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Triple helix versus skyrmion lattice in two-dimensional noncentrosymmetric magnets
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It is commonly assumed that a lattice of skyrmions, emerging in two-dimensional noncentrosymmetric
magnets in external magnetic fields, can be represented as a sum of three magnetic helices. To test this
assumption, we compare two approaches to a description of a regular skyrmion structure. We construct (i) a
lattice of Belavin-Polyakov-like skyrmions within the stereographic projection method and (ii) a deformed triple
helix defined with the use of elliptic functions. The estimates for the energy density and magnetic profiles show
that these two ansatzes are nearly identical at zero temperature for intermediate magnetic fields. However, at
higher magnetic fields, near the transition to a topologically trivial uniform phase, the stereographic projection
method is preferable, particularly for the description of a disordered skyrmion liquid phase. We suggest exploring
the intensities of secondary Bragg peaks to obtain additional information about the magnetic profile of individual
skyrmions. We estimate these intensities to be several percent of the main Bragg peak at high magnetic fields.
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I. INTRODUCTION

Topologically protected states of matter attract the atten-
tion of researchers from various fields of science. One of
the well-known examples of topologically protected objects
is skyrmions. Despite the fact that the first appearance of
skyrmions is associated with particle physics [1], the study
of magnetic skyrmions has become a rapidly developing field
of condensed-matter physics over the last decade [2,3]. The
most discussed magnetic skyrmions are nanoscale vortex-
like configurations. The relatively small size of skyrmions
makes them promising objects for developing new types of
data storage devices [4,5]. According to the Hobart-Derrick
theorem [6], topological arguments alone are not enough to
stabilize skyrmions, while additional conditions are needed
to fix a skyrmion size. Usually, a single skyrmion or an un-
ordered set of skyrmions can be stabilized in a finite sample:
a disk [7] or a track (nanoribbon) [8]. In this case, the stabil-
ity of skyrmions is provided by the dipole-dipole interaction
and surface effects. For an infinite system, the stabilization
of skyrmions is achieved in noncentrosymmetric magnets,
where the combination of the Dzyaloshinskii-Moriya inter-
action (DMI) [9] and an applied magnetic field lead to the
existence of long-period modulated magnetic phases, so sin-
gle skyrmions appear as elements of a so-called skyrmion
crystal (SkX) [10]. Probably the best studied class of non-
centrosymmetric magnets is B20 compounds, including MnSi,
etc. [11].

Experimental investigations of such compounds show that
the skyrmion phase in the bulk (also called A phase) exists
at finite temperatures, slightly below the critical one, TC .
Thermal fluctuations are expected to play a crucial role in
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the stability of the A phase [11]. This phase is observed at
moderate magnetic fields, with its phase boundary far away
from the critical (saturation) field. The intensity maps of
neutron scattering experiments show a hexagonal pattern of
Bragg peaks in the A-phase region. It allows us to interpret the
A-phase spin configuration in two ways: either as a hexagonal
skyrmion superlattice or as a sum of three simple helices
with wave vectors directed at an angle of 120◦ relative to
each other [11]. These two descriptions are not equivalent and
may be distinguished in experiments, but the corresponding
difference may be hidden by the experimental specifics and
thermal modulation of the local magnetization [12]. The latter
reason makes thin-film investigations more preferable, where
the A phase is more stable and exists [13] at T ≈ 0.

It is known that the correspondence between long-period
modulated phases (like a helix) and phases with a finite
soliton density may be exact. One such example happens
in one spatial dimension, where skyrmions are kinks in
the sine-Gordon model [14,15]. A one-dimensional magnet
with uniaxial anisotropy, DMI, and an external field is de-
scribed by the sine-Gordon model with the Lifshitz invariants.
This model has been exactly solved by Dzyaloshinskii as a
modified helical configuration in terms of Jacobi elliptic func-
tions [16]. As an alternative (dual) description of this solution,
one can consider a lattice of kinks [17–19].

The two-dimensional case is more difficult for modeling.
Due to nonlinearity, the triple helix anzatz as a sum of three
helices is not an exact solution for the ground state at T =
0. Moreover, one can propose several ways to construct a
triple helix configuration. The simplest way, usually found
in literature (see, e.g., Refs. [11,20]) is a sum of ordinary
(nonmodified) helices [21].

Recently, we showed [22] that the stereographic projection
method provides a very good estimate of the ground-state en-
ergy and the shape of the individual skyrmions remains nearly
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invariant under pressure from its neighbors. The advantage
of the latter method is its flexibility that concerns the posi-
tions and sizes of individual skyrmions. One can particularly
employ this description for the skyrmion liquid state reported
previously in Refs. [23,24] at some magnetic fields.

In this paper, we examine different descriptions of
skyrmion lattice states in two dimensions at zero temperature.
In Sec. II, we describe the stereographic approach for the SkX
construction. In Sec. III, we remind the reader of a general
form of the magnetic helix for systems with DMI and mag-
netic field in terms of the additional elliptic parameter [25].
With this generalization, we construct the triple helix ansatz
in Sec. IV at T = 0 with normalization conditions for the
local magnetization. In Sec. V, we compare the modeling
by SkX and triple helix with respect to density of classical
energy, the period of the spatial modulation, and intensities of
higher-order Bragg peaks. Our final remarks are presented in
Sec. VI.

II. SKYRMION CRYSTAL

We consider the two-dimensional system characterized by
magnetization S(r). At zero temperature, the magnetization is
saturated and can be normalized, S2 = 1. The classical energy
density in the standard model of chiral magnets is

E = 1
2C∂μSi∂μSi − Dεμi jS

i∂μS j + B(1 − S3) , (1)

where μ = 1, 2 and i = 1, 2, 3. The first term corresponds
to the FM exchange, the second one is DMI, and the last
one is the Zeeman energy related to an external magnetic
field perpendicular to the plane. The main spatial scale in this
model is defined by L = C/D and the energy scale is D2/C.
After appropriate rescaling, Eq. (1) reads

E = 1
2∂μSi∂μSi − εμi jS

i∂μS j + b(1 − S3) , (2)

with the dimensionless magnetic field b = CB/D2.
A single skyrmion is an axially symmetric solution with

a unit topological charge. Multiskyrmion configurations can
be described in the stereographic projection approach [22],
which is a convenient way to take into account the interaction
between skyrmions and construct fully periodic configuration
of SkXs. In this section, we sketch the main idea of such
consideration.

For the normalized solution, one can write

S1 + iS2 = 2 f (z, z̄)

1 + f (z, z̄) f̄ (z, z̄)
, S3 = 1 − f (z, z̄) f̄ (z, z̄)

1 + f (z, z̄) f̄ (z, z̄)
,

(3)
where f (z, z̄) is a complex-valued function of z = x + iy and
z̄ = x − iy. It was noticed early on [26] that every holomor-
phic or antiholomorphic function is a solution of the model
without both DMI and an external magnetic field. One can
check in the latter case that one skyrmion corresponds to
f = z0/z̄ and that N-skyrmion solutions are given by f =∑N

j=1 z j
0/(z̄ − z̄ j ); here z j

0 define radii and orientation of in-
dividual skyrmions.

When we discuss the single skyrmion solution, the addition
of DMI and external field may lead to continuous trans-
formation of the Belavin–Polyakov (BP) solution, without
changing the character of singularities. Our ansatz for the

single skyrmion solution is given by

f (z, z̄) = eiακ (zz̄)

z̄
, (4)

where phase α is eventually determined by the sign of the
DMI, and a singularity-free function κ (zz̄) depends smoothly
on the distance from the skyrmion’s center.

The equation for κ is quite nonlinear and can be solved
only numerically. Since κ has the dimension of length,
we choose to consider a dimensionless function κ̃ (y) =
(κ (0))−1κ (y κ (0)2) with the property κ̃ (0) = 1. One could
then solve the equation for κ̃ (y) for different boundary con-
ditions. Our primary interest is to find κ̃ (y) on a disk of finite
radius which mimics the case of SkXs where one skyrmion is
surrounded by its neighbors. The pressure exerted by this type
of environment is modeled by changing the size of a disk. We
found that the function κ̃ (y) is nearly invariant against changes
of the disk radius, in contrast to the value of the dimensionless
residue, κ (0)/L. One hence can model multiskyrmion config-
urations by the sum

f (z, z̄) =
∑

j

F
(
(z̄ − z̄ j )/z( j)

0

)
, (5)

where

F
( z̄

z0

)
≡ z0

z̄
κ̃∞

(∣∣∣ z̄

z0

∣∣∣2)
, (6)

where κ∞ is the solution on the disk of infinite radius, and
|z0| in this formula is the skyrmion’s size. We remind the
reader that the formula Eq. (5) with arbitrary z j , z( j)

0 provided
an exact (metastable) solution to (1) at D = B = 0. In that
case, skyrmions did not interact and the energy was given by
E = ∑

j E[ f j] with the energy of individual skyrmions (chem-
ical potential) E[ f j] ≡ 4πC. Both DMI and the magnetic field
bring characteristic scales into the model that results in the
interaction between skyrmions, which is the main difference
between the model Eq. (1) and BP model.

We perform the exact numerical calculation of the energy
density for SkX modeled by Eq. (5) with the use of formulas
Eqs. (1)–(6), for the most interesting case of densely packed
SkXs by putting z̄ j onto triangular lattice. The energy density
calculated within the (hexagonal) unit cell of such a SkX
has two parameters: the unit cell parameter or period of the
lattice, a, and the radius of the skyrmion, |z0|; one should
minimize the density, ρ = 2/

√
3Ecell(z0, a)/a2 over a and |z0|.

We present the results of this minimization below in Fig. 2 and
compare it with other model configurations.

Earlier we showed [22] that the energy of configuration
Eq. (5) can be regarded as the sum of (i) the energies of
individual skyrmions, E[ f j], (ii) the pairwise (repulsive) in-
teractions between them, U2(z0, a) = E[ f1 + f2] − E[ f1] −
E[ f2], and (iii) the remaining part, U3, which does not fit
to these two categories. Because of strong nonlinear effects
of the model, U3 turns out to be sizable (and attractive) and
largely corresponds to the triple interaction between the near-
est skyrmions. Interestingly, as first noticed in Ref. [22], the
exact calculation of the optimal energy per unit cell corre-
sponds with the overall accuracy 10−3 to the approximate
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expression

Ecell(z0, a) = E[ f1] + 3U2(z0, a) + U3(z0, a), (7)

which takes into account only pairwise and triple interactions
between nearest neighbors on the triangular lattice. This sur-
prisingly good approximation means a possibility to discard
the contribution from the next-to-nearest neighbors (NNNs).
It cannot be fully explained in terms of relative smallness of
the pairwise NNN interaction, but rather as a combined effect
with the triple NNN interaction of opposite sign. This idea
is supported by the observation that the calculated energy in
the hexagonal cell around a skyrmion with its six neighbors is
nearly identical to the energy, calculated for this configuration
with six added NNN skyrmions.

III. SINGLE HELIX

The well-known expression [21] for a single helix config-
uration in magnets with DMI is given by

S = ĉ cos α + [b̂ cos (kR + β ) + â sin (kR + β )] sin α , (8)

where â, b̂, ĉ are unit vectors with â = b̂ × ĉ, k is the helix
propagation vector and α is the cone angle. Equation (8) is
the starting point for analysis of all helical states: conical,
cycloidal, etc. The main question of such an analysis is the
choice of k̂, â, b̂, ĉ, the values of k and θ . All these parameters
are determined by particular form of the Hamiltonian, crystal
symmetries, etc.

We are interested in the 2D spatial case, so
k lies in a plane. Parametrizing the basis as â =
(− sin ϕ, cos ϕ, 0), b̂ = (− cos θ cos ϕ, cos θ sin ϕ, sin θ )
and ĉ = (cos ϕ sin θ, sin ϕ sin θ, cos θ ), one can show for
arbitrary DMI that in the 2D case the vector ĉ lies in a plane,
θ = π/2, and the cone angle collapses, α = π/2. It means
that the spin configuration becomes

Sϕ =

⎛⎜⎝ sin ϕ sin (kϕR)

− cos ϕ sin (kϕR)

cos (kϕR)

⎞⎟⎠. (9)

The angle ϕ defines the plane of magnetization rotation and
in turn determines the direction of kϕ for a particular form of
DMI. In this paper, we use the relation

kϕ = k(cos ϕ, sin ϕ, 0) ,

appropriate for our 2D model Eq. (1). This case is realized in
the case of cubic symmetry of crystal (B20 compounds, for
example), where Dzyaloshinskii vector is parallel to bonds.
Different types of crystal symmetries could lead to different
forms of DMIs, and the relation between kϕ and ϕ could be
different.

Actually, in the presence of an external magnetic field
perpendicular to the plane, Eq. (8) is not an exact solution
of the model [16]. The well-known fact is that in uniax-
ial magnets with DMI, the simple helix also transforms to
the chiral soliton lattice (CSL) [25]. If spins are modulated
in the x̂ direction and lie in the perpendicular plane, S =
(0,− sin φ(x), cos φ(x)), then the energy Eq. (2) takes the
form

E = 1
2 (∂xφ(x))2 − ∂xφ(x) + b(1 − cos φ(x)) , (10)

with the resulting Euler-Lagrange equation:

∂2
x φ(x) = b sin φ(x). (11)

This is the sine-Gordon equation having the quasiperiodic
solution

φ0(x) = 2 am

(√
b

m
x + β

∣∣∣∣m
)

+ π , (12)

with the elliptic parameter m. The minimization of the energy
Eq. (10) links this parameter to the field

E (m)√
m

= π

4
√

b
,

whereas the energy density at the minimum, ρ, and the pitch
k are given by expressions [18]

ρ = −2b
1 − m

m
, k = π

K (m)

√
b

m
. (13)

Here K (m) [E (m)] is a complete elliptic integral of the first
(second) kind.

Below we expect that the 1D solution Eq. (12) may be
convenient for parametrization of the trial function, although
the conditions Eqs. (13) do not hold. In this case, we can still
use Eq. (12) as a general model form of deformed helix with
one control parameter, m:

S̃ϕ =

⎛⎜⎝− sin ϕ sin 2 am
(K (m)

π
(kϕR + β )|m)

cos ϕ sin 2 am
(K (m)

π
(kϕR + β )|m)

− cos 2 am
(K (m)

π
(kϕR + β )|m)

⎞⎟⎠ . (14)

This expression is the extension of Eq. (9) with the same
spatial period, and additional degree of ellipticity. It coincides
with Eq. (9) at m = 0, β = π .

IV. TRIPLE HELIX

In the literature, one can find a statement that a SkX state
can be modeled by the sum of three helices with zero sum
of helix propagation vectors. In particular, it was argued [11]
that thermal fluctuations stabilize the superposition of three
helices at high temperatures in the three-dimensional case.
Moreover, it has been shown in Ref. [12] that second Bragg
peaks in neutron scattering can be mostly attributed to the
result of double scattering, and they have insignificant inten-
sities in comparison with the first Bragg peaks.

The simple sum of three helices Eq. (9),

S3q = Sϕ=0 + Sϕ=2π/3 + Sϕ=4π/3 + S0êz, (15)

has a different magnitude from point to point, i.e., |S3q(R)| �=
const. For the A phase of 3D compounds, the possibility of
this variation can be explained by a closeness to the critical
point where the magnitude of magnetization could vary sig-
nificantly. But in the planar case of our interest at T = 0, one
should expect the constraint |S| = 1. Below we consider two
ways to obtain the normalized triple helix configuration.

A. Triple helix in the stereographic projection method

As discussed above, the stereographic projection automat-
ically provides the low-temperature normalization constraint
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FIG. 1. Schematic pictures of two different types of triple helix
structures modeled in stereographic approach: (a) honeycomb lattice
appearing for β = π and (b) kagomé lattice for β = 0.

|S| = 1, which is convenient for a discussion of multi-
skyrmion configurations. It is tempting to also use the method
for construction of a multiple-helix configuration.

One can easily verify that the single helix Eq. (14) is
represented by the function

fϕ = ieiϕ cot am

(
K (m)

π
(kϕR + β )|m

)
. (16)

This function has a striped structure of zeros and pole lines.
The sum of three helices of the form Eq. (16) with different
kϕ , obeying the relation kϕ1 + kϕ2 + kϕ3 = 0, might appear
to be a good choice for a description of two-dimensional
hexagonal lattices of skyrmions. However, comparing with the
previous formula Eq. (5), which has simple poles at the centers
of the skyrmions, we choose a different representation in the
form

f3q =
(

1

fϕ=0
+ 1

fϕ=2π/3
+ 1

fϕ=4π/3

)−1

. (17)

Parameter m now defines the shape of skyrmions and k deter-
mines the cell parameter of skyrmion lattice.

In contrast to the combination of two functions, e.g., f2q =
(( fϕ=0)−1 + ( fϕ=2π/3)−1)−1, where an arbitrary value of β

could be effectively put to zero by an appropriate shift of
the origin, the addition of the third helix in Eq. (17) makes
the choice of β not harmless. As can be seen in Fig. 1, two
different configurations of lines of zeros appear, depending
on β = π or β = 0, corresponding to different topological
charge Q per (rhombic) unit cell: for the honeycomb case with
Q = 2, and for the kagomé case with Q = 3.

Our calculation shows that such a construction of the triple
helix leads to the higher energy density as one can see from

FIG. 2. Density energy for the Hamiltonian Eq. (2) and different
spin configurations.

Fig. 2, as compared both to the SkX ansatz from Sec. II and to
the variant of triple helix considered in the next subsection.
One can argue that the honeycomb lattice configuration in
Fig. 1(a) is not tightly packed, which enhances the inter-
skyrmion interaction contribution. Such an argument does not
hold for the kagomé configuration in Fig. 1(b), where centers
of skyrmions form a triangular lattice, similarly to our above
ansatz Eq. (5). Our calculation shows that the energy mini-
mization leads to very close estimates in density of topological
charge and of Zeeman energy contribution both for Eqs. (17)
and (5), whereas the sum of exchange and DMI energy terms
is significantly higher in the case of Eq. (17). The latter obser-
vation may be associated primarily with the inappropriate size
of individual skyrmions in the kagomé configuration, since
two out of three skyrmions in the unit cell appear too small
for any elliptic index m.

B. Normalized sum of three deformed helices

As discussed in Sec. III, a magnetic field deforms a helix
configuration into the more optimal configuration, called a
deformed helix or chiral soliton lattice, Eq. (14). It seems then
only natural to use a more general combination of three such
deformed helices Eq. (14), instead of the simple expression
Eq. (15). To be able to compare the energies of different con-
figurations, we should normalize the resulting magnetization:

S̃3q = S0ê3 + S̃ϕ=0 + S̃ϕ=2π/3 + S̃ϕ=4π/3

|S0ê3 + S̃ϕ=0 + S̃ϕ=2π/3 + S̃ϕ=4π/3|
. (18)

We call this expression (taken at β = 0) the deformed triple
helix (DTH) below.

The expression Eq. (18) has three variational parameters
for energy minimization: a pitch of helices, k, the elliptical
parameter, m, and the additional magnetization perpendicular
to the plane S0. In terms of the resulting SkX structure, the
pitch k defines the cell parameter of SkX, while both m and S0

determine the radius and shape of individual skyrmions. Some
analysis shows that S0 takes positive values and it is the major
parameter defining (and reducing) the size of skyrmions. The
role of m is only to adjust the shape of the configuration
Eq. (18); in contrast to single helix Eq. (13) with m � 1, the
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energy minimization by DTH ansatz Eq. (18) yields negative
values of m in the whole range of b. This might be the reason
that the energy difference, δρ, between configuration Eq. (18)
with m = 0 and the one with the optimal value of m < 0 is not
significant; it is δρ ≈ 0.005 at smaller b � 0.3 while δρ tends
to zero near b � 0.75.

The energy density found for such an optimal configuration
from Eq. (2) is plotted as a function of magnetic field in Fig. 2.
In this figure, we also show the energy found for the SkX
ansatz Eq. (5) and for the single deformed helix Eq. (14)
with optimal parameters. It is seen that at a low external
magnetic field bcr1 � 0.25, the CSL configuration Eq. (14) is
energetically favorable and SkX is advantageous in the inter-
mediate region b ∈ (0.25, 0.8). In its turn, SkX is destroyed by
a magnetic field at bcr2 ≈ 0.8, when the uniform configuration
delivers the energy minimum. This calculation is in a good
agreement with previous works [10,27]. Two above variants
of triple helix in stereographic projection (honeycomb and
kagomé) are shown to be higher in energy.

V. COMPARISON OF THE MODELS

We observe in Fig. 2 that the difference in two descriptions,
in terms of SkXs and DTHs, becomes essential in the region
of relatively strong magnetic fields. More details can be found
in the analysis of the optimal modulation vector for SkXs
and DTHs, corresponding to inverse unit cell parameter of
SkX, (4π/a

√
3), and the pitch, k, respectively. The results

are presented in Fig. 2; it is seen that the DTH solution
becomes increasingly different from SkX in the region of high
magnetic fields, b ∈ (0.6, 0.8). In this region, the SkXs with
increasing unit cell parameter is eventually described as a
rarified gas of weakly interacting skyrmions, and a dissolution
or melting of SkXs happens at the critical field b = bc2. At the
same time, the DTH model predicts nearly the same value of
helical pitch up to b � 0.73 when the uniform ferromagnetic
(FM) state becomes lower in energy. Considering the density
of topological charge p = k2

√
3/8π2 as an order parameter

in the skyrmion phase, one can say that the transition to
the FM state in the DTH model corresponds to p abruptly
changing to zero. It is instructive to compare this conclusion
with SkX ansatz Eq. (5), where the energy of two skyrmions
placed at the distance R from each other behaves [22] as
E2 � 2x + A exp(−R/
), with x ∼ b − bc2, correlation length
in the FM state 
 = b−1/2 and A ∼ 1. Minimization of the
energy density, ∼[x + 3A exp(−R/
)]/R2 with respect to R
leads to ρ depicted in Fig. 2. It also leads to the dependence
of topological charge p ∼ (
 ln(A/|x|))−2 and the pitch k ∼
(
 ln(A/|x|))−1 in the vicinity of b = bc2. We show the fit by
the latter dependence in Fig. 3 by the red dashed line. The
dependence of p on b near bc2 looks qualitatively the same
and we do not show it here.

Note that Fig. 2 indicates the transitions from SkX phase
to helical and FM states at bc1 = 0.25 and bc2 = 0.8, respec-
tively. According to the recent findings in Ref. [24], additional
transitions from skyrmion-solid to skyrmion-hexatic and later
to skyrmion-liquid phases happen at intermediate fields in
thin films of Cu2OSeO3 compound. If we associate the up-
per critical field found in Ref. [24] at low temperatures with
bc2, then we obtain the values for the additional transitions

0.3 0.4 0.5 0.6 0.7 0.8
0.5

0.6

0.7

0.8

0.9

1.0

FIG. 3. Optimal value of modulation vector for triple helix and
SkX for different values of b. The red dashed line is the fit of SkX
values of k as described in text.

to be b = 0.54 and b = 0.64, respectively. Comparing these
numbers with our Fig. 3, we see that deviations between our
DTH and SkX description happen at higher fields, which cor-
respond to the skyrmion-liquid phase in terms of Ref. [24]. We
saw that SkX modeling Eq. (5) provided a better description at
higher fields in terms of the energy. We point out an additional
advantage of this description in the anticipated skyrmion-
liquid phase, because the SkX modeling with Eq. (5) does
not require a long-range ordering in positions of skyrmions,
in contrast to DTH and other regular helical structures.

FIG. 4. Maps of predicted intensities for neutron scattering elas-
tic cross section for different magnetic fields, b. Delta functions
in (20) are approximated by Gaussians. All maps are scaled to the
intensity of the first Bragg peaks.
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A. Elastic cross section

The simple formula with a linear combination of three
helices Eq. (15) contains only six spatial Fourier harmon-
ics, i.e., only six peaks in the reciprocal space at kϕ with
3ϕ/π = 0, . . . , 5. This is what is observed experimentally
in the high-temperature A phase in bulk materials [11,12].
But, as we discussed above, at low temperature for thin films
we should think about normalization of magnetization, and
elliptical deformations Eq. (18) should also contain higher
harmonics, kϕ1 + kϕ2.

The cross section of the elastic unpolarized neutron scat-
tering on a magnetic structure is given by [28]

dσ

d�
∝

∑
i j

(δi j − q̂iq̂ j )
〈
Si

q

〉〈
S j

−q

〉
, (19)

with 〈S j
q〉 = ∫

dr eirq〈S j (r)〉. For periodic structures, such as
SkXs and DTH one can represent the cross-section as a sum
over reciprocal lattice vectors:

dσ

d�
∝ C0 +

∑
m,n

Cmnδ(q − mb1 − nb2), (20)

here b1 = kϕ=0, b2 = kϕ=π/3 and

Cmn =
∑

i j

(
δi j −

(
mbi

1 + nbi
2

)(
mbj

1 + nbj
2

)
|mb1 + nb2|2

)
× 〈

Si
mb1+nb2

〉 〈
S j

−mb1−nb2

〉
. (21)

We show the maps of predicted intensities in SkX model for
different magnetic fields in Fig. 4.

We are interested in relative values of intensities of higher-
order Bragg peaks, Cmn/C10. In our models we find that
the magnitude Cmn rapidly decreases with m, n so that only
C11/C10 and C20/C10 are of order of few percents, while the
other coefficients are even smaller in the whole range of mag-
netic field. The results of the calculation for different models
of our spin texture are shown in Fig. 5. It can be seen in this
plot that for magnetic fields in the range 0.3 < b < 0.6, where
SkX and DTH ansatzes yield practically the same energy
density, both these models give similar results for Ci j/C10.
This indicates that the spin configuration described by these
two approaches is nearly identical.

The situation changes in the region of higher magnetic
field 0.65 � b � 0.8, when DTH ansatz fails to reproduce the
expected increase in distance between skyrmions. We note
that for well-separated skyrmions of a certain shape within
the SkX description Eq. (5), the magnitude of the higher
peaks C11, C20 is defined roughly by the Fourier image of
an individual skyrmion, 〈Si

q〉 taken at q = b1 + b2, q = 2b1,
respectively. The DTH ansatz, on the contrary, describes
somewhat DTHs even at fields b � bcr2, with insignificant
admixture of higher harmonics. As a result, we see in Fig. 5
that the values of C11/C10 and C20/C10 predicted by the SkX
approach are much larger than for DTH near the melting
transition, b � bcr2.

According to Refs. [23,24] (see also Ref. [29]), the per-
fect SkX is melted before undergoing a uniform FM state at
b > bcr2. Our predictions for the ratio of amplitudes Ci j/C10

should partly survive in the intermediate skyrmion liquid

FIG. 5. Relative intensities C11/C10 and C20/C10 for various ex-
ternal magnetic fields, calculated with (a) skyrmion crystal Eq. (7)
approach and (b) deformed triple helix Eq. (18), respectively.

phase. Instead of well-defined Bragg peaks, one observes
concentric circles, corresponding to short-range order in the
isotropic state. The above intensities C10, C11, C20 should
then be associated with the integrated intensities near |q| = k,
|q| = k

√
3, |q| = 2k, respectively.

At the same time, the above predictions for C11, C20 cannot
be simply compared to Lorentz TEM results [23,24], where
the profile of skyrmions has been modeled by δ function,
δ(r − r j ), as opposed to the above Eqs. (3) and (4).

VI. CONCLUSIONS

We considered several variants to describe the SkX, formed
at T = 0 in a 2D model of a ferromagnet with DMI and
the magnetic field. The first variant is the modification of
the stereographic projection method used in the seminal pa-
per [26] for the pure O(3) sigma model. The second approach
is the generalization of the triple helix ansatz Eq. (18). The
third variant is the combination of the stereographic projection
with the triple helix description.

The numerical analysis of the classical energy shows that
the first two approaches yield very close estimates at interme-
diate values of an external magnetic field, b, but are different at
lower and higher magnetic fields, close to critical fields char-
acterizing the transitions either to single helix or to uniform
FM phase. The third approach leads to the higher energy than
the first two approaches in the whole region of b.

Comparing to other methods, the stereographic projection
ansatz appears more appropriate at higher magnetic fields,
providing lower energy estimates and predicting a growing
distance between skyrmions. It is yet to be checked whether
this conclusion is affected by including into our model other
types of magnetic interaction, e.g., uniaxial anisotropy or
magnetostatic (dipolar) interaction.
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In contrast to the skyrmion A phase in bulk materials ob-
served at high temperatures, ∼TC , the SkXoccurring at low
temperatures for the 2D case or in layered compounds should
lead to sizable secondary Bragg peaks. The intensity of these
peaks is nonzero for the saturated local magnetization and
depends on details of magnetic structure at low temperatures.
Our modeling shows that the intensities of secondary Bragg
peaks C11 and C20 are of the order of a few percent of the
primary intensity, C10. These estimates result from the form
factor of individual skyrmions and should apparently survive
the melting transition to the skyrmion liquid phase at higher
fields.

In conclusion, analyzing the topologically nontrivial
ground state of the standard model of chiral 2D magnets,
we show that its description near the transition to the FM

uniform state is preferable within the stereographic projection
method. An investigation of the secondary Bragg reflexes in
the skyrmion state can give additional information about the
magnetic profile of individual skyrmions.
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