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Full spin-orbit coefficient in III-V semiconductor wires based on the anisotropy
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Because of the one-dimensional confinement of electron momentum in narrow semiconductor wires, spin
relaxation is suppressed irrespective of the presence of spin-orbit (SO) interaction. In quantum transport, weak
localization corrections to conductivity are reflected as suppressed spin relaxation, which makes quantification
of the SO strength difficult because quantum correction theory requires weak antilocalization when evaluating
SO coefficients. Narrow wires with strong SO interaction are potential platform for Majorana particles and
parafermions for topological electronics and quantum computation, so revealing the SO strength in semicon-
ductor wire structures is beneficial. Herein, we present quantification of the full SO coefficient under weak
localization in InGaAs-based narrow wires. Using anisotropic weak localization observed under an in-plane ex-
ternal magnetic field with various orientations, one can ascertain the relative ratio between Rashba (α) and linear
Dresselhaus (β1) SO coefficients with no fitting. Furthermore, we find that widely tuning the potential profile of
the quantum well through the top gate can expose a Rashba-predominant region in magnetoconductance, where
the α value can be extracted reliably from two-dimensional quantum correction theory. Finally, we quantify the
full SO coefficients including Rashba, linear Dresselhaus, and cubic Dresselhaus terms in the wire.
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I. INTRODUCTION

Spin-orbit (SO) interaction plays a crucially important role
for various phenomena in condensed matter physics such
as the persistent spin helix state [1–6], persistent skyrmion
lattices [7], exotic quasiparticles [8,9], topological supercon-
ductivity [10], and the vanishing of interband absorption for
light propagation [11]. In a III-V semiconductor quantum well
(QW), the breaking of structural and bulk inversion symmetry
induces Rashba [12] and Dresselhaus [13] SO interactions,
which exhibit different effective magnetic field symmetries
respectively in electron momentum space. As the orientation
of SO-induced effective magnetic field becomes momentum
dependent, electron scattering randomizes the spin precession
axis, thereby resulting in D’yakonov-Perel’ spin relaxation
[14]. Using quantum transport, the spin relaxation induced by
SO effective fields can be probed sensitively through the weak
antilocalization (WAL) correction in conductivity [15,16].
Development of the quantum correction theory to conductivity
enables us to quantify the SO strength including the Rashba α,
linear β1, and cubic β3 Dresselhaus coefficients from magne-
totransport experiments [16–29]. However, one must rely on
different quantum correction models depending on whether
the transport regime is diffusive or ballistic [16,20,22,23], and
the relative strength between Rashba and Dresselhaus SO in-
teractions [16–19,22,23–29]. Recent progress of the quantum
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correction contributes to the evaluation of arbitrary Rashba
and Dresselhaus SO strengths [25–29]. In all existing mod-
els, precise determination of the SO strength predominantly
requires WAL corrections to the conductivity because the
induced spin phase is susceptible to momentum-dependent
SO fields. When spin relaxation is suppressed or minimized,
the lack of spin phase shift for the electron waves engenders
constructive interference, resulting in weak localization (WL)
corrections to the conductivity. Consequently, precise evalua-
tion of SO strength in the existing quantum correction theory
becomes difficult because it relies on WAL corrections.

The situation for suppressed spin relaxation in the presence
of SO interaction is particularly beneficial for spintronics
and quantum information technology because one can pre-
serve spin information for a long time while simultaneously
manipulating the spin state with the SO field. Nevertheless,
achieving these benefits poses challenges because the SO
interaction becomes a double-edged sword to the spin relax-
ation and the spin manipulation: it can randomize or control
the spin phase. When the Rashba and linear Dresselhaus SO
interactions are of equal strength, then spin SU(2) symmetry
is preserved [2], i.e., invariance arises with respect to the
specific rotations of electron spins. This invariance leads to
the suppression of spin relaxation, although the spin phase
is controllable [1]: a so-called persistent spin helix (PSH)
state [2]. For the situation of imbalanced SO interactions,
geometric confinement such as nanowires also suppresses
spin relaxation because orientation of the electron momen-
tum is restricted along the wire orientation [22,30–39]. This
restriction produces the unidirectional SO field for electron
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spin and suppresses randomization of the spin precession axis.
Particularly, a nanowire with strong SO interaction provides a
promising platform for realizing Majorana quasiparticles [8,9]
and parafermions [40,41] towards topological quantum infor-
mation processing, which requires control of the SO strength
to engineer a noncollinear spin texture [42,43]. In suspended
InAs nanowires, vectorial dependence of the SO interaction
has been studied by anisotropic WAL in magnetoconductance
with vectorial magnetic field application [44]. However, the
suppressed spin relaxation comes to show WL in magnetocon-
ductance measurements [33,34], thereby making it impossible
to evaluate the SO strength by quantum correction. Recently,
the relative ratio between the Rashba and linear Dresselhaus
SO coefficients has been identified in narrow semiconductor
wires using WL anisotropy under in-plane external magnetic
fields [45,46]. For the quantification of the SO coefficients,
however, some ambiguity remains because the precise ex-
traction of the SO strength has been missed in narrow wires
under the WL regime. In addition, determination of the bulk
Dresselhaus SO coefficient γ in narrow gap semiconductors
such as InGaAs, InAs, InSb, and others is expected to be
necessary for realizing novel spin and topological states in
various materials and nanostructures.

Here, we demonstrate the quantification of the full SO co-
efficients in III-V narrow semiconductor wires by anisotropic
WL under various in-plane magnetic field orientations.
We employ lithography-defined narrow wires based on an
In0.53Ga0.47As/ In0.52Al0.48As QW with a top gate electrode.
By choosing the particular crystal orientation, we can quantify
the ratio between Rashba (α) and linear Dresselhaus (β1) SO
coefficients. Wide-range tuning of α/β1 solely according to
the top gate enables us to distinguish predominant regions of
either Rashba or Dresselhaus SO field with no fitting proce-
dure. This makes reliable evaluation of Rashba SO coefficient
possible in a separately prepared Hall bar using the WAL
correction. Finally, we decompose the full SO coefficients in
narrow wires including the bulk Dresselhaus SO coefficient
γ , which is uniquely determined by the material. To verify
the accuracy for the quantified SO strength, we compare the γ

value for the Hall bar where the quantum transport is fully
governed by the renormalized Dresselhaus SO interaction.
The extracted γ values show good agreement between nar-
row wires (γ = −7.0 eV Å3) and WAL corrections (|γ | =
6.8 eV Å3). Results show that our approach can provide an
important platform for full quantification of SO interactions
under suppressed spin relaxation in narrow semiconductor
wires. This approach therefore offers a promising route for
realizing protected spin textures [1–7], exotic quasiparticles
[8,9,40,41], and peculiar optical properties [11] in various
materials and nanostructures and for determining fundamental
band parameters in various material systems.

Using our approach, we were also able to provide a general
principle to evaluate the bulk Dresselhaus coefficient γ . To
evaluate the γ value in earlier studies, the potential profile in
a QW was expected to be close to the PSH state [47,6] or have
a negligible Rashba SO interaction [48], both of which were
designed carefully by doping and application of an external
gate; in some materials, there is difficulty in satisfying these
conditions. Our approach, by combining the WL anisotropy in
narrow wires with the WAL correction in a Hall bar, does not

restrict the potential structure to close to PSH and symmetric
conditions. It is applicable for various materials such as InSb-
based and InAs-based nanowires.

This paper is organized as follows. In Sec. II, we explain
details of the sample structure and the experimental setup of
WL magnetotransport under an in-plane external magnetic
field. Next, in Sec. III, we introduce the measurement prin-
ciple for evaluating the relative ratio between the Rashba and
linear Dresselhaus SO coefficients based on WL anisotropy.
In Sec. IV, we explain the experimentally obtained results for
WL in narrow wires oriented along the [−110], [010], and
[110] crystal axes and evaluate the SO field orientation. In
Sec. V, we show the WL anisotropy by changing the top-
gate voltage to modulate the relative strength between the
Rashba and linear Dresselhaus SO coefficients, which clari-
fies identification in the Rashba and Dresselhaus-predominant
region for the carrier density. Subsequently, we emphasize the
evaluation of the full SO strength using the relative ratio and
complementarily measured Rashba SO interaction using WAL
correction in a Hall bar in Sec. VI. We also show a quantitative
comparison of the bulk Dresselhaus coefficient γ obtained
from narrow wires and a Hall bar. We close the paper with
the conclusion presented in Sec. VII.

II. SAMPLE STRUCTURE AND EXPERIMENTAL SETUP

We fabricate the following III-V semiconduc-
tor heterostructure, starting with the bottom layer,
200-nm i-In0.52Al0.48As/6-nm n-In0.52Al0.48As with
silicon doping (1.2 × 1018 cm–3)/6-nm i-In0.52Al0.48As
spacer/7-nm i-In0.53Ga0.47As QW/6-nm i-In0.52Al0.48As
spacer/6-nm n-In0.52Al0.48As with silicon doping
(3.2 × 1018 cm–3)/10-nm i-In0.52Al0.48As grown on a
(001) InP substrate using metal-organic chemical vapor
deposition. All layers are lattice-matched to the InP substrate
to minimize strain-induced SO interaction. Figure 1(a) shows
the calculated conduction and valence band profiles in the
present 7-nm In0.53Ga0.47As/ In0.52Al0.48As QW based on
the Poisson-Schrödinger equation. Silicon doping to both
sides of the In0.52Al0.48As barrier layers induces the close
to symmetric potential profile in the QW, which enables us
to access both Dresselhaus and Rashba dominant regions by
changing the carrier density through the top gate [Fig. 1(b)].

Effective magnetic fields along different crystal orienta-
tions for both the Rashba (α) and linear Dresselhaus (β1) SO
interactions are depicted in Fig. 1(e). The linear Dresselhaus
SO strength is defined as β1 = −γ 〈k2

Z〉, where γ (<0) denotes
the bulk Dresselhaus SO coefficient and 〈k2

Z〉 represents the
expected value of the squared wave number along the growth
direction. Actually, kZ is more or less constant over the applied
gate bias voltage. We assume α < 0, β1 > 0, and the Landé
g factor g < 0 based on the present potential profile in the
QW. The epitaxial films are processed into 700-nm-wide wire
structures of 100 μm length along [−110], [010], and [110]
crystal orientations by electron-beam lithography and reac-
tive ion etching [Fig. 1(d)]. We set 50 parallel wires in each
orientation to suppress the universal conductance fluctuation,
as shown in the inset microscope image in Fig. 1(d). A gate
insulator of 5-nm AlO/95-nm HfO was formed by atomic
layer deposition, followed by 10-nm Cr/100-nm Au top
electrodes. According to the SO field symmetry in Fig. 1(e),
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FIG. 1. (a) Conduction and valence bands as well as electron probability density in a (001) In0.53Ga0.47As/In0.52Al0.48As two-dimensional
electron gas calculated using the Poisson-Schrödinger equation. (b) Modulation of the conduction band profile in various sheet carrier densities
modulated by the top gate. (c) Top-gate voltage dependence of sheet carrier density at T = 1.6 K. (d) Device configuration for parallel wire
structures along [−110], [010], and [110] crystal orientations with applied perpendicular and in-plane external magnetic fields. Inset shows a
microscope image for the parallel wires. (e) Schematic illustration of Rashba and Dresselhaus spin-orbit induced effective magnetic fields in
the studied crystal orientations. Panels (f) and (g) show the orientations of Rashba (red), Dresselhaus (blue), and in-plane (purple) magnetic
fields for [−110] wire. The in-plane field is either (f) parallel or (g) perpendicular to the spin-orbit field, inducing different configurations for
the total magnetic field direction (green arrows).

the Rashba and linear Dresselhaus SO fields are mutually
perpendicular in the [010] direction, whereas the two SO
fields are parallel (antiparallel) in [−110] ([110]) direction.
We applied a constant external magnetic field Bin parallel
to the QW plane with angle θin defined from the [100]
direction [Fig. 1(d)]. After we measured the WL using mag-
netoconductance in each wire by sweeping perpendicular
magnetic field Bz, we continued measurements with differ-
ent θin. We changed the angle of Bin every 2° from [100]
(θin = 0◦) to [−100] (θin = 180◦) in a counterclockwise man-
ner [Fig. 1(d)]. All measurements for wires were conducted at
T = 1.6 K.

Figure 1(c) shows the top-gate voltage (Vg) dependence of
sheet carrier density Ns for the [010] wire, changing from 1.41
to 2.41 × 1016 m−2 for Vg = −0.65 to +0.7 V. No second-
subband occupation is observed in Shubnikov–de Haas (SdH)
oscillations. Before the WL measurement, we analyzed the
effective wire widths from the resistance peaks before starting
SdH oscillations in each wire [49]. Because of carrier deple-
tion from the sidewall, the effective wire width Weff is reduced
to 320–396 nm, which is consistent with the value reported
from an earlier study [34]. To analyze the Rashba or Dres-
selhaus SO strengths separately from the wire based on WAL

corrections to conductivity, Hall bar structures with 20 μm
width and 160 μm length are processed and magnetotransport
measurements are conducted at T = 0.3 K.

III. PRINCIPLE FOR DETECTING SPIN-ORBIT FIELDS
BY WEAK LOCALIZATION ANISOTROPY

To quantify the relative ratio between the Rashba and lin-
ear Dresselhaus SO strengths in narrow wires with no fitting
by quantum correction theory, we use the modulation of the
WL amplitude caused by spin relaxation anisotropy under
different angles of in-plane external magnetic fields [46]. This
modulation enables us to evaluate the SO field orientation
by using the following physics [45]. We consider a one-
dimensional (1D) quantum wire oriented along the [−110]
axis in Figs. 1(f) and 1(g). For simplicity of the argument, we
assume purely 1D wire because the orientation of the electron
momentum is well defined. We can extend the argument for
a finite wire width W smaller than the spin precession length
Lso = π h̄2/m∗(α + β ), where h̄ is the reduced Planck’s con-
stant and where m∗ represents an electron’s effective mass,
because spin relaxation is suppressed for W � Lso [45].

094412-3



TOSHIMICHI NISHIMURA et al. PHYSICAL REVIEW B 103, 094412 (2021)

Because of the lateral confinement of electron momen-
tum along the wire direction, for a [−110] wire, the Rashba
and Dresselhaus SO fields are oriented perpendicular to
the wire direction and mutually parallel [red (Rashba) and
blue (Dresselhaus) arrows in Figs. 1(f) and 1(g)]. Whereas
D’yakonov-Perel’ (DP) spin relaxation [14] results from
randomization of the spin precession axis, spin is now a con-
served quantity in a 1D wire due to the unidirectional spin
precession axis, suppressing spin relaxation [30–39]. The SO
field is opposite for electrons moving along the [−110] and
[1–10] directions, resulting in no phase accumulation for elec-
tron waves in symmetric paths. When the in-plane external
field Bin is applied parallel to this SO field [purple arrows
in Fig. 1(f)], the total magnetic field remains unidirectional
[green arrows in Fig. 1(f)], thereby preserving the suppressed
DP spin relaxation. However, when Bin is not parallel to
the SO field [purple arrows in Fig. 1(g)], the total magnetic
field is no longer unidirectional [green arrows in Fig. 1(g)],
causing DP spin relaxation through randomization of the spin
precession axis. This relaxation leads to additional dephasing
for electrons in a time-reversal symmetric path and engenders
reduction of the WL amplitude [45,46]. Since the direction of
the spin precession axis fluctuates the most when the applied
in-plane magnetic field is equal to the SO field, WL anisotropy
from rotating the in-plane field is most pronounced when
magnitudes of the in-plane field and SO effective field are
close to each other.

The conductance correction �G from diagrammatic per-
turbation theory [15] is proportional to C00 − ∑1

m=−1 C1m,
where C00 and C1m represent the singlet and triplet terms to the
conductance, respectively. The singlet term contributes to pos-
itive conductance, which is unaffected by DP spin relaxation,
but is suppressed under an in-plane magnetic field. The triplet
term gives a negative conductance contribution, and is sup-
pressed by the enhancement of spin relaxation. It is notewor-
thy that the singlet term contributing to positive conductance
is now suppressed by an in-plane magnetic field. When the
in-plane magnetic field is applied nonparallel to the SO field
orientation, the triplet term is reduced because of the enhanced
spin relaxation, leading to a reduced amplitude of the negative
conductance correction. However, when the in-plane magnetic
field is aligned along the SO field, spin is still a good quantum
number that exerts no influence on the triplet term. This lack
of influence preserves the negative conductance correction.
Such conductance modulation against the in-plane field angle
is reflected in the WL amplitude: the maximum WL ampli-
tude corresponds to the parallel configuration between the
in-plane magnetic field and SO effective field. By applying
this physical principle to the [010] wire, where the Rashba and
Dresselhaus SO fields are mutually perpendicular, as shown
below in greater detail, we can identify the relative ratio be-
tween α and β1 by measuring the WL at different Bin angles.

IV. WEAK LOCALIZATION IN [−110]-, [010]-, AND
[110]-ORIENTED WIRES UNDER VARIOUS IN-PLANE

EXTERNAL MAGNETIC FIELD ANGLES

We first measure magnetoconductance under various in-
plane field angles θin at Bin = 1.5 T and Vg = −0.15 V. In
the following experiments in Secs. IV and V, the SO effective

field is ranging between 2.5 to 6.5 T depending on the gate
voltage. We set the magnitude of in-plane field Bin between
1.5 and 2.0 T, corresponding to a ratio between Bin and SO
fields of around 0.3 to 1.0. Figures 2(a)–2(c) show the color-
coded magnetoconductance as a function of perpendicular
field Bz and in-plane field angle θin in [−110]-, [010]-, and
[110]-oriented wires. Bin is rotated from [100] (θin = 0◦) to
[−100] (θin = 180◦) through the [010] (θin = 90◦) axis. In all
wires, the conductance amplitude defined by �σ increases
with the increase of Bz, shown as the color-code change
from blue (minimum) to red (maximum) in Figs. 2(a)–2(c),
being a clear indication of the WL signal and suppressed spin
relaxation through lateral confinement [45,46]. In addition,
the amplitude of the WL is a anisotropic with respect to
the in-plane field angle θin, as presented in Fig. 2(g) for the
[010] wire, where the maximum WL is achieved at θin = 35◦,
and the minimum appears at θin = 125◦. It should be also
noted that the widths of the WL curves at θin = 35◦ and
125◦ are identical, indicating the negligible modulation of the
WL width from the in-plane Bin field. As indicated by the
dashed lines in Figs. 2(a)–2(c), the θin giving the maximum
WL amplitude depends on the wire directions, corresponding
to θin = 45◦, 35◦, and 135◦ for [−110], [010], and [110]
wires, respectively. The maximum WL amplitude corresponds
to the most suppressed spin relaxation against the in-plane
magnetic field angle. In Figs. 2(d)–2(f), the sums of Rashba
and Dresselhaus SO field vectors in [−110], [010], and [110]
wires are depicted, respectively, as pink, light green, and light
blue arrows. Depending on the wire orientations with respect
to the crystal axis, the total SO field from the Rashba and
Dresselhaus SO interaction changes both strength and direc-
tion. Whereas the total SO field for the [−110] and [110]
wires are perpendicular to the wire orientation (either 45◦ or
135◦ with respect to [100] axis [Figs. 2(d) and 2(f)]), the SO
field orientation depends on the relative strength between the
Rashba and Dresselhaus SO interactions for the [010] wire
[Fig. 2(e)]. The angles of maximum WL amplitude observed
experimentally in Figs. 2(a)–2(c) correspond to these total SO
field directions.

To extract the SO field angle θeff precisely, we plot the
in-plane magnetic field angle θin dependence of the WL am-
plitude �σ at fixed Bz (=20 mT) in each wire, an example of
which is presented in Fig. 2(h) for the [010] wire. Because
of the spatial symmetry of the measurement configuration
[46], we safely extend the result to 180◦ � θin � 360◦. The
data and extrapolation of �σ (Bz = 20 mT) together show
oscillatory behavior with respect to the in-plane field an-
gle θin, indicating that electron coherence caused by WL
is modulated by anisotropic spin relaxation, as discussed in
Sec. III. We also extend the result to 180◦ � θin � 360◦ for
the polar figures in Figs. 2(i) and 3(a). By defining the normal-
ized conductance modulation as �σ̃ = [�σ (Bz = 20 mT) −
�σmin]/(�σmax − �σmin), where �σmin (�σmax) corresponds
to the minimum (maximum) conductance value under the
in-plane field angle θin dependence [grey dashed lines in
Fig. 2(h)], we plot the polar figure of �σ̃ for the [−110],
[010], and [110] wires respectively as red, green, and blue
circles in Fig. 2(i). For the [−110] and [110] wires, �σ̃

peaks at a θin of 45◦ and 135◦, respectively, because both the
Rashba and linear Dresselhaus SO fields are perpendicular to
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FIG. 2. Color-coded magnetoconductance as functions of perpendicular magnetic field Bz and in-plane magnetic field angle θin for (a)
[−110], (b) [010], and (c) [110] wires at Bin = 1.5 T. (d)–(f) Schematic illustration of Rashba (red), Dresselhaus (blue), and total spin–orbit
fields (pink, light green, and light blue arrows) for (d) [−110], (e) [010], and (f) [110] wires. (g) Magnetoconductance of [010] wire with
maximum (red) and minimum (blue) weak localization amplitude, respectively, at θin = 35◦ and 125◦. (h) Conductance amplitude �σ at fixed
Bz = 20 mT as a function of θin for [010] wire. Dashed lines correspond to the maximum and minimum conductance amplitude �σmax and
�σmin. (i) Polar plot of normalized conductance �σ̃ as a function of in-plane field angle for [−110] (red), [010] (green), and [110] (blue)
wires.

the wire direction [Figs. 2(d) and 2(f)]. The θeff obtained in
the experiment shows perfect agreement with the expected
SO field angle, confirming the precise evaluation of the SO
field direction. Additionally, we can directly obtain the ratio
between α and β1 from the [010] wire by taking advantage
of the perpendicular orientation between Rashba and linear
Dresselhaus SO fields [Fig. 2(e)]. We note that the cubic
Dresselhaus SO interaction becomes zero in the [010] crystal
orientation. In the [010] wire, the relation between α/β1 and
θeff is described simply as [45],

α

β1
= − cot θeff . (1)

In Fig. 2(i), the [010] wire exhibits θeff at 35°, from
which we can ascertain α/β1 = −1.43 directly. One can use
Eq. (1) to evaluate arbitrary α/β1 ratio in wire structures based

on the anisotropic WL observed in magnetoconductance
measurements.

V. GATE CONTROL OF THE MAXIMUM WEAK
LOCALIZATION ANGLE

In order to tune the α/β1 ratio over a wide range to ex-
pose the predominant region of Rashba or Dresselhaus SO
interaction, we modulate the Rashba SO coefficient using a
top gate [50] and extend the anisotropic WL measurement
in the [010] wire for different Vg at Bin = 2.0 T. Figure 3(a)
shows polar plots of �σ̃ for Vg = −0.55, −0.45, and +0.10 V.
With decreasing Vg, i.e., lowering carrier density, θeff rotates
from 25° (α/β1 = −2.14) to 65° (α/β1 = −0.47) through 45°
(α/β1 = −1), i.e., the PSH state. Decrease of the α/β1 ratio
corresponds to the reduction of Rashba SO coefficient with
decreasing Ns.
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FIG. 3. (a) Polar plot of normalized conductance �σ̃ as a func-
tion of in-plane field angle under different top-gate voltage: Vg =
−0.55, −0.45, and +0.10 V under Bin = 2.0 T. (b) Polar plot of
numerically computed conductance for different α/β1 ratio: α/β1 =
−0.23, −1, and −1.73. (c) Gate voltage dependence of α/β1 ratio
for [010] wire under Bin = 2.0 T.

Figure 1(b) shows the calculated potential profiles in the
conduction band by changing the sheet carrier density Ns from
high Ns (2.0 × 1016 m−2) to low Ns (0.44 × 1016 m−2) using
the top gate. With the lowering of the sheet carrier density, the

potential structure inside of the In0.53Ga0.47As QW becomes
more symmetric. Further reduction of the sheet carrier density
changes the sign of the potential gradient. Such modulation
of the conduction band profile corresponds to a reduction
of the Rashba SO coefficient α and the crossing α = 0. In
this experiment, the ratio of α/β1 decreases upon lowering
of the carrier density, which is consistent with the calculated
potential profile modulation by the gate, i.e., reduction of the
Rashba SO coefficient.

To confirm the variation of the WL anisotropy with Vg fur-
ther, we computed the WL under a Bin using magnetotransport
of disordered wire conductors numerically under different
α/β1 ratios. The calculations are based on an efficient recur-
sive Green’s function algorithm within the Landauer-Büttiker
formalism [51–53], since we have confirmed this Green’s
function approach described the physics of WL anisotropy
[45] under a Bin and captured the experimentally observed
variation of WL anisotropy [46]. Because of the limited
energy scales smaller than the realistic Fermi energies, we
chose the parameters for wire width, length, disorder po-
tential, Fermi energy, and number of disorders respectively
as W = 240 nm, L = 800 nm, Ūdis = Udis/t0 = 1.4, ĒF =
EF /t0 = 0.5, and Nd = 1200, which satisfy the quasi-1D
transport observed in the experiment. Here, t0 is an energy unit
defined by h̄2/(2m∗a2), where a is the lattice constant. The
disorder potential is modeled using Anderson disorder with a
strength Ūdis. Wire conductance is obtained by averaging over
Nd disorder configurations. It is analyzed using normalized
conductance modulation. Figure 3(b) shows the numerically
computed �σ̃ for α/β1 = −0.23, −1, and −1.73, which
perfectly reproduces the expected θeff = 77◦, 45◦, and 30◦,
respectively, from Eq. (1), and the rotation towards 90° by
reducing the α/β1 ratio in the experiment. We also reproduced
a similar dependence of the WL anisotropy by employing
universal modeling of quantum interference effects based
on real-space simulation [27], the details of which will be
discussed in Sec. VI and the Supplemental Material [49].
Through the top gate dependence of the in-plane field angle
at the maximum WL amplitude, the potential profile from
the carrier modulation, and by the simulated WL anisotropy,
we demonstrate modulation of the SO field direction using
the top gate. Quantification of the α/β1 value from the [010]
wire is advantageous to evaluate the arbitrary ratios of α/β1,
independent of the quantum correction model and with no
fitting procedures.

In Fig. 3(c), a plot shows the experimentally evalu-
ated α/β1 between Vg = −0.65 (Ns = 1.41 × 1016 m−2) and
+0.7 V (Ns = 2.41 × 1016 m−2) in the [010] wire. The value
of α/β1 is widely modulated from Dresselhaus-predominant
(α/β1 = −0.31) to Rashba-predominant (α/β1 = −3.27)
solely by the gate. Quantifying the α/β1 ratio to identify
the dominated SO interaction becomes crucially important to
choose the appropriate quantum correction theory because the
developed models rely on the specific condition of the SO
interactions, either Rashba or Dresselhaus or the full SO co-
efficients [16–29]. The Rashba dominant region in the carrier
density Ns > 2.4 × 1016 m−2 can be identified which supports
reliable evaluation of α values from WAL analysis in a Hall
bar by application of two-dimensional quantum correction
theory [21].
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FIG. 4. (a) Magnetoconductance measured in a Hall bar at T =
0.3 K in a Rashba-predominant region by setting the sheet carrier
density Ns between 2.37 × 1016 and 2.58 × 1016 m−2. Solid colored
lines correspond to fits using universal modeling of WAL corrections
based on the real-space simulation developed by Sawada et al. [27].
(b) Extracted spin-orbit length LSO and mean free path Ltr as a
function of carrier density. The Ltr > LSO corresponds to the ballistic
regime for WAL corrections. (c) Rashba spin-orbit coefficient |α| as
a function of carrier density.

VI. EVALUATION OF FULL SPIN-ORBIT
COEFFICIENTS IN WIRES

Evaluation of an arbitrary ratio between the Rashba and
linear Dresselhaus SO coefficients, and the wide range con-
trol of the α/β1 value by the top gate, enable us to identify
the full SO coefficients in narrow wires by complementarily
using the WAL correction in a Hall bar. First, to evaluate
the Rashba SO coefficient, we measured the magnetocon-
ductance in a Hall bar device at T = 0.3 K. Based on the
consideration of α/β1 as evaluated from the [010] wire, the
Rashba SO interaction becomes the dominant contribution to
the magnetoconductance by setting the sheet carrier density
Ns between 2.37 × 1016 m−2 and 2.58 × 1016 m−2. Figure
4(a) presents the magnetoconductance found for different Ns,
all of which exhibit WAL near zero magnetic fields. The
conductance minimum in WAL is shifted to higher magnetic
fields as the sheet carrier density increases, indicating an in-
crease of the Rashba SO coefficient. Evaluating the Rashba
SO parameter |α| quantitatively demands identification of
the proper quantum correction theory. The mean free path
Ltr , defined by vF τtr , where vF is the Fermi velocity and τtr

is the electron’s momentum scattering time, is found to be
longer than SO length LSO = h̄2/2m∗|α|, corresponding to
the ballistic regime. Because the quantum correction based
on the Iordanskii, Lyanda-Geller, and Pikus (ILP) theory is
only valid in the diffusive regime, which should satisfy the
condition of LSO > Ltr [16], we employ universal modeling of
WAL corrections based on real-space simulation developed by
Sawada et al. [27]. In this simulation, SO interactions are in-
cluded as one-electron interaction propagators associated with
closed scattering loops of electrons, which are generated using
a pseudorandom-number generator. Because a Boltzmannian

picture of electrons is assumed, the salient advantage of this
model is that (1) both diffusive and ballistic regions are avail-
able for the WAL correction to magnetoconductance and (2)
full SO coefficients are considered [49]. It is also noteworthy
that this approach is equivalent to the Golub model, which
can also treat both ballistic and diffusive regimes and can also
be useful for a high mobility QW [20,23,25]. Because the
Sawada model is specialized for modeling the quantum cor-
rection of conductivity, the time required for a simulation of
WAL is reasonably fast in comparison with the Green’s func-
tion approach [45], which is useful for data fitting. In addition,
we have confirmed that our simulation based on the Sawada
model reproduces an earlier report of literature [Fig. 2(b) in
Ref. [20]], indicating the validity of our simulation for appli-
cation to experimentally obtained results. Solid colored lines
in Fig. 4(a) show fitting results based on the Sawada model
by solely considering the Rashba SO coefficient, where the
model reproduces the observed WAL well. Then we extract
the SO length LSO and Rashba SO coefficient |α| as functions
of Ns, shown respectively in Figs. 4(b) and 4(c). We find
that the mean free path Ltr is much longer than LSO and the
evaluated |α| decreases monotonically with lowering Ns.

Figure 5(a) presents a summary of the evaluated |α| (open
blue squares) and α/β1 ratio (open red circles) as a function
of Ns. The linear dependence of |α| to the carrier density
reflects the linear scaling of internal electric field inside the
InGaAs QW, enabling us to extend the variation of |α| in the
lower Ns region [dashed blue line in Fig. 5(a)]. Comparison
with the α/β1 ratio [open red circles in Fig. 5(a)] shows
that the carrier densities for a vanishing Rashba SO inter-
action, i.e., |α| = 0 and α/β1 = 0, become mutually equal.
This finding confirms unambiguously (1) that the WAL cor-
rection in magnetoconductance is dominated by the Rashba
SO interaction and (2) that the separation of the Rashba-
predominant region from the α/β1 ratio in the wire is the
correct approach to identify a suitable model for the quan-
tum correction of the conductivity. Based on the α/β1 ratio
together with the extracted Rashba SO coefficient |α| in
Fig. 5(a), the unknown parameter in Eq. (1) becomes the bulk
Dresselhaus coefficient γ because 〈k2

Z〉 is obtained numer-
ically based on 〈k2

Z〉 = ∫ ∞
0 
(z)∂2/∂z2
(z)dz, where 
(z)

is the electron wave function in a QW calculated using the
Poisson-Schrödinger equation [49]. Then we can ascertain the
γ value, i.e., the full SO coefficient in the wires. Figure 5(b)
shows θeff as a function of Ns. The solid line corresponds to the
fit using Eq. (1). A rapid increase of θeff with the reduction of
the carrier density reproduces with γ = −7.0 eV Å3, resulting
in the electrical determination of the bulk Dresselhaus coef-
ficient in narrow wires. Now the Rashba and Dresselhaus SO
parameters are fully decoupled from the α/β1 ratio in the wire
and are shown as |α|, |β1|, and |β3| in Fig. 5(a).

To confirm the validity of the SO coefficients obtained
by anisotropic WL measurements in the [010] wire together
with the WAL correction to the conductivity in the Hall bar,
we compare the bulk Dresselhaus coefficient γ using a gate-
fitted Hall bar. To evaluate the Dresselhaus SO coefficient,
we tuned the carrier density to be Ns = 1.38 × 1016 m−2

which corresponds to the |α| = 0 and α/β1 = 0 condition
in Fig. 5(a) and measured the WAL, where the Dresselhaus
SO coefficient becomes dominant because of the symmetric
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FIG. 5. (a) Carrier density dependence of Rashba |α| parameters
(open blue squares) in a Hall bar and α/β1 ratio (open red circles) ob-
tained from [010] wire. Full spin-orbit coefficients |α|, |β1|, and |β3|,
in wires are shown as blue, red, and green squares. (b) Carrier density
dependence of spin-orbit induced effective field angle θeff for [010]
wire and fit (solid green line) using Eq. (1). (c) Magnetoconductance
originating from the Dresselhaus spin-orbit interaction in a Hall bar
at T = 0.3 K. The carrier density at which the Rashba SO coefficient
is vanished Ns = 1.38 × 1016 m−2. The solid blue line corresponds
to fitting using the Sawada model.

potential in the QW [16]. The fit by the Sawada model is
presented in Fig. 5(c). Here, we only considered the linear
(β1) and cubic (β3) Dresselhaus SO interactions for fitting, as
shown in the solid blue lines in Fig. 5(c). We evaluated β1 =
5.03 × 10−13 eV m and β3 = 1.47 × 10−13 eV m. Based on
these values, we can obtain the bulk Dresselhaus coefficient
|γ | = 6.8 eV Å3 with 〈k2

Z〉 = 0.074 nm−2, which agrees well
for γ = −7.0 eV Å3 from the [010] wire. We infer from these
quantitative comparisons that our approach for quantifying the

full SO coefficients in narrow wires is promising to evaluate
the SO strength, even with suppressed spin relaxation, i.e., the
WL region.

VII. CONCLUSION

In conclusion, we have experimentally demonstrated the
quantification of the full spin-orbit coefficients in semi-
conductor nanowires based on a (001) In0.53Ga0.47As/
In0.52Al0.48As two-dimensional electron gas. We measured
magnetoconductance under various angles of in-plane ex-
ternal magnetic fields. Magnetoconductance exhibits weak
localization as a result of the suppressed spin relaxation be-
cause the electron momentum orientation is confined along
the wire direction. By applying a constant in-plane magnetic
field, the observed weak localization is modulated further in
its amplitude depending on the relative angle between spin-
orbit and in-plane magnetic fields. It reaches a maximum
value when the in-plane field is parallel to the spin-orbit field.
By taking advantage of the perpendicular orientation between
Rashba and Dresselhaus spin-orbit fields in the [010]-oriented
wires, the ratio between the Rashba and linear Dresselhaus
spin-orbit coefficients α/β1 was evaluated using no fitting
procedures. Furthermore, by tuning the Rashba spin-orbit in-
teraction using a top gate, we modulate the α/β1 ratio from
−0.31 to −3.27, from Dresselhaus-predominant to Rashba-
predominant regions, using only the gate. Together with weak
antilocalization in a Hall bar dominated by the Rashba spin-
orbit interaction in the top gate, we quantify the full spin-orbit
coefficients in the wire, including the bulk Dresselhaus co-
efficient of γ = −7.0 eV Å3. The obtained γ shows good
agreement with |γ | = 6.8 eV Å3 evaluated separately from
the weak antilocalization under the Dresselhaus spin-orbit
interaction, confirming the precise determination of the bulk
Dresselhaus coefficient in narrow wires by electrical means.
As narrow wires with strong spin-orbit interaction become a
platform for Majorana particles and parafermions for topolog-
ical electronics as well as quantum computation, our approach
will be able to provide a method to quantify the spin-orbit
strength in semiconductor wires. It is applicable not only
for zinc-blende structures but also for other crystals such as
wurtzite, perovskite, and honeycomb structures holding the
spin-orbit field in the plane, presenting potential for determin-
ing γ in widely diverse materials.
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