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Phase prediction method for pattern formation in time-dependent Ginzburg-Landau dynamics for
kinetic Ising model without a priori assumptions of domain patterns
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We propose a phase prediction method for pattern formation in a two-dimensional kinetic Ising model with
dipole-dipole interactions under the time-dependent Ginzburg-Landau dynamics. Considering the effects of
the material thickness by assuming uniformness along the magnetization axis, the model corresponds to thin
magnetic materials with long-range repulsive interactions. We formulate a theoretical basis to understand the
effects of the material parameters on the formation of the magnetic domain patterns in terms of the equilibrium
equations governing the balance between the linear and nonlinear forces in the equilibrium state. Further, we
develop a method for predicting the phase in the equilibrium state achieved after the dynamical evolution of a
system with given initial parameters. The analytically hard third-order term is approximated using the restricted
phase-space approximation [Anzaki et al., Ann. Phys. (NY) 353, 107 (2015)] for the φ4 models. Although
the proposed method does not have perfect concordance with the actual numerical results, it has no arbitrary
parameters and functions to tune the prediction. In other words, it is a method with no a priori assumptions of
the domain patterns.
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I. INTRODUCTION

Magnetic materials were of great interest even before the
beginning of the application of quantum physics in solid-state
physics [1]. Domain patterns are essential for understanding
magnetic materials because the macroscopic properties of
magnetic materials are largely affected by domain patterns
[2]. In light of the recent progress in experimental methods for
observing magnetic domain patterns, information on the mag-
netic dynamics can be obtained from domain patterns, e.g.,
the material parameters, external magnetic fields, and size of
the magnetic materials. X-ray magnetic circular dichroism [3]
and the detection of the Kerr effect [4] via visible light [5]
are well-known experimental methods for detecting magne-
tization. In the realm of theoretical and simulation physics,
researchers have already made progress towards this aim.
Jagla [6] and Kudo and Nakamura [7] performed numerical
simulations using similar models to reproduce the magnetic
domain patterns on two-dimensional magnetic materials. The
latter proposed a relation between the sweep rate of the ex-
ternal magnetic field and the final magnetic domain patterns
in the equilibrium state. They utilized a two-dimensional ki-
netic Ising spin system with spins on the square lattice lying
on the xy plane, while magnetization was restricted in the z
direction, which is normal to the xy plane. Assuming that the
high wave number components of the Green’s function of the
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dipole-dipole interaction play a minor role, they succeeded
in explaining the various domain patterns resulting from
different sweep rates by solving the time-dependent Ginzburg-
Landau (TDGL) equation numerically [7]. Iwano et al. [8]
adopted a numerically evaluated effective two-dimensional
Green’s function for the dipole-dipole interaction.

In the early history of the research on TDGL dynamics, the
probability density functions of the spin systems under TDGL
dynamics were studied by Kawasaki [9–11] in the 1970s.
Suzuki and Igarashi [12] also studied the same system using
the Markov chain method. Their major objective was to obtain
the global characteristics of the spin configuration, e.g., the
dynamic magnetic susceptibility [9] and critical exponents
[12], using analytical tools, such as diagrammatic methods.
In the 1980s, Grant et al. [13] investigated a similar system in
the context of phase separation and developed a theory using
the spatial wave numbers of the fields. On the other hand,
Kawasaki and Ohta [14] also investigated the kink dynamics
to the one-dimensional TDGL model and those study findings
were inherited to research on the dynamical phase transition
in the TDGL dynamics of the XY model [14–16]. In the late
1980s, growing computational resources enabled numerical
simulations to solve the TDGL equation in real space [17].

In the realm of magnetic materials, explanations of the
magnetic domain patterns have been developed for decades
[18–20]. The Kooy-Enz model [21] and its variants [19,22]
assume simple domain patterns specified by functions with
one or more parameters and minimize the total energy (the
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sum of the contributions from the domain and domain wall)
with respect to the parameters. The forms of the functions
that determine the domain patterns are chosen a priori to
simplify the entire problem into an optimization problem of
real functions. Garel and Doniach [23] analyzed the behavior
of a similar system under a finite temperature T and external
magnetic field H thermodynamically and plotted the T -H
phase diagram with three phases labeled uniform, bubble, and
striped. These phases were also defined using simple analytic
functions with few parameters.

In this study, we adopt a strategy that does not involve any
a priori defined functions. The effects of the material thick-
ness and other parameters on the TDGL pattern formation
are explained using the equilibrium equation that describes
the balances between the linear and nonlinear forces in the
equilibrium state reached after appropriate numerical time
evolutions with a realistic initial condition. This equation en-
ables us to predict the phase that a specific TDGL equation
with given system parameters forms in the equilibrium state.
In other words, we can predict the magnetic domain pattern
formed in thin magnetic materials for given system parameters
using the proposed method.

Herein, we use a numerical method to construct an ef-
fective two-dimensional Green’s function by analytically
averaging the dipole-dipole interactions along the z direction
for each grid point on the xy plane, as proposed by [8],
enabling us to consider the effects of the thickness more
precisely.

II. MODEL AND METHODS

We utilize the Ising-like spin model with TDGL dynam-
ics [7,13,17,24,25], which is also referred to as the kinetic
Ising model [26]. We prepare an array of complex variables
{φ(r)}, where r is an element of two-dimensional discrete
space D = {(x, y) : 1 � x, y � L} ⊂ N2 for a positive integer
L. Each variable φ is regarded as a magnetic dipole restricted
to the z direction, while the vector r represents a coordinate
on the xy plane, normal to the z axis. Note that the x and
y components of the spins are set to zero in this model. By
introducing the saturation magnetization, ρ > 0, the TDGL
equation for the spin system above with time parameter t is
expressed as follows:

dφ(r)

dt
= W (r|φ] + B(t ), (1)

where B represents the explicitly time-dependent external
magnetic field (restricted to the z direction) and W (r|φ] is
a function of r and a functional of φ, which is defined as
follows:

W (r|φ] = α[φ(r) − ρ−2φ3(r)] + β∇2φ(r) − γ F [φ], (2)

F [φ] =
∫

d2r′G(r − r′)φ(r′). (3)

The terms containing α, β, and γ correspond to the anisotropy,
exchange, and dipole-dipole interactions, respectively. The
last term is represented by Green’s function for the magnetic
dipole-dipole interaction G.

By moving into the wave number space using the (nonuni-
tary) Fourier transform

〈 f 〉k = L−2
∑
r∈D

f (r)eik·r, (4)

the TDGL above becomes

dφk

dt
= Wk[φ] + Bk(t ), (5)

where Wk[φ], φk, and Bk represent the spatial Fourier transfor-
mations of W (r|φ], φ(r), and B(t ), respectively. By perform-
ing the Fourier transform, we obtain the following:

Wk[φ] = α

〈
φ − φ3

ρ2

〉
k
− β|k|2φk − γ L2Gkφk. (6)

Here, the Fourier transformation of G is introduced via the
convolution theorem, and the prefactor L2 is associated with
the choice of the Fourier transform in Eq. (4).

The effects of the thickness are not apparent but are in-
troduced via the Fourier transform of the Green’s function of
the dipole-dipole interaction Gk, as already performed by [8].
Hereafter, we assume that the spin variables have the same
value along the z direction for each r. The thickness (spatial
extension along the z direction) of the material is a positive
value, i.e., A > 0. By introducing the virtual z coordinate
0 � z � A, we define an effective two-dimensional Green’s
function under the conditions specified above as follows:

G(r; A) = 1

A2

∫ A

0
dz

∫ A

0
dz′G(r; z − z′), (7)

with the classical dipole-dipole interaction

G(r; �z) = 1

(|r|2 + �z2)3/2
− 3�z2

(|r|2 + �z2)5/2
. (8)

The integral (7) can be performed analytically, and

G(r; A) = 2

A2

(
1

|r| − 1√
|r|2 + A2

)
. (9)

It should be noted that, in the limit A → 0, G(r) converges to
the inverse-cubic law, pointwise.

One may consider the continuum limit, which corresponds
to the case where the correlation length measured in the unit
of the grid spacing becomes positive infinity. In such a case,
the Fourier transform of Green’s function is obtained from the
real-space function G and has the following analytical form:

Gk(A) = 1

πA2

1 − e−A|k|

|k| . (10)

The weight of the Fourier transformation is taken to be
(2π )−d , where d = 2 is the spatial dimension. In this limit, the
right-hand side of the equation of motion, Eq. (6), becomes

Wk[φ] = α

〈
φ − φ3

ρ2

〉
k
− β|k|2φk − γ (2π )2Gk(A)φk. (11)

Note that this representation is formally obtained simply
through a replacement L → 2π .
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III. NUMERICAL SIMULATIONS

In the xy plane, we use the nonunitary fast Fourier trans-
form (FFT) corresponding to Eq. (4) to construct the modes,
φk = 〈φ〉k, and the wave number representation of Green’s
function Gk. We adopt the periodic boundary condition for the
x and y directions. Hence, the entire topology of the simula-
tion space is a torus. The spacing of the grid on the xy plane is
set to unity. We introduce the randomness of the coefficient of
the anisotropy as α → α	(r), with 	(r) = 1 + λ(r)/4, and
the Gaussian noise as λ(r) ∼ N (0, 0.32) independently and
identically for all r, as demonstrated by [7]. The external mag-
netic field intensity is represented by the rectified linear unit
(ReLU) function, R(x) = max(x, 0), as B(t ) = R(B0 − vBt ),
with B0, vB � 0.

The initial spin configuration is prepared in real space by
distributing φ(r) randomly in the range −1.1 � φ(r) � −1.0
using a uniform distribution. The equation of motion is real-
ized in the wave number space to achieve low computational
costs for a large system using FFT. The resulting spin con-
figuration in the next step is then moved back to real space
using the inverse FFT. The computationally heavy tasks, in-
cluding the convolutions of the modes φk in the cubic term,
are now circumvented by this method simply by performing
the algebraic operation φ(r) 
→ [φ(r)]3 for each r ∈ D. The
time evolutions are performed efficiently using the second-
order exponential time differencing fourth-order Runge-Kutta
(ETD2/RK4) method [27], which is a multistep exponential
integrator method, with a relatively large time step δt = 0.2.
The scalability to the system size L2 is quite good, with
the computational time roughly proportional to L2, up to the
largest case considered here (L = 512). In Fig. 1, one can see
qualitatively different final magnetic domain patterns depend-
ing on the different values of the thickness A. Throughout this
paper, the unit of thickness is assumed to be the grid spacing
in the xy plane.

In this system, we can define the two-dimensional transla-
tional and rotational symmetry in the coordinate space and the
Z2 symmetry of the spin. Therefore, the patterns above can be
naturally classified into four phases according to the following
symmetries: symmetric [Fig. 1(a)], T-breaking [Fig. 1(b)],
TZ-breaking [Fig. 1(c)], and Z-breaking [Fig. 1(d)] phases,
with T standing for “translational and rotational” and Z stand-
ing for Z2. Note that in the symmetric phase, φ(r) = 0 for
all r ∈ D because it is the only solution that is symmetric in
both Z2 and translational and rotational symmetries. Previous
studies (e.g., [6,7,28]) used more descriptive terms, such as
“labyrinth” and “sea island,” when referring to Figs. 1(b) and
1(c), respectively.

IV. NORMALIZATION OF THE TDGL DYNAMICS

The physical or dimensionful TDGL equation [Eq. (1)] is
normalized using the linear coordinate scale transformations
to compare with other results. One of the most convenient
choices is to eliminate the dimensionful saturation magne-
tization ρ. In this case, using the time variable τ , spatial
coordinate ζ, Laplacian ∂2, and magnetization ϕ, we find
that the normalized TDGL equation for the dynamics under
the external magnetic field swept from B0 > 0 to zero at a
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FIG. 1. Left: The magnetic domain patterns at the end of the
simulation for various values of A. Right: The time dependences
of the external magnetic field (marked B), the average magneti-
zation 〈φ〉0 (marked M), and the correlation 〈δφ2〉0 (marked C).
The simulation size is L = 512; the duration of the time evolution
is tmax = 300, and the external magnetic field intensity is B(t ) =
R(B0 − vBt ), with B0 = 1.5, vB = 0.01, and R(x) = max(x, 0). The
system parameters are α = 1, β = 1, ρ = 1, γ = 0.2. The white
regions have positive magnetization, whereas the black regions have
negative magnetization.

constant sweep rate vB is as follows:

dϕ

dτ
= ϕ − ϕ3 + ∂2ϕ − p1 f [ϕ] − R(p2 − p3τ ), (12)

f [ϕ] =
∫

d2ζ ′G(ζ − ζ′)ϕ(ζ′). (13)

Here, the linear functional F denotes the dipole-dipole inter-
action, while the coefficients pi (i = 1, 2, 3, 4) are defined as
follows:

p1 = γ√
αβ

, p2 = B0√
ρα

, p3 = vB

ρα2
, p4 =

√
α

β
A. (14)

The last parameter p4 represents the normalized thickness and
is used to construct the effective two-dimensional Green’s
function, as demonstrated in Eq. (7).
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V. EQUILIBRIUM EQUATIONS

If the spin configuration φ is in the equilibrium state,
φ̇k = 0 for all k, the generic (whether it is normalized or not)
equation of motion [Eqs. (1) and (2)] is simplified into a set of
simultaneous time-independent equations. We now introduce
the equilibrium equation, which is the equation of motion in
the equilibrium state assuming zero external magnetization:

〈φ3〉k = Qk〈φ〉k, (15)

with

Qk = α − β|k|2 − γ L2Gk

α
. (16)

Let us rewrite Eq. (15) in the average magnetization 〈φ〉0

and modes 〈δφ〉k with δφ(r) = φ(r) − 〈φ〉0. By noting that
〈δφ〉0 = 0 and 〈c〉k = 0 for any constant c and k �= 0, we
immediately obtain the relations governing the balance be-
tween the first-, second-, and third-order moments of the field
variables at the equilibrium state. For k = 0,

[Q0 − 3〈δφ2〉0]〈φ〉0 = 〈δφ3〉0 + 〈φ〉3
0, (17)

and for k �= 0,
[
Qk − 3〈φ〉2

0

]〈δφ〉k = 〈δφ3〉k + 3〈δφ2〉k〈φ〉0. (18)

These equations form a system of cubic equations that cannot
be solved analytically.

VI. CATEGORIZATION OF EQUILIBRIUM EQUATIONS
WITH THE RESTRICTED

PHASE-SPACE APPROXIMATION

The four types of phases mentioned in Sec. III (i.e., Z-,
T-, and TZ-breaking and symmetric phases) correspond to
the types of equilibrium equations: equilibrium equations that
prohibit nonzero uniform modes φ0 �= 0 correspond to ei-
ther T-breaking or symmetric, while those that allow nonzero
uniform modes correspond to either Z or TZ-breaking. The
equilibrium equations that correspond to either T-breaking or
symmetric phases are distinguished by the fact that T-breaking
phases have nonzero modes, i.e., φk �= 0 for k �= 0.

To deal with this classification problem of equilibrium
equations, we now apply the restricted phase-space approx-
imation (RPSA) [29] to the equation above. In our current
context, it is equivalent to a factorization of the higher mo-
ments of δφ described by

〈δφ3〉k → 3〈δφ2〉0〈δφ〉k (k �= 0). (19)

In general, the RPSA truncates the φ4-interaction terms sys-
tematically, and it is known to be exact in special models
[29]. RPSA is an elevated version of the mean-field theory
because the former contains the variance 〈δφ2〉0 as well as the
mean-field contributions.

In the diagrammatic notation, the RPSA is a restriction of
the convolution in the Ginzburg-Landau pseudofree energy
[corresponding to the equation of motion, Eq. (6)], as shown
below. Note that summations over repeated indices are as-

TABLE I. Classification of RPSA equilibrium equations.

Type Condition(s) Phase(s)

C1 maxk(Qk ) < 0 Symmetric
C2 maxk(Qk ) � 0 and Q0 < 0 T-breaking
C3 maxk �=0(Qk ) � 0 and Q0 � 0 TZ or Z-breaking

sumed in the diagrams.

(20)

In Eq. (20), perm. indicates the permutations of the ver-
tices. Noting that 〈δφ〉0 = 0, it must be emphasized that the
RPSA approximates 〈δφ3〉0 by zero. Thus, we obtain the
RPSA equilibrium equations as shown below. For k = 0,

[Q0 − 3〈δφ2〉0]〈φ〉0 = 〈φ〉3
0. (21)

For k �= 0,[
Qk − 3〈φ〉2

0 − 3〈δφ2〉0
]〈δφ〉k = 3〈δφ2〉k〈φ〉0. (22)

We can then classify the RPSA equilibrium equations using
the profiles of the function Qk, as shown in Table I.

VII. RELEVANCE OF RPSA IN NUMERICAL DATA

We check whether the numerical data of 〈φ〉0, 〈δφ2〉0, and
〈δφ3〉0 satisfy the RPSA-approximated relation [Eq. (21)]. To
be clear, we compare 〈φnum〉0 obtained by the numerical time
evolutions via the TDGL equation [Eq. (1)] with the quantity
defined by the following expression:

〈φRPSA〉0

=
{

0 (Q0 − 3〈(δφnum )2〉0 � 0),√
Q0 − 3〈(δφnum )2〉0 (Q0 − 3〈(δφnum )2〉0 > 0).

(23)

The result for the relatively small (L = 128) system with
α = 3.5, β = 2.0, and γ = 2/π for the external field specified
by B0 = 1.5 and vB = 0.01 is shown in Fig. 2. Figure 2 shows
very good agreement between 〈φRPSA〉0 and 〈φnum〉0. See Ap-
pendixes B and C for the validity of the numerical parameters
used in this study.

This result shows that the non-RPSA effects are rela-
tively small for these system parameters (α, β, γ , B0, vB). The
corresponding normalized parameters are (p1, p2, p3, p4) =
(0.2406, 0.8018, 0.0008163, 1.323A) for each A.
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FIG. 2. A demonstration of the RPSA for the equilibrium equa-
tion [Eq. (21)]. Top: The dashed green line (marked RPSA) indicates
the values of 〈φRPSA〉0 in Eq. (23). The red solid line (marked num)
shows the full numerical result 〈φnum〉0 from the time evolutions.
Bottom: Moments obtained from the numerical time evolutions. The
simulation size is L = 128, and the duration of the time evolution is
tmax = 300. Other parameters are α = 3.5, β = 2.0, and γ = 2/π .
The external field parameters are B0 = 1.5 and vB = 0.01.

VIII. PHASE-PREDICTION METHOD BY THE RPSA
EQUILIBRIUM EQUATION

The categorization of the RPSA equilibrium equations de-
scribed in Sec. VII is applicable in phase predictions of the
TDGL dynamics. We utilize Table I to predict the correspond-
ing phase for each point (α, β, γ , A) in the parameter space.
The continuum equation of motion [Eq. (11)] is employed,
enabling us to use the analytic form of Green’s function shown
in Eq. (10). Note that this choice causes a modification to the
definition of Qk, as follows:

Qk = α − β|k|2 − γ (2π )2Gk(A)

α
, (24)

where Gk(A) represents the continuum limit of Green’s
function shown in Eq. (10). The method “PhasePrediction”
is schematically shown below. This is a procedure that
maps the system parameters (α, β, γ , A) to the output Phase
∈ {Symmetric, T-breaking, *Z-breaking}, with *Z-breaking
meaning either TZ-breaking or Z-breaking.

1: procedure PHASEPREDICTION (α, β, γ , A)

2: g(k) = (1 − e−Ak )/(πA2k)

3: Q(k) = 1 − α−1βk2 − α−1γ (2π )2g(k)

4: if Q(0) < 0 then

5: if max(Q) < 0 then

6: Phase ⇐ Symmetric

7: else

8: Phase ⇐ T-breaking

9: end if

10: else

FIG. 3. Top: Thickness dependences of the moments in the final
spin configuration (same as Fig. 2). Bottom: Qmax [= max(Qk )] and
Q0, directly obtained from the Green’s function without the time
evolutions. The numerical setup is similar to that shown in Fig. 2.

11: Phase ⇐ *Z-breaking

12: end if

13: end procedure

Using this method, we can predict the phases for each point
(α, β, γ , A). As an example, let us investigate the series of
numerical simulations shown in Fig. 3. In this example, we
increase the value of A from 0.1 to 4, while the other param-
eters remain fixed to the original values. In the first region
0 < A < A1 (∼0.7), we have negative values for Q0 and Qk

for any k. In this region, 〈φ〉0 is always zero. Owing to the
equilibrium equation, Eq. (22), we also conclude that φk = 0
for any k. This is the symmetric phase. Once the thickness
exceeds the value A = A1, the coefficient Qk becomes non-
negative for some k points because Qmax [= max(Q)] exceeds
zero, whereas Q0 remains negative (Fig. 3). This results in
nonzero values for a limited number of modes, as Eq. (22) is
now satisfied for modes 〈φ〉k, so that Qk − 3〈δφ2〉0 = 0 (note
that 〈δφ2〉0 � 0). The zero wave number mode 〈φ〉0 is still
zero (T-breaking phase). If the value of A is further increased,
Q0 > 0 is obtained for A > A2 (∼1.4). This causes a nonzero
value of 〈φ〉0, which spreads into several modes via Eq. (22).
This is the TZ-breaking phase. After a certain value, A = A3

(∼2.2), the domain structure vanishes because the Z-breaking
phase becomes stable. Note that the large aspect ratio in the
T-breaking phase is partly explained by the small number of
nonzero modes.

IX. DISCUSSION

Figure 4 shows the phase diagram for the normalized
TDGL dynamics [Eq. (12)] predicted by phase prediction.
The overall tendency matches our physical instincts well.
As p1 becomes large, the demagnetization effect from the
dipole-dipole interactions supersedes the anisotropy to yield
the symmetric phase, while for large values of p4, it is partly
relaxed by the thickness to have more complex structures.

We also compared the numerical results of the time evo-
lution with those of the phase prediction (see Table II for a
comparison). The computational cost for phase prediction is
negligible compared to that for the corresponding numerical
time evolutions. The agreement between the time evolution
and phase prediction is good, except for the cases (p1, p4) =
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FIG. 4. Top: The phase diagram of the TDGL dynamics corresponding to Eq. (12) estimated using the phase prediction method proposed
in Sec. VIII. Orange area (marked *Z), TZ- or Z-breaking phase; blue area (T), T-breaking phase; green area (Symmetric), symmetric phase.
The gray solid line shows the contour of the normalized parameters corresponding to the system parameters used in Figs. 2 and 3. Bottom:
Patterns corresponding to points a, b, and c on the phase diagram above. The expected patterns corresponding to the phases were obtained.
Note that point c shows a pattern with φ(r) = 0 for all r, which is the definition of the symmetric phase.

(0.1, 1.0), (0.4, 2.5), (0.4, 3.0). This is due to the relatively
small absolute values of max(Q) and Q(0) at these sample
points. Because the RPSA neglects the third-order moments
in the equilibrium equations, the results obtained using the
RPSA equilibrium equations may differ from the time evolu-
tion for small |Q(0)| and | max(Q)|.

Note that the external magnetic sweep rate vB is a crucial
parameter in pattern formation. It has been reported [7] that

TABLE II. Comparison of numerical time evolutions with the
phase prediction method. T, Z, TZ, and S denote the phases observed
from the time evolution (T-, Z-, and TZ-breaking and symmetric
phases, respectively), while (s, t ) with s, t ∈ {+,−} denote the signs
of Q0 and max(Q), respectively. Note that phase prediction translates
(++) to *Z (= Z, TZ), (−+) to T, and (−−) to S. The numerical
time evolutions are performed for the system with 5122 grid points
using the normalized TDGL equation, Eq. (12). Points marked with
a star (�) indicate mismatches with the numerical results.

p1

p4 0.1 0.2 0.4 0.8 1.6

1.0 Z�(−−) S(−−) S(−−) S(−−) S(−−)
1.5 Z(++) T(−−) S(−−) S(−−) S(−−)
2.0 Z(++) TZ(−+) S(−−) S(−−) S(−−)
2.5 Z(++) Z(++) T�(−−) S(−−) S(−−)
3.0 Z(++) Z(++) T�(−−) S(−−) S(−−)

domain formation is largely affected by vB. Our results here
must be understood as an approximated result, not only in
the RPSA but also in eliminating the effects of the magnetic
sweep rate. For large values of vB, the time evolution has
similar results, whereas for small values of vB, it can be quite
different. For details, see Appendix A.

As shown in this section, for 0.1 � p1 � 1.6 and 1.0 �
p4 � 3.0, phase prediction shows good concordance with the
numerical time evolutions without any fitting parameters or
assumptions of domain patterns.

X. CONCLUSIONS

The long history of research on magnetism and the mathe-
matical structure of the TDGL dynamics shows a wide variety
of approaches to pattern formation in magnetic materials
[18–22].

Although most existing methods use artificial functions
that specify the magnetic domain patterns, we focus on the
equilibrium equation that a magnetic material must satisfy
in its equilibrium state. The application of the RPSA [29] to
the equilibrium equations enables us to predict the phase in
the equilibrium state. The prediction matches the actual nu-
merical time evolution results qualitatively without any fitting
parameters. Although the prediction is not perfect, our method
involves no a priori assumptions of the domain patterns, e.g.,
stripe [21] or stripe and check [19]. Our method is based on
the equilibrium equation approximated via the RPSA. RPSA
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FIG. 5. The numerical simulations for different values of the standard deviation σ . Left: σ = 0.15. Middle: σ = 0.3 (original). Right:
σ = 0.6. System parameters: (α, β, γ , B0, vB) = (1, 1, 0.3, 1.5, 0.01) with L = 512.

factorizes the higher moments to compress the numerically
heavy terms, which are also difficult to treat analytically.
Because it simply factorizes the higher moments of the field
δφ, it implements no fitting parameters. Our method also has
no dependences on the initial domain patterns.

As a future work, we can extend our method by using the
Fourier mode decomposition in the time region of the spin
variables to deal with the spin system under periodic external
fields. Such an extension of this method enables us to predict
a wider variety of physical characteristics, e.g., dynamic sus-
ceptibility and the memory effect [6] in magnetic materials.

Moreover, the object of this method is not limited to mag-
netic systems. It is applicable in a vast class of natural/social
phenomena that seemingly have nothing in common but can
be described by equations of motion, such as Eqs. (1) and (2).

One such application is parameter estimation in material
and statistical physics. Using Bayesian inference methods, we
can estimate the parameters of a system with large degrees
of freedom using relatively little observation/numerical data
(e.g., [30]). Our method is expected to work for such pa-
rameter estimations in various systems on a theoretical and
numerical basis by providing information on the phase for
each parameter using negligible computational costs, with
physically justifiable reasons.

ACKNOWLEDGMENTS

This study was mainly supported by JST CREST Grants
No. JPMJCR1761 and No. JPMJCR1861 and partially sup-
ported by Grant No. JPMJCR1763 of the Japan Science
and Technology Agency. The key ideas in this study

emerged through the activities of JSPS KAKENHI Grants
No. JP19K14671, No. JP17H01703, No. JP17H01704, No.
JP18H03210, No. JP19H05662, and No. JP20K21785. The
travel expenses needed to facilitate discussion among coau-
thors were partially supported by ERI JURP Grants No. ERI
JURP 2020-A-05, No. ERI JURP 2018-B-01, and No. ERI
JURP 2019-B-04. This study was also partially supported by
the Council for Science, Technology and Innovation, Cross-
ministerial Strategic Innovation Promotion Program (SIP),
“Structural Materials for Innovation” (funding agency: JST).

APPENDIX A: EXTERNAL FIELD SWEEP RATE

The effects of the external field sweep rate on the TDGL
dynamics of the kinetic Ising model were extensively studied
by Kudo and Nakamura [7]. Specifically, the average domain
size of the final pattern and other important features were
found to be affected by the sweep rate. In this study, we
focus on the fast quench regime with p3 > 8 × 10−4. Faster
sweep rates are confirmed to have no effects on the final
results, although slower sweep rates may result in qualita-
tively different final (equilibrium) domain patterns. We use the
ReLU function R(x) = max(x, 0) to realize a constant sweep
rate.

APPENDIX B: SYSTEM PARAMETERS

For 0.1 � A � 4, the system parameters (p1, p2, p3, p4) =
(0.2406, 0.8018, 0.0008163, 1.323A) are the normalized ver-
sion of the ones used in Sec. VII. The contour of the
parameters in the p1-p4 plane is shown by the gray solid line in
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FIG. 6. Size dependences of the numerical simulations. The two-dimensional magnetization pattern in square regions with a size of 128 ×
128 [for L = 256 and 512, the depicted areas are cropped around the center (x, y) = (0, 0) of the entire simulation]. System parameters:
(α, β, γ , B0, vB) = (1, 1, 0.3, 1.5, 0.01) with L = 128 (left), 256 (middle), and 512 (right).
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Fig. 4. The line crosses the most complicated area in the phase
diagram and has approximately 30 points in the depicted area.
Thus, the relevance of RPSA is reasonably checked by the
system parameters used in Sec. VII.

The roughness of the material is represented by the random
variable 	(r) = 1 + λ(r)/4 with the Gaussian noise λ(r) ∼
N (0, σ 2) independently and identically for all r in Sec. III.
The standard deviation of the Gaussian noise σ is set to 0.3
in the main text. Here, we also show the results for σ =
0.15 and σ = 0.6 in Fig. 5. No qualitative difference was
observed.

APPENDIX C: SYSTEM SIZE

The system size L is also a vital parameter, which may af-
fect the numerical results. We mostly used a system with L =
512 (i.e., a square system where the number of grid points is
5122 = 262, 144). A smaller system, with L = 128, was used
only for the numerical tests concerning the non-RPSA effects
in Sec. VII. The numerical results for the system parameters
(α, β, γ , B0, vB) = (1, 1, 0.3, 1.5, 0.01) with L = 128, 256,
512 are shown in Fig. 6. There are no size dependences ob-
served in this simulation. The temporal profiles of the average
magnetization also have no size dependences for L � 128.
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