∑
i,α

ciα ln ciα −
∑
i,α

νiαciα + �({ciα}), (1)

where the first term describes −T times the configurational
entropy (−TS ), the second involves chemical potentials to
set overall concentrations, and the last, the internal energy �,
is found by DFT-DLM calculations averaged over composi-
tional configurations, discussed below. The {νiα} have a site
dependence for the purposes of evaluating the linear-response
ab initio, which is discussed in detail in Ref. [34]. The
paramagnetic or ferromagnetic state is appropriate depending
on whether the temperatures at which atomic ordering and
material annealing take place are higher or lower than the
material’s Curie temperature.

One can find the nature of the infinitesimal composition
fluctuations to which the high temperature, high configura-
tional entropy state (A2 phase) of the material is unstable
from an expansion of the free energy and a linear stability
analysis [26,32–34]. Whether atoms of particular elements
preferentially segregate onto certain sublattices, order into
longer period patterns, and the temperature below which such
a compositional rearranging mode is stable can be determined.
Moreover, the second-order derivatives of DFT-DLM energy

S(2)
iα; jα′ = ∂2�

∂ciα∂c jα′

can be interpreted as atom-atom interchange parameters for
use in further atomistic modeling.

For a two-species alloy such as Fe1−xGax, the state of the
system is specified by one independent occupation number
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on each site, and we have that ξiB = 1 − ξiA. As there is
only one independent variable on each site, we drop species
labels α, α′, A, B. The ensemble average of a site occupancy
is denoted by 〈ξi〉 = ci, and it is these sitewise concentrations
that are used in our ab initio calculations of magnetic torque
and magnetostriction.

To determine a self-consistent set of sitewise concentra-
tions at a given temperature and overall gallium concentration,
we take the ab initio calculations of S(2)

i; j to fit the interchange
parameters Vi j of a Bragg-Williams Hamiltonian representing
the internal energy, of the form

H({ξi}) = 1

2

∑
i, j

Vi j ξiξ j + μ
∑

i

ξi, (2)

where Vi j = (VAA + VBB − 2VAB)i j , as is the convention [35].
Either Fe or Ga can be chosen as the “host” species, but of
course all results must be host-independent. As is the case in
the DFT-DLM calculations, we assume here that the distribu-
tion is uncorrelated, allowing us to evaluate the internal energy
of the system as 〈H({ξi})〉 = �{ci}.

Working in the canonical ensemble with fixed overall con-
centration c = ∑

i ci, we are free to set the chemical potential
term to zero, and we write the free energy of the system as

F = kBT
∑

i

ci ln ci + (1 − ci ) ln(1 − ci ) + 1

2

∑
i, j

Vi j cic j .

(3)
To compute the ground-state concentrations, we use a

concentration-preserving gradient descent in the manner of
Chen and Khachaturayan [36]. This can be thought of as
simulating diffusion across the lattice, but for our purposes we
neglect constants associated with characteristic timescales and
instead look for the steady state (i.e., self-consistent) solution.
Formally, we solve

dci

dt
=

∑
j

Li j
∂F

∂c j
, (4)

where

Li j =
⎧⎨
⎩

−Nnn, i = j,
1, i, j nearest neighbors,
0, otherwise,

(5)

to preserve overall concentration. (Nnn = 8 in the case of the
bcc lattice.) We interpret a steady-state solution, dci

dt = 0, as
the ground-state configuration of the system for which the free
energy is minimized.

We also look to verify the results obtained by the dif-
fusive method via Monte Carlo simulations of the system
based on the atomic site occupancies, ξiα . The algorithm is
an adaptation of the usual Metropolis Monte Carlo algorithm,
which conserves overall concentrations of each species [37].
A pair of sites on the lattice is picked at random, and it is
considered what the change in energy, �H, would be if the
two site occupancies were swapped. If the change is negative,
the move is accepted. If the change is positive, the move is
accepted with probability P = exp(−β �H). The algorithm
is described in more detail in Ref. [38].

B. Modelling of nonstoichiometric phases

To efficiently model ab initio the magnetostriction of the
computed phases at nonstoichiometric concentrations, we
have utilized the CPA within DFT to describe the movement
of electrons through these compositional arrangements [39].
The CPA, implemented here via Korringa-Kohn-Rostoker
multiple-scattering theory (KKR-MST) [40], models the ef-
fect of atomic disorder at a given site using a mean-field
description, wherein a coherent medium is determined that
reflects the average behavior of the disordered system.
Central to the construction of this self-consistent effective
medium is the CPA condition, which states that the em-
bedding of an impurity with the average properties of the
effective medium must leave the properties of that medium
unchanged.

This is the same framework that allows us to implement
a linear-response analysis to determine the atomic short-range
order that is prevalent in both paramagnetic and ferromagnetic
Fe1−xGax high-temperature bcc solid solutions. In this way,
we set up a holistic approach to describe both magnetostric-
tion and atomic arrangements from the same fundamental
model of the interacting electrons of Fe-Ga alloys.

In our previous study on the magnetostriction of the A2
phase of Fe1−xGax, we applied the CPA equally on all lattice
sites, reflecting that phase’s complete chemical disorder. We
now wish to study nonstoichiometric concentrations of or-
dered and partially ordered structures, so we opt to describe
the partial order of these phases using a scheme previously
demonstrated by Pindor et al. [41] and Khmelevska and
Khmelevsky [19], in which the CPA is selectively applied
at sites that in the stoichiometric phase would be occupied
by Ga. We validate these models of the atomic arrangements
in the partially ordered and nonstoichiometric phases using
our ab initio atom-atom interchange parameters in further
atomistic simulations.

Figure 1 shows the possible partially ordered phases of in-
terest pictorially, where we have included the fully disordered
A2 phase for the sake of comparison. Note that the occupancy
of the Ga sites is chosen such that the total Ga concentration x
is conserved. In the B2-like phase, for example, the concentra-
tion at the Ga site is 2x to account for its absence on the other
site. We also note the Wyckoff labels given in parentheses
beside each of the atomic formulas, which will be used in this
paper to distinguish inequivalent sites in the unit cell.

C. Definition of magnetoelasticity

In this study, we will be employing the linear magnetoe-
lastic coupling model of intrinsic magnetostriction, which we
describe in greater detail in Ref. [20]. In brief, the model
describes magnetostriction as an outcome of the response of
a magnetic crystal’s magnetocrystalline anisotropy (MCA) to
structural distortions described by the strain tensor εi j . In
cubic structures this magnetoelastic energy is given by

Eme = B1
(
α2

x εxx + α2
y εyy + α2

z εzz
)

+ B2(αxαyεxy + αyαzεyz + αzαxεzx ), (6)

where αi are the components of the magnetization direction’s
unit vector with respect to the crystallographic axes, implying
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Fe1-xGax

A2 phase

Fe1-xGax

A2 phase

Fe1-2xGa2x(1a)

Fe(1b)

B2 phase

Fe1-2xGa2x(1a)

Fe(1b)

B2 phase

Fe1-4xGa4x(4a)

Fe(8c)

Fe(4b)

D03 phase

Fe1-4xGa4x(4a)

Fe(8c)

Fe(4b)

D03 phase

FIG. 1. Diagrams of the nonstoichiometric A2, B2-like, and D03-like phases of Fe1−xGax . Dashed lines denote unit vectors. In the D03

case, we have opted to show only one of the two 8c sites.

that the MCA picks up lower-symmetry terms when the crys-
tal is strained which are characterized by the magnetoelastic
constants B1 and B2 [42]. The energy saved by this strain must
necessarily be limited by the crystal’s elastic energy,

Eel = 1
2 c11

(
ε2

xx + ε2
yy + ε2

zz

) + 1
2 c44

(
ε2

xy + ε2
yz + ε2

zx

)
+ c12(εxxεyy + εyyεzz + εzzεxx ), (7)

itself characterized by the elastic constants ci j . It is thus by
determining the strain at which these energies are balanced
that we can derive expressions for the cubic magnetostriction
constants,

λ001 = −2

3

B1

c11 − c12
and λ111 = −1

3

B2

c44
. (8)

In this study, however, we will be focusing solely on the
tetragonal magnetostriction constant λ001, primarily due it
being the parameter of interest when discussing Galfenol’s
magnetostrictive enhancement [43].

To calculate B1, we utilize the torque method set out by
Wang et al. [44], in which we measure the linear response
of the azimuthal component of the magnetic torque, Tθ =
−∂E/∂θ , to small distortions of the lattice along the z axis.
We therefore perform a least-squares fitting according to the
expression

Tθ=45◦ = B1εzz, (9)

which can be straightforwardly derived by taking the az-
imuthal derivative of Eq. (6).

D. Disordered local moment theory and the calculation
of magnetic torque

The magnetic torque in Eq. (9) is calculated from first
principles within the disordered local moment picture [26].
In short, DLM theory describes magnetic materials at finite
temperature as an ensemble of thermally disordered local mo-
ments with orientational degrees of freedom {êi}. Each local
moment is self-consistently maintained by a local Weiss field
hi, in that each field simultaneously dictates and is dictated
by the system’s rapid-timescale electron dynamics. The prob-
ability distributions P0

i (êi ) of these moment orientations are
predetermined by the choice of the temperature-dependent
parameter λi = hi/kBT , meaning that the temperature T as-
sociated with a given probability distribution is ascertained
by calculating the size of the local Weiss field. Naturally, the
sizes of the local order parameters mi are provided by taking

the weighted average of the moment orientations at each site,
leading to the compact expression

mi = coth(λi) − 1

λi
, (10)

from which we also have the average magnetic order parame-
ter

m =
∑

i miμi∑
μi

(11)

in terms of the magnitudes of each site’s magnetic moment,
{μi} [26].

Crucially, the explicit dependence of the DLM model’s free
energy on {P0

i (êi)} provides a natural solution for the magnetic
torque at each lattice site in terms of partial averages of the
grand potential 〈�〉êi ,

Tθ,i = − ∂

∂θ

(∫
P0

i (êi )〈�〉êi d êi

)
, (12)

where the grand potential is calculated using solutions to
the fully relativistic Dirac-Kohn Sham equations [29]. Thus,
while the primary strength of the model is its treatment of
magnetism at finite temperature, it also allows us to resolve
each unique atom’s contribution to the total magnetoelasticity.
In the case of B1, these contributions are defined by

Tθ=45◦,i = B1,iεzz. (13)

We are therefore able to evaluate the influence of the atoms’
local environments on the material’s magnetostriction. It is
important to stress, however, that different values of mag-
netoelasticity at different sites do not necessarily imply the
existence of internal strains. The site resolution should only
be considered a gauge of the extent to which each atom con-
tributes to the total magnetoelasticity.

A more complete description of the torque method in the
context of DLM theory can be found in Ref. [29], while more
details on the procedure for calculating the magnetoelastic
constants within DLM theory can be found in Ref. [20].

E. Second-order perturbation theory
of magnetocrystalline anisotropy

While the implementation of the torque method within
DLM theory allows for the calculation of MCA and mag-
netoelasticity from first principles, the calculations do not
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necessarily reveal the exact nature of the spin-orbit interac-
tions from which these phenomena originate. It is therefore
necessary to consider spin-orbit coupling in a form that will
give us insight into the key interactions in order to interpret
the ab initio calculations of B1 provided by DLM theory. With
that in mind, the lowest-order perturbative contribution of the
spin-orbit coupling Hamiltonian HSOC to the MCA is

EMCA = (ξ 2)
∑
o,u

〈o|Lz|u〉2 − 〈o|Lx|u〉2

Eo − Eu
, (14)

where Li are components of the orbital momentum operator,
ξ is the spin-orbit coupling constant, and o and u refer to
occupied and unoccupied states [45]. We can better relate this
expression for the MCA to the magnetoelastic constant B1 by
taking the first derivative of the strain-dependent MCA in the
cubic configuration, giving

B1 = ∂EMCA

∂εzz

∣∣∣∣
εzz=0

. (15)

This shows that the enhancement of B1 relies upon increasing
the response of the difference between 〈o|Lz|u〉2 and 〈o|Lx|u〉2

to structural distortions along the z-axis (assuming that ξ

remains constant). The denominator in Eq. (14) suggests that
states in the immediate vicinity of the Fermi level are those
that should be focused on. In addition, Ref. [45] tells us that
the only nonzero matrix elements among the d orbitals—
which should of course contribute the most to EMCA—are

〈xz|Lz|yz〉 = 1, 〈x2− y2|Lz|xy〉 = 2, 〈xy|Lx|xz, yz〉 = 1,

〈x2 − y2|Lx|xz, yz〉 = 1, 〈z2|Lx|xz, yz〉 =
√

3. (16)

If we therefore apply a positive strain along the z-axis, the
enhancement of Lz elements and/or the diminishing of the Lx

elements will provide a positive value of magnetostriction. It
is especially important to note that the terms in Eq. (16) only
apply to states belonging to the same spin channel. To account
for coupled states belonging to opposite spin channels, one
must exchange Lx and Lz in each expression, for example

〈xz|Lz|yz〉 = 1 → 〈xz|Lx|yz〉 = 1. (17)

We emphasize that our use of second-order perturbation
theory in this study is part of a qualitative analysis of the
ab initio results provided by our method’s solving of the
fully relativistic Dirac-Kohn Sham equations [29]. This is
in contrast to its previous use as a method for calculating
magnetoelasticity directly [15,17,44–47].

For more computational details regarding the calculation
of magnetoelasticity and density of states, including specific
details on Brillouin zone integration and angular momentum
truncation, please see Ref. [20].

III. RESULTS AND DISCUSSION

A. Compositional order

Calculations for the gradient-based approach were per-
formed using a code developed in-house which solves Eq. (4)
using a simple forward Euler method until a steady-state
solution is reached. Initial conditions are chosen to be a ho-
mogeneous state with a small amount of random noise. The

FIG. 2. Computed site occupancies at 1200 and 800 K. The three
dashed lines are indicative of what site occupancies would be in a
pure A2 phase, what 4a and 4b sites would be in a pure B2-like
phase, and what 4a site occupancies would be in a pure D03-like
phase. At low concentrations of gallium, the system is in an A2 state,
with the Ga spread homogeneously across the lattice. At 1200 K the
system first transitions to B2-like order before further transitioning
to a mixed B2-D03 state at approximately 14% Ga. At 800 K the
transition is much sharper, and the system transitions to an almost
pure D03-like state at approximately 8% Ga.

system simulated consisted of 128 lattice sites with periodic
boundary conditions. Results at 5%, 10%, 15%, 20%, and
25% Ga were verified on a system of 1024 lattice sites, with
no discernible difference in the computed structure between
the small and large systems, ensuring we avoided issues as-
sociated with finite-size effects. We sampled two indicative
temperatures, 800 and 1200 K, for which the system is in a
ferromagnetic and paramagnetic state, respectively.

For the Galfenol system in a ferromagnetic state, we
compute Vi j = 0.014 Ry for nearest neighbors and Vi j =
0.008 Ry for next-nearest neighbors, with all others set to
zero. In the paramagnetic state, we compute these values as
0.023 and 0.006 Ry, respectively. It should be highlighted
that in the ferromagnetic state, the relative strength of the
second-nearest-neighbor interaction is large compared with
the paramagnetic state.

Computed concentrations at both temperatures are shown
in Fig. 2. We find that the system can be completely classified

094414-5



MARCHANT, WOODGATE, PATRICK, AND STAUNTON PHYSICAL REVIEW B 103, 094414 (2021)

FIG. 3. Average radial Ga-Ga densities for Galfenol obtained
via Monte Carlo simulations. The interchange parameters used were
those computed for the ferromagnetic state, and the simulation tem-
perature was 800 K. The black dashed lines indicate the expected
radial density for a completely disordered (A2) state, while the red
crosses indicate the expected peaks for D03-like order.

in terms of occupancies of the sites specified in the D03

structure (which implicitly contains the B2 and A2 structures).
It can be clearly seen that for the region of interest (x ∼ 0.2)
the system is in a D03-like state. For 800 K the state is very
pure, while the results at 1200 K are suggestive of a B2-like
state heavily modulated by D03-type order. We associate this
with both a higher level of thermal disorder and also the com-
parative weakness of the second-nearest-neighbor interaction
for the system in the paramagnetic state. Further calculations
were performed at 1600 K, and at this temperature we find
that the observed order is almost purely B2-like.

These results are in good agreement with existing lit-
erature, which suggests that samples annealed at high
temperature exhibit B2-like order, while samples annealed at
lower temperatures tend toward D03-like order. This serves to
validate our choice of nonstoichiometric phases on which to
perform calculations.

We also performed atomistic Monte Carlo simulations of
the system, and we extracted pairwise correlations from equi-
librium configurations. In the case of Galfenol, it is sufficient
to consider Ga-Ga correlations to classify the nature of ob-
served order. Figure 3 shows plots of the Ga-Ga radial density
for an equilibrated system consisting of 8192 lattice sites with
periodic boundary conditions, at a simulation temperature of
800 K (below the Curie temperature). The results show good
agreement with the diffusion-based approach, and clearly
demonstrate the emergence of D03-like order with increasing
Ga concentration.

From these results we conclude that the two ordered phases
of interest are the D03 and B2 phases.

B. Magnetoelasticity of partially ordered phases

1. B2 phase

We begin by calculating the magnetoelastic composition
dependence of the nonstoichiometric B2 phase of Fe1−xGax
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FIG. 4. Total and site-resolved values of the magnetoelastic con-
stant −B1 as a function of Ga content in nonstoichiometric B2
Fe1−xGax for lattice parameters between 5.35 and 5.50 a.u. (a) −B1

for the total system and experimental measurements at room temper-
ature [5]; (b) site-resolved −B1 at site 1a (see Fig. 1); (c) site 1b.

(0 < x < 0.2) over a range of lattice parameters, a = 5.35–
5.50 a.u. (at low temperatures, the experimental value of a =
5.40 a.u.). The results of these calculations can be found in
Fig. 4, in which we have included the site-resolved values of
−B1 (negative so that its sign is that of λ001). Experimental
values of −B1 have also been included by using the data for
λ001, c11, and c12 in Ref. [5] and rearranging Eq. (8).

Focusing on the total magnetoelasticity for now, we first
note the significant magnetoelastic volume dependence of
pure Fe—a result that was previously found in Ref. [20]—
where the expansion of the lattice leads to −B1 changing in
sign from positive to negative. As Ga is added to the 1a site
up to around 15%, there is a consistent increase in magnetoe-
lasticity across all lattice parameters up to between ∼7 and
15 MJ/m3, including a change in sign for a = 5.45 and 5.50
a.u. For concentrations greater than 15–20 % the magnetoe-
lasticity tends to slightly decrease, though the compositional
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behavior here could mostly be described as relatively benign
in comparison to that seen at lower concentrations. The excep-
tion is when a = 5.45 a.u. for which a local minimum occurs
at 20% Ga content as the magnetoelasticity quite rapidly de-
creases and then increases again. We also observe that when
x = 0.25 and a = 5.50 a.u., then −B1 ∼ 5 MJ/m3, which is
notably small compared to the values at smaller volumes,
which range between ∼10 and 15 MJ/m3.

If we now consider the contribution to the magnetoelas-
ticity from each lattice site, where the site 1a denotes the
doped site and 1b denotes the pure Fe site, the difference
between the two is immediately obvious. While the 1b site
demonstrates a significant decrease in magnetoelastic volume
dependence, with each isovolumetric curve converging toward
values of ∼2–3 MJ/m3, the 1a site on the other hand accounts
almost entirely for the total magnetoelastic enhancement. The
resolution between atomic sites also reveals a more consistent
magnitude in the peaks of −B1 for each volume, while the
location of the peak is shifted downward with respect to Ga
content as the lattice expands. This means that the size of the
peak for the larger volumes is limited due to the significant
negative contribution to the magnetoelasticity from the 1a site
at lower concentrations.

2. D03-like phase

We move on now to our calculations of magnetoelasticity
in the D03-like phase, the results of which are plotted in
Fig. 5. It is immediately obvious that it leads to a much
greater enhancement in magnetoelasticity than that seen in
the B2 phase, reaching peaks of −B1 ∼ 35 MJ/m3 for a =
5.45 a.u.—over twice the experimentally measured peak. The
qualitative behavior of the isovolumetric curves tells a similar
story to the B2 phase, however, demonstrating a consistent
increase in −B1 up to ∼15% Ga content followed by a moder-
ate decrease, which is less than that seen in the experimental
data. An exception to this trend is the behavior of the sys-
tem when a = 5.50 a.u. at Ga concentrations above 20%,
where we see a sudden increase in −B1. Observations based
on the site-resolved magnetoelasticity are also familiar.
Namely, the dominance of the 8c sites reflects that of the 1b
site in the B2-like phase, due to the fact that they are the only
sites whose nearest neighbors are affected by the selective
doping. The 4a and 4b sites meanwhile act as the counterparts
to the B2-like phase’s 1a site, showing an initial decrease
in −B1 that counterbalances the magnetoelastic enhancement
on the 8c site, and then a clear suppression of the volume
dependence as the Ga content increases further.

3. Comparisons between the partially ordered phases

Thus far we have seen that, in both the B2- and D03-like
phases, there is a consistent increase in magnetoelasticity
when between 10% and 15% Ga is doped into the system,
across a significant range of lattice volumes. Based on site-
resolved calculations, this enhancement is driven primarily
by the 1b and 8c sites for the B2- and D03-like phases,
respectively, which Fig. 1 shows are the only sites whose
nearest neighbors change as Ga is added. In the B2-like phase,
all eight nearest neighbors change, while in the D03-like
phase only four sites—at the vertices of tetrahedra—change.
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FIG. 5. Total and site-resolved values of the magnetoelastic con-
stant −B1 as a function of Ga content in nonstoichiometric D03-like
Fe1−xGax for lattice parameters between 5.35 and 5.50 a.u. (a) −B1

for the total system and experimental measurements at room temper-
ature [5]; (b) combined contribution from sites 4a and 4b (see Fig. 1);
(c) combined contribution of the two 8c sites.

Figure 6 shows that at small x the 1b and 8c sites are al-
most equivalent in terms of their magnetoelastic concentration
dependence, suggesting that the leading contribution to the
magnetoelasticity at these concentrations is simply the aver-
age number of Fe nearest neighbors, which is equivalent for
these sites. At concentrations greater than ∼10%, the behav-
iors of the two sites diverge, with the magnetoelasticity of the
8c site continuing to increase while the 1b site’s evolution
is comparatively flat. The enhancement at a = 5.45 a.u. is
especially profound, with −B1 reaching values over twice
as large as those seen in experimental measurements [5]. A
notable anomaly in terms of concentration dependence can be
seen when a = 5.50 a.u., at around 0.225 < x < 0.25, where
we see a sudden increase in magnetoelasticity after the initial
peak. While this unusual feature is interesting in and of itself,
its corresponding lattice parameter is greater than the exper-
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FIG. 6. Comparisons of the site-resolved magnetoelastic Ga concentration dependence at sites 1b in the B2-like phase and 8c in the
D03-like phase, for different lattice parameters: (a) 5.35 a.u., (b) 5.40 a.u., (c) 5.45 a.u., and (d) 5.50 a.u.

imentally measured values of Galfenol. We therefore opt not
to consider its origin any further, but we present it here as a
curiosity.

In summary, though the behavior beyond 10% Ga content
in both phases is highly volume-dependent, our calculations
show quite clearly that homogeneously replacing some num-
ber of Fe’s nearest neighbors with Ga in a cubic configuration
enhances magnetoelasticity.

4. Comparisons to previous studies

In sharp contrast with previous findings [17,48] and the
insights made by subsequent investigations that have been
informed by those findings [16,19,49], our calculations con-
sistently show that the D03-like phase is not detrimental to
the magnetostriction of Galfenol and even exhibits magne-
toelasticity that is more than twice that of the experimentally
measured peak. Not only that, but the B2-like phase alone is
able to account for the experimentally observed enhancement
in magnetoelasticity, despite the results of Kumagai et al. [48]
suggesting that the A2 phase has the largest magnetoelasticity
among it, B2, and D03. It should be noted, however, that
these results are not necessarily in conflict with the more
recent results of Wang et al., whose optimized superlattice
calculations found large amounts of D03-type order at Ga
concentrations of ∼15% and above. Their conclusion was that
this ordering limits the growth of the magnetoelasticity and
causes its decrease after the peak, whereas our results suggest
that the onset of B2- and D03-like ordering is necessary for
enhancement.

To gain some insight as to the electronic origin of this
enhancement, in the following sections we will analyze the

density of states of these phases, with a particular focus on
the 1b and 8c sites due to their dominating contribution to the
magnetoelastic concentration dependence.

C. Density of states and band-filling analysis

1. B2-like phase

To begin our analysis of the B2-like phase’s band struc-
ture, we have calculated the density of states (DOS) of the
1b site—that which accounts solely for the magnetoelastic
enhancement—in Fe1−xGax for Ga concentrations of 0%,
15%, and 25%, and we plotted the results in Fig. 7. For these
calculations, as well as the calculations used in the band-
filling analysis that appear later in this section, the unit-cell
volume is fixed so that a = 5.45 a.u., i.e., the experimentally
measured lattice parameter for Fe0.85Ga0.15 [50].

The most obvious change we see as Ga is added to the
system is the growth of a large peak in the minority channel of
the DOS, emerging at low Ga concentrations from above the
Fermi level before centralizing around the Fermi level when
Ga content reaches 25%. From the peak’s location relative
to the d bands as a whole—it being around their energetic
“center of mass” so to speak—we can infer that the peak is
generally made up of nonbonding states [51]. This is consis-
tent with the physical picture, in which the effect of increasing
Ga content in the B2-like phase is to replace some proportion
of all nearest neighbors to the 1b site with Ga’s p orbitals. The
tight-binding model [51] then tells us that the strengthening
of that site’s nonbonding characteristics is due to the weak-
ness of pd-type bonding for that particular nearest-neighbor
symmetry.
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FIG. 7. The scalar-relativistic density of states of Fe1−xGax in
the B2-like phase (x = 0, 0.15, and 0.25) at the 1b site, where zero
energy is defined to be the Fermi energy. Also shown are the orbital-
resolved density of states, separated into eg and t2g states.

By projecting the DOS onto the t2g (xy, yz, and xz) and eg

(z2, x2 − y2) orbitals, it becomes clear that the emergence of
this peak derives primarily from the t2g orbitals. Once again
this follows from the physical picture, which shows that the
bonding between t2g orbitals is notably stronger than eg or-
bitals in bcc Fe due to their much greater overlap, suggesting
that the weakening of this bonding from the insertion of Ga
will mostly lead to changes in the t2g-projected DOS.

2. D03-like phase

Calculations of the total and orbital-resolved DOS on the
8c site of Fe1−xGax in its nonstoichiometric D03-like phase
(where x = 0, 0.15, and 0.25) can be found in Fig. 8. There are
clear parallels between these results and those of the B2-like
phase, the primary one being the appearance of a peaklike fea-
ture above the Fermi energy in the minority DOS at lower Ga
concentrations, which shifts downward in energy and grows in
size as more Ga is added. A key difference, however—which
becomes more obvious as Ga content increases—is that this
feature is now made up of two distinct peaks, with the one
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FIG. 8. The scalar-relativistic density of states of Fe1−xGax in the
D03-like phase (x = 0, 0.15, and 0.25) at the 8c site in the D03 phase,
where zero energy is defined to be the Fermi energy. Also shown are
the orbital-resolved density of states, separated into eg and t2g states.

at lower energy being almost twice as large when there is
25% Ga. From the orbital-projected DOS of Fe75Ga25, we
observe some additional features in the eg states, including
small peaks in the minority and majority DOS just below and
above the Fermi level, respectively. Referring back to the DOS
for the B2-like phase, we find that these small peaks also
appear but are less prominent. Before we probe the effects
of these various features in the DOS on the magnetoelasticity
of the material, we will provide a qualitative analysis of their
electronic origin using the tight-binding model [51].

3. Tight-binding analysis of the density of states

Here we will focus on the large peaks that appear in the
minority DOS around the Fermi level as Ga concentration is
increased, in particular the origin of the apparent “splitting”
of the peak that occurs when going from the B2-like phase to
the D03-like phase.

Intuitively, this occurrence can be understood as a band
splitting due to the increased order of the D03 phase, bearing
in mind that Fe3Ga is stoichiometric in the D03-like phase and
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FIG. 9. Calculated Fermi level dependence of the site-resolved MCA in tetragonally deformed (εzz = 0.2%) Fe1−xGax (x = 0, 0.10, 0.15,
0.20, and 0.25) for the 1b site of the B2 phase (left) and the 8c site of the D03 phase (right).

nonstoichiometric in the B2. It follows then that the nonstoi-
chiometric B2-like phase of Fe3Ga, which can be understood
as a radially averaged approximation of the stoichiometric
D03 phase, would exhibit a feature in its DOS that is essen-
tially an average of the D03’s more ordered band structure.

For a more robust explanation, however, we will make use
of the Slater-Koster tight-binding model, which describes the
interaction between orbitals in terms of their overlap [51].
To simplify the analysis, we will focus on the following two
bonding energy terms:

Eσ
xy−xy ∝ β2

x β2
y V σ , Eσ

x−yz ∝
√

3βxβyβzV
σ , (18)

which describe σ -type bonding of strength V σ between or-
bitals that are separated by the unit vector β̂, where the
interaction is between xy-xy (d-d/Fe-Fe) orbitals and x-yz
(p-d/Ga-Fe) orbitals, respectively. Referring back to Fig. 1,
to calculate the total nearest-neighbor bonding energy for the
1b and 8c site we need only sum the contributions from each
nearest neighbor. By performing these sums, it becomes clear
that the fourth-order angular dependence of the xy-xy term (as
with the other d-d terms) ensures that the nearest-neighbor
bonding energy is equivalent for both the 1b and 8c sites,
assuming that disordered sites can be treated by linearly com-
bining the contribution from each atomic species. However,
the third-order angular dependence of the x-yz term (again
consistent with other p-d terms) leads to a nonzero energy
for the 8c site and zero for the 1b site, thus distinguishing
their bonding energies. This qualitative analysis tells us that
the splitting of the peak in the minority DOS of the D03-like
phase is an outcome of pd-type bonding, rather than dd-type.

Now that we have some understanding of the bonding
origins of the peaks in the minority channel of the DOS around
the Fermi level, we will investigate their influence on the
magnetoelasticity of these phases by studying its dependence
on the location of the Fermi level.

4. Band-filling analysis of magnetoelasticity

An effective way of probing the effect of particular features
in the DOS on spin-orbit phenomena—such as MCA and
magnetoelasticity—is to artificially vary the Fermi energy and
determine the response of said phenomena [52]. For this pur-
pose, we have opted to calculate the Fermi level dependence
of Galfenol’s magnetoelasticity. Figure 9 shows a comparison
of the magnetoelastic Fermi-level dependence in the B2- and

D03-like phases of Fe1−xGax (more specifically, sites 1b and
8c) over a range of Ga concentrations (x = 0.1–0.25), as well
as bcc Fe.

Note that our calculations for bcc Fe show a negative mag-
netostriction, which according to experiment should be the
wrong sign [5]. This is due to the choice of lattice parameter,
which means that the bcc Fe lattice has been expanded by 0.05
a.u. relative to experimentally measured lattice parameters.
These results are therefore consistent with Ref. [20], in which
our calculations suggest that Fe has a positive magnetostric-
tion when using experimental lattice parameters and that an
expansion of 0.05 a.u. causes the magnetostriction to become
negative. They are also consistent with experimental results,
which show that the contraction of the Fe lattice leads to
an increase in magnetostriction [53]. For more details on the
volume dependence of Fe’s magnetostriction, see Ref. [20].

The results for the Fe-Ga phases show that the magnetoe-
lasticity of the 8c site in the D03-like phase is very sensitive
to the placement of the Fermi level over most of its Ga
concentration range, with this sensitivity increasing along
with Ga content. By studying the range of concentrations as
a whole, we see that a clear pattern emerges—as we dope
bcc Fe with Ga at the 8c site, a peak in magnetoelasticity
emerges above the Fermi level, which increases in magnitude
and moves downward in energy as more Ga is added. This
closely mirrors the behavior of the lower energy peak that we
observed in the minority spin of site 8c’s DOS, as shown in
Fig. 8. The peak associated with Fe0.75Ga0.25, which resides at
around −0.01 Ry, represents an extraordinary enhancement in
magnetoelasticity—nearly three times the value at the natural
Fermi level and thus six times that of Galfenol’s experimen-
tally measured maximum.

The Fermi level dependence of the partially ordered
B2-like phase demonstrates a similar trend to its D03-like
counterpart, as we see a peak in magnetoelasticity emerge
above the Fermi level at x = 0.1 which grows in magnitude
and lowers in energy as Ga concentration increases. However,
it is also clear that the maximum size of this peak is far smaller
than in the D03-like case—less than half in fact.

Another contrast with the partially ordered D03-like phase
is that there is no longer a correlation between the concen-
tration dependence of the magnetoelastic peak and the peak
in the minority channel of the DOS. This lack of correlation
is made particularly clear by the fact that the peak in the
minority DOS of B2-like Fe0.75Ga0.25 resides just above the
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FIG. 10. The strain-induced change in the majority channel of
the state-projected density of states [�DOS = DOS(εzz = 0.2%) −
DOS(εzz = 0%)] in Fe0.75Ga0.25. The top panel shows the 1b site of
the partially ordered B2-like phase, and the bottom panel shows the
8c site of the D03-like phase.

Fermi level, while the magnetoelastic peak resides below.
This suggests that there is an electronic mechanism beside the
availability of states in the minority channel that is affecting
the magnetoelasticity.

To investigate this further, we have calculated the strain-
induced change in the DOS [�DOS = DOS(εzz = 0.2%) −
DOS(εzz = 0%)] in the majority channel of the 1b and 8c
sites of the B2- and D03-like phases of Fe0.75Ga0.25, respec-
tively, and plotted the results in Fig. 10. What they show
is that the relatively small peaks in the majority spin chan-
nels of both phases cause a sharp redistribution of d-states
around the Fermi level when the system is positively strained
along the z-axis, primarily from x2 − y2 to z2 states. From
the second-order perturbation theory of the MCA detailed in
Sec. II E, we can see that this represents an enhancement in
the 〈z2|Lx|xz, yz〉 = √

3 term alongside a weakening of the
〈x2 − y2|Lz|xy〉 = 2 term, thus diminishing the MCA overall.
This redistribution should therefore contribute negatively to
the magnetoelasticity. However, the key difference between
the B2- and D03-like phases in terms of these strain-induced
changes is that they take place at a higher energy in the
D03 phase, above the Fermi level. Thus in the B2-like phase,
where the redistributive peak is below the Fermi level and thus
energetically accessible, there is a suppression of the magne-
toelasticity in comparison to the D03 phase. This explanation
is further supported by the results in Fig. 9(b), which show that
occupying the D03-like phase’s redistributive peak by adding
more electrons causes a significant decrease in magnetoelas-
ticity.

5. Summary and discussion

In this section, we have used band-filling analysis and
the tight-binding model, in conjunction with scalar rela-
tivistic calculations of state-projected DOS, to investigate
the electronic origins of the magnetoelastic enhancement of

Fe1−xGax’s partially ordered B2- and D03-like phases. We
have focused solely on their 1b and 8c sites, respectively,
due to the dominating influence they have on each phase’s
magnetoelastic concentration dependence at Ga concentra-
tions greater than 10%.

Calculations of the DOS showed that an increase in Ga
concentration leads to the emergence of a large, broad peak
in the nonbonding region of the B2-like phase’s minority spin
channel, while in the D03-like phase that peak is split into
two sharper peaks on either side of the Fermi level. The
former result agrees well with similar calculations carried
out by Khmelevska et al. [19], however they did not find a
peak-splitting feature in the D03-like phase. Looking closely
at their results, it may be the case that a greater resolution
along the energy axis was required to distinguish the two
peaks, especially as they are also observed in Ref. [54].

Using the Slater-Koster tight-binding model, we have pro-
vided a qualitative theory for the splitting of these peaks.
While the interaction between adjacent d orbitals is equivalent
in the D03- and B2-like configurations, the introduction of
lower-symmetry interactions between the Fe’s d orbitals and
the Ga’s p orbitals in the D03-like configuration breaks this
equivalence and leads to a “symmetry-splitting.”

Calculations of the magnetoelastic Fermi level dependence
of the partially ordered D03-like phase showed a notable
correlation with the DOS of the minority spin channel, as
each curve showed the emergence of a peak that increased
in magnitude and decreased in energy as Ga content was
increased. Equivalent calculations in the B2-like phase did
not show the same agreement between the electron number
dependence of the magnetoelasticity and minority DOS, how-
ever. Using the second-order perturbation approximation of
the MCA, we have been able to attribute the suppression
of the B2-like phase’s magnetoelasticity to a small peak in
the majority DOS, which leads to a large redistribution of eg

states when the system is strained. The negative influence of a
similar feature in the majority DOS was also observed by Cao
et al. in their study of Fe1−xGex [10].

This leads us to conclude that the dramatic magnetoelastic
enhancement of D03-like Fe1−xGax is a result of symmetry-
splitting in the minority DOS leading to a large concentration
of states in an optimal energy region where the majority DOS
is mostly filled—with the exception of a small number of
detrimental states that reside at high energies. On the other
hand, while the magnetoelastic enhancement exhibited in the
partially ordered B2-like phase is quite significant, it is ulti-
mately limited by the fact that the peak in its minority DOS is
smeared over a greater energy range due to its higher degree
of symmetry and compositional disorder.

Finally, our results on the Fermi-level and Ga concentration
dependence of the D03-like configuration’s magnetoelasticity
provide us with a qualitative theory for the experimentally
measured peak [5]. While the overall peak in magnetoelas-
ticity for a given concentration grows in magnitude as Ga
is added to the system, the location of that peak is simulta-
neously shifted downward in energy. This leads to a critical
concentration around ∼20% Ga content where the effect of
the energy shift outweighs the enhancement of the peak’s
maximum. It is therefore possible to account for the exper-
imentally measured peak in magnetostriction around ∼20%
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FIG. 11. B1 as a function of magnetic order parameter m, calcu-
lated in the B2-like phase at Ga concentrations of 15%, 20%, and
25% (purple circles, green up-triangles, and blue down-triangles,
respectively) and the D03-like phase at 20% and 25% (orange di-
amonds and yellow pentagons). The lower panel shows additional
experimental measurements from Ref. [5], where an asterisk denotes
the use of interpolation to determine experimental values of c′ in the
determination of B1 (see the main text).

using only a partially ordered model of the D03-like phase,
which according to our results on the ground-state compo-
sitional order in Sec. III A is the system’s preferred state at
0.10 < x < 0.25.

D. Finite-temperature magnetoelasticity

Now we will utilize DLM theory’s treatment of thermally
driven magnetic disorder to determine the finite-temperature
magnetoelasticity of the D03-like phase at Ga concentrations
of 15%, 20%, and 25%. We have plotted B1 as a function of
order parameter m in Fig. 11, where the lattice parameter is
fixed at a = 5.45 a.u. At each concentration, our results show
a monotonic decrease in magnetoelasticity as m decreases
(temperature increases), roughly in line with what is expected
from single ion theory [25]. It is also evident from these results
that as magnetic disorder increases, there is a convergence in
B1 between different Ga concentrations. This convergence is
reminiscent of the finite-temperature behavior seen in similar
calculations of bcc Fe and A2 Fe1−xGax in Ref. [20], which
was attributed to the magnetic disorder-induced homogeniza-
tion of their electronic structure.

Following from the band-filling analysis carried out at zero
temperature in the previous section, we have also calculated
the temperature dependence of D03-like Fe3Ga with adjusted
numbers of electrons to study how its thermal behavior could

be influenced by chemical doping according to rigid band
theory. The results are shown in Fig. 11. In a similar way to
the different concentration curves, we find that the different
curves converge between m = 0.8 and 0.9, therefore as more
electrons are added to the system and the zero-temperature
magnetoelasticity decreases, the curves no longer monoton-
ically decrease and instead show a slight increase between
m = 1.0 and 0.9. This is reminiscent again of the results of
Ref. [20], where isovolumetric curves with small or negative
zero-temperature magnetoelasticity exhibit a flat or even pos-
itive slope at m = 1, while curves with larger initial values
quickly drop off as magnetic disorder increases.

To compare these calculations with experimental data, we
have adapted the results in Ref. [5] to produce B1 versus m,
using measurements of TC as a function Ga content found in
Ref. [55] to scale the m versus T model. Without measure-
ments of the elastic constant c′ for x = 0.206 and 0.222 we
cannot determine B1 at these concentrations directly, so we
have interpolated the published values of c′ from Ref. [5].
Note that because magnetostriction is only measured up to
room temperature, the experimental data represent a very
small range of order parameters, 0.98 < m < 1. Looking at
the results of this procedure in the bottom panel of Fig. 11,
we see that the above description of convergence at finite
temperature appears to be borne out in the real system. The
large T = 0 magnetoelasticity when x = 0.187 and 0.206 cor-
responds to the usual monotonic decrease with temperature,
whereas the comparatively small T = 0 magnetoelasticity of
x = 0.187 and 0.222 is enhanced by the onset of magnetic
disorder.

IV. SUMMARY AND CONCLUSIONS

We have used a unified ab initio framework in the dis-
ordered local moment picture to study both the nature of
compositional phase ordering and the temperature depen-
dence of the magnetoelastic constant B1 in Fe1−xGax across
a range of Ga concentrations.

The ordered phases of interest have been identified as
exhibiting nonstoichiometric B2- and D03-like order, with a
system annealed below the Curie temperature in an almost
pure D03-like state. We have then opted to study the finite-
temperature magnetoelastic behavior of both pure B2-like and
pure D03-like order.

We find that, in contrast with our earlier work on pure Fe
and the disordered A2 phase, the B2-like and D03-like phases
exhibit a marked enhancement in the magnetoelastic constant
B1, in good agreement with experiment. In contrast to earlier
works, we find that the D03 phase is not in itself detrimental
to magnetostriction, but instead that the computed value of
B1 is highly sensitive to the position of the Fermi level in the
material.

By studying the Fermi level dependence of the partially
ordered D03-phase’s magnetoelasticity, we have provided a
qualitative explanation for the origin of Galfenol’s mag-
netostrictive peak at ∼19% by interpreting strain-induced
changes in the DOS through the second-order perturbative
form of the spin-orbit coupling energy. We have found that
the peak arises from the interaction between two sharp peaks
in both the minority and majority DOS.
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While a very recent experimental study has shown that
doping Fe0.83Ga0.17 with small amounts of Cu is detrimental
to magnetostriction [56], our band-filling analysis shows that
enhancement could be achieved by increasing Ga content.
By lowering the Fermi energy of D03 Fe3Ga by 0.01 Ry, its
magnetostriction can be increased twofold. This change can
be achieved by removing ∼0.6 electrons, so applying a rigid
band analysis suggests that the magnetostriction of D03-like
Fe3Ga can be increased by replacing 30% of the Ga with
Cu, i.e., Fe3Ga0.7Cu0.3. This alloy therefore warrants further
investigation, but we also note that a systematic experimental
and theoretical study of the magnetostriction of Fe-Ga-Cu
alloys could yield valuable insight into transition-metal mag-
netostriction.

Finally, we note that our results confirm the inex-
tricable link between atomic order, magnetic order, and
magnetostriction in Fe-Ga alloys. We find differences in

predicted structures depending on the nature of magnetic
order within the material, and our results show that those
structures significantly influence the magnetoelasticity of
Fe-Ga. It may therefore be possible to further enhance
magnetostrictive properties by fine-tuning the annealing pro-
cess, for example via the application of external magnetic
fields [57].

ACKNOWLEDGMENTS

The present work forms part of the PRETAMAG project,
funded by the UK Engineering and Physical Sciences
Research Council, Grant No. EP/M028941/1. C.D.W. is sup-
ported by a studentship within the UK Engineering and
Physical Sciences Research Council-supported Centre for
Doctoral Training in Modelling of Heterogeneous Systems,
Grant No. EP/S022848/1.

[1] E. D. T. De Lacheisserie, in Theory and Applications of Magne-
toelasticity (CRC Press, Boca Raton, FL, 1993), p. 430.

[2] R. Abbundi and A. Clark, IEEE Trans. Magn. 13, 1519 (1977).
[3] A. Olabi and A. Grunwald, Mater. Design 29, 469 (2008).
[4] S. A. Wilson, R. P. J. Jourdain, Q. Zhang, R. A. Dorey, C. R..

Bowen, M. Willander, Q. ul Wahab, S. M. Al-hilli, O. Nur, E.
Quandt, C. Johannson, E. Pagounis, M. Kohl, J. Matovic, B.
Samel, W. van der Wijngaart, E. W. H. Jager, Q. D. Carlsson,
Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M.
Wendlandt, C. Rusu and K. Persson, Mater. Sci. Eng.: R 56, 1
(2007).

[5] A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff,
T. A. Lograsso, V. M. Keppens, G. Petculescu, and R. A. Taylor,
J. Appl. Phys. 93, 8621 (2003).

[6] A. E. Clark, J. B. Restorff, M. Wun-Fogle, D. Wu, and T. A.
Lograsso, J. Appl. Phys. 103, 07B310 (2008).

[7] R. Grössinger, R. S. Turtelli, and N. Mehmood, IOP Conf. Ser.:
Mater. Sci. Eng. 60, 012002 (2014).

[8] A. Khachaturyan and D. Viehland, Metall. Mater. Trans. A 38,
2308 (2007).

[9] A. Khachaturyan and D. Viehland, Metall. Mater. Trans. A 38,
2317 (2007).

[10] J. X. Cao, Y. N. Zhang, W. J. Ouyang, and R. Q. Wu, Phys. Rev.
B 80, 104414 (2009).

[11] M. Laver, C. Mudivarthi, J. R. Cullen, A. B. Flatau, W.-C. Chen,
S. M. Watson, and M. Wuttig, Phys. Rev. Lett. 105, 027202
(2010).

[12] Y. He, C. Jiang, W. Wu, B. Wang, H. Duan, H. Wang, T. Zhang,
J. Wang, J. Liu, Z. Zhang, P. Stamenov, J. Coey, and H. Xu,
Acta Mater. 109, 177 (2016).

[13] Y. Du, M. Huang, S. Chang, D. L. Schlagel, T. A. Lograsso, and
R. J. McQueeney, Phys. Rev. B 81, 054432 (2010).

[14] Y. Du, M. Huang, T. A. Lograsso, and R. J. McQueeney,
Phys. Rev. B 85, 214437 (2012).

[15] R. Wu, L. Chen, and A. Freeman, J. Magn. Magn. Mater. 170,
103 (1997).

[16] H. Wang, Y. N. Zhang, R. Q. Wu, L. Z. Sun, D. S. Xu, and Z. D.
Zhang, Sci. Rep. 3, 3521 (2013).

[17] R. Wu, J. Appl. Phys. 91, 7358 (2002).
[18] H. Ebert, D. Ködderitzsch, and J. Minár, Rep. Prog. Phys. 74,

096501 (2011).
[19] T. Khmelevska, S. Khmelevskyi, and P. Mohn, J. Appl. Phys.

103, 073911 (2008).
[20] G. A. Marchant, C. E. Patrick, and J. B. Staunton, Phys. Rev. B

99, 054415 (2019).
[21] R. J. Elliott, in Magnetic Properties of Rare Earth Metals, edited

by R. J. Elliott (Plenum, London, 1972), p. 1.
[22] E. Callen and H. Callen, J. Phys. Chem. Solids 16, 310

(1960).
[23] H. B. Callen and E. R. Callen, Phys. Rev. 132, 991 (1963).
[24] A. E. Clark, B. F. DeSavage, and R. Bozorth, Phys. Rev. 138,

A216 (1965).
[25] E. Callen, J. Appl. Phys. 39, 519 (1968).
[26] B. L. Györffy, A. J. Pindor, J. Staunton, G. M. Stocks, and H.

Winter, J. Phys. F 15, 1337 (1985).
[27] M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).
[28] J. B. Staunton, S. Ostanin, S. S. A. Razee, B. L. Gyorffy, L.

Szunyogh, B. Ginatempo, and E. Bruno, Phys. Rev. Lett. 93,
257204 (2004).

[29] J. B. Staunton, L. Szunyogh, A. Buruzs, B. L. Gyorffy, S.
Ostanin, and L. Udvardi, Phys. Rev. B 74, 144411 (2006).

[30] M. Matsumoto, R. Banerjee, and J. B. Staunton, Phys. Rev. B
90, 054421 (2014).

[31] C. E. Patrick, S. Kumar, G. Balakrishnan, R. S. Edwards, M. R.
Lees, L. Petit, and J. B. Staunton, Phys. Rev. Lett. 120, 097202
(2018).

[32] B. L. Gyorffy and G. M. Stocks, Phys. Rev. Lett. 50, 374
(1983).

[33] J. B. Staunton, D. D. Johnson, and F. J. Pinski, Phys. Rev. B 50,
1450 (1994).

[34] S. N. Khan, J. B. Staunton, and G. M. Stocks, Phys. Rev. B 93,
054206 (2016).

[35] F. Ducastelle, Order and Phase Stability in Alloys (North-
Holland, New York, 1991).

[36] L.-Q. Chen and A. Khachaturyan, Scr. Metall. Mater. 25, 61
(1991).

094414-13

https://doi.org/10.1109/TMAG.1977.1059598
https://doi.org/10.1016/j.matdes.2006.12.016
https://doi.org/10.1016/j.mser.2007.03.001
https://doi.org/10.1063/1.1540130
https://doi.org/10.1063/1.2831360
https://doi.org/10.1088/1757-899X/60/1/012002
https://doi.org/10.1007/s11661-007-9253-z
https://doi.org/10.1007/s11661-007-9252-0
https://doi.org/10.1103/PhysRevB.80.104414
https://doi.org/10.1103/PhysRevLett.105.027202
https://doi.org/10.1016/j.actamat.2016.02.056
https://doi.org/10.1103/PhysRevB.81.054432
https://doi.org/10.1103/PhysRevB.85.214437
https://doi.org/10.1016/S0304-8853(97)00004-8
https://doi.org/10.1038/srep03521
https://doi.org/10.1063/1.1450791
https://doi.org/10.1088/0034-4885/74/9/096501
https://doi.org/10.1063/1.2903071
https://doi.org/10.1103/PhysRevB.99.054415
https://doi.org/10.1016/0022-3697(60)90161-X
https://doi.org/10.1103/PhysRev.132.991
https://doi.org/10.1103/PhysRev.138.A216
https://doi.org/10.1063/1.2163507
https://doi.org/10.1088/0305-4608/15/6/018
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1103/PhysRevLett.93.257204
https://doi.org/10.1103/PhysRevB.74.144411
https://doi.org/10.1103/PhysRevB.90.054421
https://doi.org/10.1103/PhysRevLett.120.097202
https://doi.org/10.1103/PhysRevLett.50.374
https://doi.org/10.1103/PhysRevB.50.1450
https://doi.org/10.1103/PhysRevB.93.054206
https://doi.org/10.1016/0956-716X(91)90354-4


MARCHANT, WOODGATE, PATRICK, AND STAUNTON PHYSICAL REVIEW B 103, 094414 (2021)

[37] D. P. Landau and K. Binder, A Guide to Monte Carlo Simula-
tions in Statistical Physics, 4th ed. (Cambridge University Press,
Cambridge, 2014).

[38] L. J. Santodonato, P. K. Liaw, R. R. Unocic, H. Bei, and J. R.
Morris, Nat. Commun. 9, 4520 (2018).

[39] P. Soven, Phys. Rev. 156, 809 (1967).
[40] G. M. Stocks, W. M. Temmerman, and B. L. Gyorffy,

Phys. Rev. Lett. 41, 339 (1978).
[41] A. Pindor, W. Temmerman, and B. Gyorffy, J. Phys. F 13, 1627

(1983).
[42] C. Kittel, Rev. Mod. Phys. 21, 541 (1949).
[43] A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, and

D. L. Schlagel, IEEE Trans. Magn. 36, 3238 (2000).
[44] X. Wang, R. Wu, D.-S. Wang, and A. J. Freeman, Phys. Rev. B

54, 61 (1996).
[45] D. S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47, 14932

(1993).
[46] R. Wu, L. Chen, A. Shick, and A. Freeman, J. Magn. Magn.

Mater. 177-181, 1216 (1998).
[47] R. Wu and A. Freeman, J. Magn. Magn. Mater. 200, 498 (1999).

[48] A. Kumagai, A. Fujita, K. Fukamichi, K. Oikawa, R. Kainuma,
and K. Ishida, J. Magn. Magn. Mater. 272, 2060 (2004).

[49] H. Wang, Y. Zhang, T. Yang, Z. Zhang, L. Sun, and R. Wu,
Appl. Phys. Lett. 97, 262505 (2010).

[50] R. Dunlap, J. McGraw, and S. Farrell, J. Magn. Magn. Mater.
305, 315 (2006).

[51] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[52] Y. Zhang, J. Cao and R. Wu, Appl. Phys. Lett. 96, 062508

(2010).
[53] J. Franse, R. Winkel, R. Veen, and G. D. Vries, Physica 33, 475

(1967).
[54] C. Paduani and C. Bormio-Nunes, J. Appl. Phys. 109, 033705

(2011).
[55] J. Borrego, J. Blazquez, C. Conde, A. Conde, and S. Roth,

Intermetallics 15, 193 (2007).
[56] X. Zhao, X. Tian, Z.-Q. Yao, L.-J. Zhao, R. Wang, and J. Yan,

Rare Met. 1 (2020).
[57] N. Maât, I. McDonald, R. Barua, B. Lejeune, X. Zhang, G.

Stephen, A. Fisher, D. Heiman, I. Soldatov, R. Schäfer et al.,
Acta Mater. 196, 776 (2020).

094414-14

https://doi.org/10.1038/s41467-018-06757-2
https://doi.org/10.1103/PhysRev.156.809
https://doi.org/10.1103/PhysRevLett.41.339
https://doi.org/10.1088/0305-4608/13/8/009
https://doi.org/10.1103/RevModPhys.21.541
https://doi.org/10.1109/20.908752
https://doi.org/10.1103/PhysRevB.54.61
https://doi.org/10.1103/PhysRevB.47.14932
https://doi.org/10.1016/S0304-8853(97)00382-X
https://doi.org/10.1016/S0304-8853(99)00351-0
https://doi.org/10.1016/j.jmmm.2003.12.827
https://doi.org/10.1063/1.3533659
https://doi.org/10.1016/j.jmmm.2006.01.020
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1063/1.3318420
https://doi.org/10.1016/0031-8914(67)90179-6
https://doi.org/10.1063/1.3525609
https://doi.org/10.1016/j.intermet.2006.05.007
https://doi.org/10.1016/j.actamat.2020.07.019

