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Signatures of farther neighbor couplings in artificial square ice
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The analysis of the magnetic structure factor obtained after imaging a field-demagnetized artificial square
ice reveals qualitative deviations from what would predict the six-vertex model. More specifically, additional
features appear for certain q vectors in the experimental magnetic structure factor that are absent in the
theoretical one. Using Monte Carlo simulations, we demonstrate that these features originate from dipolarlike,
farther neighbor couplings. Our results thus show that the long-range magnetostatic interactions coupling the
nanomagnets are not totally washed out in a field-demagnetized artificial square ice and cannot be neglected as
they impact the magnetic correlations within or at the vicinity of the ice manifold. Artificial square ice systems
are then expected to ultimately order, provided that the ground state can be approached.

DOI: 10.1103/PhysRevB.103.094405

I. INTRODUCTION

Two-dimensional arrays of interacting magnetic nanos-
tructures are now well-established model systems to explore
the physics of highly frustrated magnets [1–3]. Comple-
menting what can be done with chemically synthesized
compounds [4,5], artificially made spin lattices offer a
laboratory-on-chip approach: almost any kind of geome-
try can be designed [3,6–9], magnetic interactions can be
tuned [10–13], structural defects can be engineered [14], ther-
mal fluctuations are adjustable in the desired temperature
range [15–17], the spin degree of freedom can be con-
trolled [18–20], etc. Combined with the capability to image
spin configurations directly in real space, at the scale of a
nanomagnet, artificial spin systems can be viewed as exper-
imental simulators of frustrated magnetism.

Among the works done so far, many studies on artificial
spin systems have been devoted to the square geome-
try [10,15,21–26]. This geometry was first proposed to realize
the so-called square ice model [27], a model capturing the
low-energy physics of water ice, but in two dimensions [1,2].
However, two-dimensional square arrays of interacting nano-
magnets do not show the expected disordered behavior: they
order in an antiferromagnetic fashion because of the inequiv-
alent coupling strengths between collinear and perpendicular
nanomagnets [21].

Several modifications of the square lattice have been pro-
posed, theoretically [28–31] and experimentally [6,10,25,26],
to recover the ice degeneracy of the ground state. This could
be done, for example, by shifting vertically one of the two sub-
lattices of the square lattice. Doing so, the coupling strength
J2 [shown in green in Fig. 1(a)] between collinear nano-
magnets remains unchanged, whatever the amplitude of the
vertical shift h. However, the coupling strength J1 [shown in
red in Fig. 1(a)] between orthogonal nanomagnets is varied

continuously [see Fig. 1(b)] and can be made even negligible
for large h values. The vertical shift h is thus an experimental
knob one can play with to adjust J1, especially to reach the
J1 = J2 condition required in the square ice model. This was
done for both athermal and thermally active arrays of nano-
magnets, and the extensive degeneracy of the ice manifold was
recovered [10,26].

II. MOTIVATION

Generally, artificial spin systems consist in the arrange-
ment of nanomagnets coupled through magnetostatics. Thus
they are dipolar systems by design, and considering nearest-
neighbor interactions only to describe their physics is an
approximation. In some systems, this approximation fails to
capture the physics observed experimentally. This is the case
for the artificial kagome ice [14,16,32–38] and the artificial
kagome Ising antiferromagnet [39–41], which develop a low-
energy physics that cannot be accounted for by considering
solely nearest-neighbor interactions [42,43].

Artificial square ice systems, however, seem to be well ap-
proximated by a nearest-neighbor spin Hamiltonian [10,26].
We can then wonder whether or not the presence of long-
range dipolar interactions can be evidenced experimentally
in an artificial square ice, or if they are totally washed out
in practice, for example, because of intrinsic disorder in the
fabricated arrays or because they are made invisible due to an
inefficient energy minimization protocol. This is an important
question, as dipolar interactions are known to lift the extensive
degeneracy of the square ice manifold and to ultimately order
the system [28,29].

To address this issue, we fabricated a square ice sys-
tem using a technique we developed previously [10]. The
lattices were field demagnetized multiple times and the re-
sulting magnetic configurations imaged using magnetic force
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FIG. 1. (a) Three-dimensional representation of a square lattice
in which one of the two sublattices (in blue) is shifted vertically by
an offset h. The nearest-neighbor couplings J1 and J2 are indicated
in red and green, respectively. (b) Using micromagnetic simulations,
the J1/J2 ratio is calculated as a function of the height offset h. For
a critical (numerical) value hnum

C close to 120 nm, the square ice
condition J1/J2 = 1 is obeyed.

microscopy. The magnetic structure factor (MSF), averaged
over the different experiments, was computed and intensity
profiles in peculiar wave-vector directions of the average MSF
were analyzed. Comparing these intensity profiles with those
deduced numerically from Monte Carlo simulations, we con-
clude that long-range magnetostatic interactions, extending
beyond nearest neighbors, are not washed out in our lattices
and impact the magnetic correlations within or at the vicinity
of the ice manifold.

III. EXPERIMENTAL RESULTS

The sample consists of square lattices made of 840 Permal-
loy 500 × 100 × 30 nm3 nanomagnets in which one of the
two sublattices is shifted vertically [see Fig. 2(a)]. The height
offset is set to hexp = 100 nm, for which the liquid phase
was already observed [10]. To shift vertically one of the two
sublattices, a two-step electron-beam lithography process was
employed: The first step is dedicated to the design of the

nonmagnetic bases, whereas the second one is used for the
fabrication of the magnetic arrays. The 30-nm-thick Permal-
loy layer is capped with a 3-nm-thick aluminum film to limit
oxidation.

Because of the nanomagnets’ dimensions, the sample is
athermal and have thus been demagnetized in a rotating,
slowly decaying magnetic field to bring the lattice into a low-
energy magnetic state. The sample is typically demagnetized
in three days. After the demagnetization field protocol, the
resulting magnetic configuration is imaged using magnetic
force microscopy. An image is reported in Fig. 2(b). Analysis
of the magnetic contrast at each vertex site allows the deter-
mination of the global spin configuration, each nanomagnet
being approximated by an Ising variable (i.e., we neglect the
magnetization texture within the nanomagnets) [see Fig. 2(c)].
This spin configuration is Fourier transformed to obtain the
associated MSF [see Fig. 2(d)].

As reported previously [10], the MSF shares all the fea-
tures of the low-energy manifold of the square ice model:
the background intensity is diffuse but structured and ex-
hibits emergent pinch points for certain wave vectors [10,26].
Our measurements were reproduced several times, and a spin
liquid state (i.e., a disordered but correlated magnetic con-
figuration [2,10,31]) appears systematically in our lattices.
The MSF of eight magnetic images were then averaged to
improve the statistics [see Fig. 3(a)]. We note that the spin
configurations always contain a significant fraction (about
8%) of magnetic monopoles [see purple and green vertices
in Fig. 2(c)], i.e., local spin configurations having an energy
higher than the one satisfying the so-called ice (or Bernal-
Fowler) rule [44]. The presence of magnetic monopoles
reflects the fact that the arrested spin configurations are not
in the ground-state manifold.

At first sight the physics we image in our lattices [see
Fig. 3(a)] strongly resembles that of the celebrated square ice
model [see Fig. 3(b)]. However, careful inspection of the mag-
netic structure factor reveals features that cannot be accounted
for by the square ice model. In particular, additional features
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FIG. 2. (a) Electron micrograph of an artificial square ice system in which one sublattice is shifted vertically. (b) Magnetic image of a
square lattice with a height offset h = 100 nm. The black and white contrast allows unambiguous determination of the spin configuration.
(c) Spin configuration deduced from (b) with a color code highlighting the vertex types. The arrows indicate the direction of the magnetization
within each nanomagnet, which are approximated as Ising variables. (d) Magnetic structure factor computed from (c). This magnetic structure
factor strongly resembles that of the square ice.
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FIG. 3. (a) Experimental magnetic structure factor averaged over
eight measurements (two lattices were demagnetized four times).
(b) Magnetic structure factor corresponding to the low-energy mani-
fold of the square ice model. The two structure factors cover ±6 r.l.u.
(reciprocal lattice units). (c) Intensity profiles obtained from (a) (in
orange) and (b) (in blue) for the two q directions qx = 3 and qx = 5
r.l.u. The scan directions are shown in (a, b) as red (qx = 3 r.l.u.) and
purple (qx = 5 r.l.u.) dashed lines. The red and blue circles highlight
the additional features observed experimentally.

appear along the qx = 3 and qx = 5 directions [marked by col-
ored circles in Fig. 3(c)] that are absent in the theoretical MSF.
The (short-range) square ice model thus shows limitations in
describing the physics observed experimentally. We will show
below that these features originate from farther neighbor cou-
plings, i.e., interactions that extend beyond nearest-neighbor
nanomagnets.

IV. ORIGIN OF THE ADDITIONAL FEATURES IN THE
EXPERIMENTAL MSF

At this point it is instructive to remember that dipolar inter-
actions are expected to lift the ice degeneracy in a system with
a height offset like ours [28,29]. However, the nature of the
ground state depends on the value of this height offset [28,29].
When the height offset h is smaller than or equal to a critical
value hC , the ground state is ordered and antiferromagnetic in
the sense of the Rys-F model [45,46]. The associated spin con-
figuration and MSF are represented in Figs. 4(a)–4(c). When
h > hC , the ground state is also ordered and antiferromagnetic
but in the sense of the Slater-KDP model [47]: it then consists
of an antiferromagnetic alternation of fully polarized lines
[see Figs. 4(d)–4(f)].

Interestingly, we find that the magnetic Bragg peaks in
these two ground states are located in reciprocal space pre-
cisely where additional features appear in the experimental
MSF [see Figs. 3(c), 4(c), and 4(f)]. For example, the Rys-F
ground state leads to an intense Bragg peak at (qx, qy) =
(3, 3). This fits well with the feature marked by a blue circle

FIG. 4. (a) Real-space and (b) reciprocal-space representation of
the ordered ground state of the Rys-F model. (c) Intensity profiles
obtained from (b) for the qx = 3 and 5 r.l.u. directions. (d) Real-space
and (e) reciprocal-space representation of the ordered ground state of
the Slater-KDP model with an antiferromagnetic coupling between
adjacent lines. (f) Intensity profiles obtained from (e) for the qx = 3
and 5 r.l.u. directions. The two MSF shown here are obtained at
finite temperature to make the Bragg peaks broader. The blue and
red circles highlight specific wave vectors for which features are
observed in the experimental MSF.

in Fig. 3(c). Similarly, the Slater-KDP ground state leads
to Bragg peaks at (qx, qy) = (3, 2), (3,4), and (5,2). This
also corresponds to the locations marked by a red circle in
Fig. 3(c). We note that even the intensity asymmetries between
the two pairs of peaks at (3, 2)/(3, 4) and at (5, 2)/(5, 4) in
Fig. 4(f) are observed in the experimental MSF [see Fig. 3(c)].
The ground-state properties of the dipolar square ice predicted
in Refs. [28] and [29] are thus compatible with the features we
observe experimentally.

These additional features indicate the presence of extra
antiferromagnetic spin-spin correlations on top of the square
ice manifold. In other words, the magnetic configurations
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FIG. 5. Two-dimensional map showing the ten coupling
strengths considered in this work.

resulting from the field demagnetization of our arrays are not
exactly a random arrangement of type-I and type-II vertices.
Instead, type-I vertices [appearing in blue in Fig. 2(c)] are
slightly more surrounded by other type-I vertices than they
should be [i.e., the typical extension of blue clusters made of
type-I vertices in Fig. 2(c) is larger than expected in a random
distribution]. Type-II vertices [appearing in red in Fig. 2(c)]
belonging to adjacent lines in the square lattice are also
slightly more antiferromagnetically coupled than expected in
the square ice model [see alternations of lines made of red and
blue spins in Fig. 2(c)].

V. BEYOND THE NEAREST-NEIGHBOR DESCRIPTION

In the previous section we showed that our experimen-
tal findings agree qualitatively with the predictions from the
dipolar square ice model. To be more quantitative, we now
examine the finite temperature properties of an Ising spin
Hamiltonian, in which the (magnetostatic) coupling strengths
account for the real size of the nanomagnets.

A. Spin Hamiltonian

To do so, we performed Monte Carlo simulations using the
spin Hamiltonian:

H = −
∑

i, j|ri j<α

Ji jσiσ j (1)

where σi and σ j are Ising variables on sites i and j, separated
by a distance ri j , and α = √

5a, a being the lattice parameter.
Given this α value, we consider coupling strengths extending
up to the first ten neighbors (see Fig. 5). The simulations
were done for 12 × 12 × 2 lattice sites [48] with periodic

boundary conditions using a single spin-flip algorithm. The
cooling procedure starts from T/J1 = 100 and ends when
the single spin-flip dynamics freezes. 104 modified Monte
Carlo steps (mmcs) are used for thermalization [49]. Mea-
surements follow the thermalization and are also computed
with 104 mmcs. The MSF, composed of a matrix of 81 × 81
points covering an area of ±6 r.l.u. along the qx and qy

directions in reciprocal space, is computed as a function of
temperature.

B. Coupling strengths

Although nanomagnets are often considered as Ising pseu-
dospins, they are micromagnetic objects [50–53]. Before
computing the thermodynamic properties of the square ice
model with farther neighbor interactions, realistic values for
the coupling strengths must be estimated. To do so we com-
puted the micromagnetic energy of pairs of nanomagnets
having the same dimensions as the ones fabricated experimen-
tally (500 × 100 × 30 nm3, with an edge-to-edge distance of
150 nm between collinear nanomagnets). In a vertically offset
lattice, the J1, J5, and J8 coupling strengths are derived from
nanomagnets involving the two sublattices (see Fig. 5). For
the other couplings, the two considered nanomagnets belong
to the same sublattice. The height offset h then only matters
when calculating J1, J5, and J8.

The micromagnetic energies were computed using the
OOMMF code from NIST [54]. The mesh size was set to 1 ×
1 × 15 nm3 to minimize finite difference effects. The small
mesh size in the plane of the nanomagnets allows a fairly good
description of their round shape extremities. The larger mesh
size in the third dimension is chosen to optimize computation
time, as it does not substantially affect the estimate of the
coupling strengths. We chose the material parameters com-
monly used for Permalloy: the spontaneous magnetization Ms

is such that μ0Ms = 1.0053 T, and the exchange stiffness
is set to A = 10 pJ/m. Magnetocrystalline anisotropy is ne-
glected, and all simulations are performed at 0 K (no thermal
fluctuations). The coupling strengths Ji (i = 1 . . . 10) are de-
rived from the energy difference between a ferromagnetic and
an antiferromagnetic configuration of the associated pair of
nanomagnets.

First we computed J1 as a function of the vertical shift
h for values ranging from 0 to 180 nm by steps of 15 nm.
As observed previously [10], J1 is larger than J2 when h is
smaller than a critical value hnum

C , and smaller otherwise. This
dependency of the J1 coupling strength with the vertical shift
h is reported in Fig. 1(b). A critical value hnum

C ≈ 120 nm
is found, consistent with previous estimates [10]. Regarding
the other coupling strengths, the results from the micromag-
netic simulations are reported in Table I. These coupling
strengths are then used in the spin Hamiltonian shown in
Eq. (1).

TABLE I. Micromagnetic Ji coupling strengths for the first ten neighbors i. All values are expressed in arbitrary units (a.u., 1 a.u.=1.05 ×
10−18J). The coupling strengths are calculated at hexp = 100 nm, i.e., the experimental value of the height offset.

i 1 2 3 4 5 6 7 8 9 10

Ji 2.220 1.933 –0.333 0.045 0.104 –0.052 0.132 0.073 0.058 –0.018
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C. Results

Here we report the results from our Monte Carlo simula-
tions and proceed as follows:

(1) We first assume that the square ice condition J1 = J2 is
strictly obeyed.

(2) The thermodynamic properties of the spin Hamiltonian
are computed by incorporating the coupling strengths one at a
time. A first simulation is performed with J1 and J2 only, a sec-
ond one is performed after adding J3, a third one after adding
J4 to the three other values, etc., until all ten micromagnetic Ji

values reported in Table I are considered.
(3) For all these simulations, intensity profiles along the

qx = 3 and qx = 5 r.l.u. directions are compared to the experi-
mental ones, similar to what is reported in Fig. 3 for the square
ice.

(4) For each simulation, we determine the Monte Carlo
temperature that best fits the experimental data.

(5) We then detune the ice condition to check the robust-
ness of our findings.

1. The J1 = J2 ice condition

We first consider the case where J1 = J2 = 2 and proceed
as described above. The results are reported in Fig. 6 using
the same color code as before (the experimental curves are
plotted in orange and the simulated ones in blue). The two
columns correspond to the qx = 3 (left) and qx = 5 (right)
r.l.u. directions. The range of coupling strengths included
in the spin Hamiltonian is shown on the left, together with
the Monte Carlo temperature that best fits the experimental
data.

Essentially, these simulations can be grouped in three sub-
sets identified by a colored arrow on the right side of the
figure. In the first group (top blue arrow), the main impact
of the coupling interactions is to strengthen antiferromagnetic
correlations between spins of the same sublattice [marked
by a blue circle in Fig. 4(c) for (qx, qy) = (3, 3) and (5,5)].
Then, farther neighbor couplings (from J5 to J8, green arrow)
affect both the antiferromagnetic correlations between spins
of the same sublattice and the antiferromagnetic correlations
between neighboring polarized lines [marked by a red circle in
Fig. 4(f) for (qx, qy) = (3, 2), (3,4), (5,2), and (5,4)]. Finally,
the two last simulations with J9 and J10 (bottom blue arrow)
show again a preferential selection of antiferromagnetic cor-
relations between spins of the same sublattice.

Overall, the results reported in Fig. 6 show that the incor-
poration of magnetostatic couplings extending beyond nearest
neighbors allow to reproduce qualitatively [see Fig. 6(c)], and
even sometimes semiquantitatively [see Figs. 6(e) and 6(f)],
the experimental findings. If the other cases fail to capture all
the features observed in the experimental MSF, they always
capture some of them.

We might wonder why the semiquantitative agreement ob-
tained for coupling strengths extending up to J8 [Fig. 6(f)] is
lost after incorporating farther neighbor interactions. This is in
fact expected [28,29], as we know that a full dipolar treatment
of our spin Hamiltonian leads to an ordered antiferromag-
netic ground state [illustrated in Figs. 4(a)–4(c)]. Being more
quantitative thus requires an additional ingredient that favors
antiferromagnetic correlations between neighboring polarized

FIG. 6. Intensity profiles in the qx = 3 and qx = 5 r.l.u. direc-
tions obtained from the magnetic structure factors computed for the
spin Hamiltonian with interactions up to the third (a), fourth (b), fifth
(c), sixth (d), seventh (e), eighth (f), ninth (g), and tenth (h) coupling
strengths. The theoretical scans, shown in blue, are the best fits to
the experimental data (orange scans). The Monte Carlo temperature
associated to the numerical scans is provided. The blue and green
arrows on the right are used to sort the intensity profiles in three
different groups (see text for details).

lines. Such magnetic correlations can be induced naturally by
slightly detuning the ice condition.

2. Ice condition detuned: J1 < J2

If one can reasonably consider that the ice condition is ap-
proached experimentally with a height offset h = 100 nm, it is
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FIG. 7. Intensity profiles along the qx = 3 and 5 r.l.u. directions
for two spin models: (a) J1 = 2, J2 = 2.1, J3 = −0.333, and (b) J1 =
2, J2 = 2.2, J3 = −0.333, J4 = 0.045. The temperature in the Monte
Carlo simulations is T = 1.5J1. The blue and red circles highlight
the wave vectors for which features are observed in the experimental
MSF.

unlikely that is it strictly obeyed. The fact that lithographically
patterned arrays are not ideal systems, for example, because of
the sample imperfections (roughness, structural or magnetic
defects, local misalignment of the nanomagnets, fluctuations
in the height offset value, etc.) makes the ice condition in
practice hardly achievable. We can then wonder whether the
above description is robust when the J1 = J2 condition is
detuned.

The ice condition can be detuned by considering that J1

is larger or smaller than J2. Obviously, if J1 > J2, both the
detuning condition and the long-range magnetostatic inter-
actions will favor the antiferromagnetic ground state shown
in Figs. 4(a)–4(c). This approach can only make the agree-
ment with the experimental MSF less quantitative. However,
considering the J1 < J2 condition will strengthen the antifer-
romagnetic correlations between neighboring polarized lines,
as shown in Figs. 4(d)–4(f). This detuning condition will
thus compete with the effect of long-range magnetostatic
couplings. Indeed, we find a semiquantitative agreement with
the experimental data when choosing J1 = 2, J2 = 2.1, and
J3 = −0.33 [see Fig. 7(a)]. Note that the agreement is poor
if J1 = J2 [see Fig. 6(a)], whereas it is semiquantitative after
detuning the ice condition by about 5%. The same approach
works as well with J3 = −0.33 and J4 = 0.045 after setting
J1 = 2, J2 = 2.2 [see Fig. 7(b)], and works beyond for the
very same reasons.

The origin of the additional peaks we observe experimen-
tally is thus further confirmed to be linked to magnetostatic
interactions that extend beyond nearest neighbors. We note
that the J1 < J2 detuning condition could be justified in our
artificial lattices:

(i) if the experimental height offset h = 100 nm was
slightly higher than the numerical critical value hnum

C , which
is, in principle, not the case [see Fig. 1(b)], and

(ii) if the kinetics associated with the spin dynamics when
the sample is field demagnetized artificially increase the
impact of J2, as it is likely (during the field protocol, mag-
netization reverses via an avalanche process that favors the
formation of polarized lines in the lattice, see Ref. [10]).

3. Ordering vs dynamical freezing

Finally, the question arises why our system does not order
as the Monte Carlo simulations predict [28,29] and why the
experimental MSF strongly resembles the one of the square
ice, at least at first sight. One reason is the inability of field de-
magnetization protocols to bring artificial frustrated magnets
into a very low-energy state, either because of intrinsic (e.g.,
dynamical freezing, see [55,56]) or extrinsic (i.e., quenched
disorder) effects. The effective temperature of the spin con-
figurations imaged after our demagnetization procedure thus
remains high (see the Monte Carlo temperatures that best fit
the experimental data in Fig. 6). Whether artificial lattices
are field demagnetized or thermally annealed, exploring the
ground-state manifold of an artificial ice magnet is a chal-
lenging task [2]. Since the effective temperature of our arrays
remains of the order of J1, magnetic correlations start to de-
velop and we only observe the emergence of the Bragg peaks
characterizing the ground state.

VI. CONCLUSION

The main result of this work is the experimental evidence
of farther neighbor interactions in an artificial square ice. We
emphasize again that considering J1 and J2 only is not suffi-
cient to interpret our results, and considering longer ranged
couplings is mandatory, whether the ice condition is obeyed
or detuned. As a consequence, the extensive degeneracy of
the square ice manifold is expected to be lifted experimen-
tally, provided that we can approach the ground state. This
has an important implication for the monopoles’ properties.
If magnetic monopoles are deconfined quasiparticles, free to
diffuse in a pure ice manifold [10,57], they should be bound
particles in an ice manifold perturbed by dipolar interactions
and should ultimately become confined charged defects in the
ground state. In other words, the type-III vertices we observe
in the disordered spin configurations we image [see Fig. 2(c)]
should behave as weakly bound magnetic monopoles, i.e.,
the line tension linking a monopole/antimonopole pair is not
strictly zero [58–60].

ACKNOWLEDGMENTS

This work was supported by the Agence Nationale de la
Recherche through Project No. ANR-17-CE24-0007-03 “Bio-
Ice,” and its infrastructure is partially supported by the CAS
(Grant No. RVO:68081731).

[1] C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85,
1473 (2013).

[2] N. Rougemaille and B. Canals, Eur. Phys. J. B 92, 62
(2019).

094405-6

https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1140/epjb/e2018-90346-7


SIGNATURES OF FARTHER NEIGHBOR COUPLINGS … PHYSICAL REVIEW B 103, 094405 (2021)

[3] S. H. Skjærvø, C. H. Marrows, R. L. Stamps, and L. J.
Heyderman, Nat. Rev. Phys. 2, 13 (2020).

[4] M. J. P. Gingras, Spin ice, in Highly Frustrated Magnetism,
edited by C. Lacroix, P. Mendels, and F. Mila (Springer, New
York, 2009).

[5] S. T. Bramwell, M. J. P. Gingras and P. C. W. Holdsworth, Spin
ice, in Frustrated Spin Systems, edited by H. T. Diep (World
Scientific, Singapore, 2013).

[6] I. Gilbert, G.-W. Chern, S. Zhang, L. O’Brien, B. Fore, C.
Nisoli, and P. Schiffer, Nat. Phys. 10, 671 (2014).

[7] A. Farhan, C. F. Petersen, S. Dhuey, L. Anghinolfi, Q. H. Qin,
M. Saccone, S. Velten, C. Wuth, S. Gliga, P. Mellado, M. J.
Alava, A. Scholl, and S. van Dijken, Nat. Commun. 8, 005
(2017).

[8] D. Shi, Z. Budrikis, A. Stein, S. A. Morley, P. D. Olmsted, G.
Burnell, and C. H. Marrows, Nat. Phys. 14, 309 (2018).

[9] A. May, M. Hunt, A. V. D. Berg, A. Hejazi, and S. Ladak,
Commun. Phys. 2, 13 (2019).

[10] Y. Perrin, B. Canals, and N. Rougemaille, Nature (London) 540,
410 (2016)

[11] Y. Li, G. W. Paterson, G. M. Macauley, F. S. Nascimento, C.
Ferguson, S. A. Morley, M. C. Rosamond, E. H. Linfield, D. A.
MacLaren, R. Macêdo, C. H. Marrows, S. McVitie, and R. L.
Stamps, ACS Nano 13, 2213 (2019).

[12] M. Saccone, A. Scholl, S. Velten, S. Dhuey, K. Hofhuis, C.
Wuth, Y.-L. Huang, Z. Chen, R. V. Chopdekar, and A. Farhan,
Phys. Rev. B 99, 224403 (2019).

[13] M. Massouras, D. Lacour, M. Hehn, and F. Montaigne, Phys.
Rev. B 101, 174421 (2020).

[14] J. Drisko, T. Marsh, and J. Cumings, Nat. Commun. 8, 14009
(2017).

[15] V. Kapaklis, U. B. Arnalds, A. Farhan, R. V. Chopdekar, A.
Balan, A. Scholl, L. J. Heyderman, and B. Hjörvarsson, Nat.
Nanotechnol. 9, 514 (2014).

[16] I. A. Chioar, B. Canals, D. Lacour, M. Hehn, B. Santos Burgos,
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T. Šikola, and N. Rougemaille, Phys. Rev. Lett. 125, 057203
(2020).

[56] R. G. Melko and M. J. P. Gingras, J. Phys: Condens. Matter 16,
R1277 (2004).

[57] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature (London)
451, 42 (2008).

[58] L. A. Mól, R. L. Silva, R. C. Silva, A. R. Pereira, W. A. Moura-
Melo, and B. V. Costa, J. Appl. Phys. 106, 063913 (2009).

[59] R. C. Silva, F. S. Nascimento, L. A. S. Mól, W. A. Moura-Melo,
and A. R. Pereira, New J. Phys. 14, 015008 (2012).

[60] F. S. Nascimento, L. A. S. Mól, W. A. Moura-Melo, and A. R.
Pereira, New J. Phys. 14, 115019 (2012).

094405-8

https://doi.org/10.1088/1367-2630/15/3/035026
https://doi.org/10.1103/PhysRevB.92.060413
https://doi.org/10.1103/PhysRevB.96.014402
https://doi.org/10.1103/PhysRevB.100.174410
https://doi.org/10.1103/PhysRevLett.125.057203
https://doi.org/10.1088/0953-8984/16/43/R02
https://doi.org/10.1038/nature06433
https://doi.org/10.1063/1.3224870
https://doi.org/10.1088/1367-2630/14/1/015008
https://doi.org/10.1088/1367-2630/14/11/115019

