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Magnetic field induced phases in CuCrO2: Monte Carlo and analytical investigations
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Motivated by the strong magnetoelectric coupling in the multiferroic geometrically frustrated triangular
antiferromagnet CuCrO2 and the high sensitivity of its magnetic structure to external fields, we investigate
induced magnetic phases at very low temperatures under high magnetic fields (B) up to 325 T applied along the
[001] direction. Analytical calculations and Monte Carlo (MC) simulations based on a realistic three-dimensional
classical Heisenberg model are used to reveal these magnetic phases. Interestingly, our model mimics a real
distorted crystal which considers exchange interactions up to third-nearest neighbors in the ab plane and an
interplane interaction, in addition to hard and easy axes anisotropies along the [110] and the [001] directions,
respectively. For B � 70 T, both our MC and analytical results are in an excellent agreement and evidence three
commensurate phases, namely, the commensurate Y (CY), the up-up-down (UUD), and the V phases as the
magnetic field increases. The field dependence of the characteristic angles of the CY and V phases is determined.
Moreover, the saturation field is estimated at 325 T, indicating that the previously predicted values obtained by
extrapolation of experimental data are too small. Below 70 T, our MC results indicate that the CY phase is no
more stable and several incommensurate Y phases appear. Overall, the observed magnetic phases at nearly 0 K
are in a good agreement with a recently published experimental phase diagram. It should be noted that our MC
data reject the incommensurate umbrella phase at very low temperatures, which was reported in previous studies.
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I. INTRODUCTION

Multiferroics are materials that exhibit more than one
ferroic property in the same phase (ferromagnetism, antifer-
romagnetism, ferroelectricity, antiferroelectricity, ferroelas-
ticity...). Recently, these materials have become one of the
hottest topics in condensed matter physics and materials sci-
ence because they bring out novel physical phenomena and
pave the way for new multifunctional materials. Ferroelec-
tricity can be induced by unconventional magnetic ordering
that arises from geometrical magnetic frustration and breaks
spatial inversion symmetry in crystals [1–3]. Since frustrated
structures are highly sensitive to external fields and any
changes in the magnetic structure can alter the ferroelectricity,
the application of magnetic fields plays an important role in
elucidating new magnetic and ferroelectric phases in these
compounds. An important member of the multiferroic family
is the delafossite oxide CuCrO2 (R3̄m space group), which
possesses a strong magnetoelectric coupling observed in the
magnetically ordered state below TN = 24 − 27 K [4–7]. The
magnetic structure below TN is incommensurate proper screw
with a propagation vector q = (0.329, 0.329, 0) pointing along
the [110] direction [6,8–10]. Upon spiral magnetic ordering,
a tiny in-plane lattice distortion of the order of 0.01% takes
place, leading to two different nearest-neighbor (NN) ex-
change interactions [11,12], and a hard axis anisotropy along
the [110] direction [7,10]. Such lattice deformation breaks

*denis.ledue@univ-rouen.fr

the crystal spatial inversion symmetry and thus induces a
spontaneous electric polarization along the [110] direction.
Interestingly, experimental and numerical investigations re-
vealed a very rich H − T phase diagram in CuCrO2 with
several magnetic and ferroelectric phases when applying H
‖ [001] [13–19]. A transition in the electric polarization was
observed near 45 T and has been attributed to the same proper
screw-type spiral to a cycloidal-spiral transition that occurred
at 5.3 T when H ‖ ab plane [16]. Further measurements of
electric polarization up to 92 T have provided additional in-
formation about the existent phase transitions [17]. Two years
later, nuclear magnetic resonance measurements in a magnetic
field up to about 45 T along the [001] direction were carried
out in the temperature range 2 � T � 40 K [18]. It was found
that a three-dimensional (3D) magnetic ordering takes place
in the low field range (�15 T). At higher magnetic fields, the
directions of the magnetic moments from neighboring planes
are not correlated, reflecting a two-dimensional (2D) behavior.
It was established that the 2D–3D transition is hysteretic in
field and temperature. More recently, a magneto-optical study
of CuCrO2 has been carried out in ultrahigh magnetic fields H
‖ [001] up to 120 T and at temperatures down to 5 K [19]. At
temperatures around 10 K, an up-up-down (UUD) magnetic
phase was observed in the range 90−105 T, and the Y and V
phases (Fig. 1) were proposed to be the adjacent phases, below
90 T and above 105 T, respectively. At 5 K, they observed
a first-order phase transition at 76 T which was previously
detected too [17].

Numerical investigations were also carried out using
a simplified 2D model that considers intralayer exchange
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FIG. 1. Magnetic moment configurations in the commensurate Y
(CY), the up-up-down (UUD), and the V phases seen in CuCrO2.

parameters up to third neighbors [15]. This model predicts a
three-sublattice state with a magnetization equal to one-third
of the saturated value at ∼90 T. More recently, a Monte Carlo
(MC) study based on a minimal model including spatially
anisotropic NN interactions and single ion anisotropy terms
was done [17]. However, an artificial large lattice distortion
corresponding to J[100]/J[110] = 0.7654 was used which pro-
vides a propagation vector q = (0.3125, 0.3125, 0) noticeably
deviated from the experimental one q = (0.329, 0.329, 0) [6].
For H ‖ [001], they obtained the following equilibrium phases
as a function of increasing field: incommensurate Y (ICY), in-
commensurate umbrella (ICU), commensurate Y (CY), UUD,
V, and, finally, ICU. They found that the UUD phase exists
even at low temperatures when H is parallel to the easy axis
and it becomes stable roughly at 1/3 of the saturation field.
Among these phases, it is noticeable that only the ICU phase
is noncoplanar. However, this model suffers from consider-
ing only NN exchange interactions and neglecting interplane
interactions. Consequently, further numerical investigations
with an extended model are still needed to better understand
experimental data and provide precise clarifications at largely
applied magnetic fields.

In this paper, we investigate the magnetic field induced
phases in CuCrO2 by means of analytical calculations and
MC simulations. Our model is more realistic than previous
ones [15,17] since it considers exchange interactions up to
the third neighbors in the ab plane and interplane interactions

FIG. 2. Schematic representation of the intraplane exchange in-
teractions within the ab plane (J1 is along [100] and [010], and J ′

1 is
along [110] with |J1/J ′

1| < 1) and the interplane exchange interaction
J4.

TABLE I. Numerical values (in K) of the magnetic parameters
reported in Ref. [20].

J ′
1/kB J1/kB J2/kB J3/kB J4/kB Dx/kB Dz/kB

−30.314 −27.788 0.14 −3.088 −0.702 −0.008 0.379

(Fig. 2) as well as single ion anisotropy axes. The values
of the exchange interactions and single ion anisotropy con-
stants used were estimated using first-principles calculations
in our previous study [20]. These parameters were checked
against the experimental Néel and Curie-Weiss temperatures
as well as the electric coercive field, thereby proving them to
be good candidates to model the magnetoelectric properties
of CuCrO2 [7]. We calculate analytical expressions of the
magnetic energy of the CY, UUD, V, and ferromagnetic (FM)
phases to analyze our MC results and to confirm or infirm
previous numerical or experimental data [16–19].

The remainder of this paper is organized as follows: Sec-
tion II presents the model and simulation details. Section III is
devoted to discussions of the analytical and MC results, and,
finally, a conclusion is given in Sec. IV.

II. MODEL AND SIMULATION

A. Model

To model the magnetic field induced phases in CuCrO2,
we only consider Cr3+ ions with S = 3/2 since Cu+ and
O2− are nonmagnetic. We consider the following classical 3D
Hamiltonian including the Heisenberg exchange term, single
ion anisotropy terms and the Zeeman term:

H = −
∑
〈i, j〉

Ji jSi · S j − Dx

∑
i

(
Sx

i

)2 − Dz

∑
i

(
Sz

i

)2

+ gμBB ·
∑

i

Si, (1)

where Ji j stands for exchange integrals up to fourth neigh-
bors (Fig. 2). The x and z axes correspond to the [110] and
[001] directions, respectively. Dx < 0 and Dz > 0 refer to
the single ions anisotropy constants for the hard- and easy-
axis anisotropy, respectively. The last term corresponds to
the Zeeman energy where B is the applied magnetic field
(μB is the Bohr magneton and g = 2 is the Landé factor).
The numerical values of the magnetic parameters that we
use are reported in Table I. They provide a propagation vec-
tor q = (0.3264, 0.3264, 0) very close to the experimental
one [20]. It has to be noted that relative to the value of
the exchange interaction along [110], our anisotropy con-
stants (|Dx/J ′

1| = 3 × 10−4 and |Dz/J ′
1| = 1.25 × 10−2) are

smaller than those of Ref. [17] (|Dx/J[110]| = 5 × 10−3 and
|Dz/J[110]| = 5 × 10−2).

B. Simulation details

Our simulations are performed on 3D lattices of L × L ×
Lz unit cells (3L2Lz spins) with periodic boundary conditions
(PBCs). To simulate the ground state (GS) configuration, we
perform a simulated annealing from T0 = 30 K above TN

down to 10−4 K following a geometric law Tn+1 = τ Tn (with
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0 < τ < 1 being the cooling rate) using the MC method [21].
Between T0 and T ∗ = 10 K, we use the standard Metropolis
algorithm [22], whereas below T ∗, we use the Metropolis
algorithm combined with the time-step-quantified MC method
[23,24] to improve the convergence to the GS. During the
simulation, we store the magnetic configuration which has
the lowest energy (E sim

GS ) since it should correspond to the
GS configuration of the finite crystal. To see whether the
magnetic moments of each ab plane of this latter configu-
ration are coplanar, we compare for each ab plane the two
quantities

u =
∑

i

‖Si × Si+1‖ (2)

and

v =
∥∥∥∥
∑

i

Si × Si+1

∥∥∥∥, (3)

where i runs over the spins of the considered ab plane. If
these two quantities are equal, it means that the magnetic
moments of the considered ab plane are coplanar with n =
(
∑

i Si × Si+1)/v is the normal unit vector of the plane which
contains the magnetic moments. We also calculate the an-
gles θa and θb between two NN magnetic moments along
the [100] and [010] directions, respectively. These angles
determine the orientation of each sublattice relative to the
others.

We would like to emphasize that, using PBCs, the simu-
lated GS configuration, i.e., the GS configuration in the finite
crystal, can be slightly different than the true one, i.e., the
GS configuration in the infinite crystal. Indeed, if the period
of the true GS configuration is λa, λb, λc in the a, b and c
directions, respectively, the crystal size in the u direction (with
u ≡ a, b or c) Lu should be a multiple of λu (the simulation
box should contain a whole number of magnetic unit cells).
Otherwise, the energy per spin of the true GS configuration
is larger in the finite crystal than in the infinite one E∞

GS
because of an excess of energy at the surfaces. To illustrate
this point, let us consider the triangular lattice with only NN
interactions J1 < 0. In that case, the GS configuration in the
infinite triangular lattice is the 120◦ configuration [q = (1/3,
1/3)] with an energy per spin E∞

GS/(kBS2) = −41.682 K (for
J1/kB = −27.788 K). In Fig. 3, we plot the size dependence
of the energy per spin of this 120◦ configuration in the finite
triangular lattice E120◦ (L). It can be seen that E120◦ (L) is equal
to E∞

GS only if L is a multiple of 3 as expected since 3a is
the period along the a and b directions of the 120◦ configu-
ration. Otherwise, there is an excess of energy at the edges
due to PBCs, which decreases as L increases. Consequently,
the GS configuration in a finite triangular lattice of size L
which is not a multiple of 3 is not the 120◦ configuration.
For example, if L = 22, the energy per spin is minimum for
k = 0.31818 [q = (k, k, 0)] as shown in Fig. 4, which is the
nearest value to 1/3 that satisfies the condition kL is an integer
(0.31818 × 22 ≈ 7). Then, if one performs a simulation with
L = 22, it will converge to the k = 0.31818 configuration.
Consequently, the simulated GS energy per spin E sim

GS (L) can
be written as E sim

GS (L) = E∞
GS + δE (L), where δE (L) � 0 is

the energy difference between the true GS and the simulated

FIG. 3. Size dependence of the energy per spin of the 120◦ mag-
netic configuration [q = (1/3, 1/3)] in a finite triangular lattice [the
energy per spin of the 120◦ configuration in the infinite triangular
lattice, E∞

GS/(kBS2) = −41.682 K, is shown by the red horizontal
line].

one when the simulation box does not contain a whole number
of magnetic unit cells [here, δE (L = 22)/(kBS2) = 0.398 K].

III. RESULTS AND DISCUSSIONS

A. Analytical calculations of the energy of the commensurate
phases (CY, UUD, V, and FM)

To identify the simulated phases, it is very useful to com-
pare the simulated GS energy E sim

GS (L) with the energies of the
CY, UUD, V, and FM phases. In addition, in the case of the
V and CY phases, we can also compare the simulated angles
with the theoretical ones.

In the CY phase, one sublattice magnetization is along
[001] in the opposite direction of the external field and the
other two sublattice magnetizations make the same angle, that
we denote α, with [001] (Fig. 1). Then, the energy per spin of

FIG. 4. Energy per spin variation of the magnetic configuration
of propagation vector q = (k, k, 0) versus k in a finite triangular lattice
of size L = 22 (the vertical dashed line indicates the location of the
minimum corresponding to k = 0.31818).
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FIG. 5. Energy per spin of the various commensurate phases
(CY, UUD, V, and FM) versus the applied magnetic field. Note that
the energy of the UUD and FM phases decreases linearly as the
magnetic field increases.

this phase is given by

ECY = S2

[(
2(J1 + J4) + J ′

1

3
+ J3

)(
2cos(α) − cos(2α)

)−3J2

− J4 − Dz

3

(
1 + 2cos2(α)

)]+gμBSB

3

(
1 − 2cos(α)

)
.

(4)

Note that the anisotropy energy due to Dx is zero since the
spins lie in the yz plane (perpendicular to [110]) to minimize
this anisotropy energy. The UUD phase is the limit of the CY
phase when α −→ 0 (Fig. 1), i.e., two sublattice magnetiza-
tions are in the same direction as the field and the other one
is opposite to the field. Then the energy per spin of the UUD
phase is

EUUD = S2

[
2J1 + J ′

1 − J4

3
− 3J2 + J3

]
−DzS

2 − gμBSB

3
.

(5)

In the V phase, two sublattice magnetizations are parallel to
each other and make an angle ϕ with [001] and an angle θ with
the third sublattice magnetization (Fig. 1). Then, the energy
per spin in this phase can be written as

EV = −S2

[(
1 + 2cos(θ )

)(2J1 + J ′
1

3
+ J3

)
+3J2

+ J4

3
(4cos(θ − 2ϕ) + 4cos(2ϕ) + cos[2(θ − ϕ)])

]

− DzS2

3
(2cos2(ϕ) + cos2(θ − ϕ))

− gμBSB

3
(2cos(ϕ) + cos(θ − ϕ)). (6)

The UUD phase is the limit of the V phase when ϕ −→ 0 and
θ −→ π . Moreover, the FM phase is the limit of the V phase
when ϕ and θ −→ 0, so one obtains

EFM = S2[2J1 + J ′
1 + 3(J2 + J3 + J4) + Dz] − gμBSB. (7)

Note that the energies of the CY and V phases are extracted
from a minimization of ECY versus α, and EV versus ϕ and
θ . In Fig. 5, we plot the theoretical energy of the different
phases (V, UUD, CY, and FM) versus the applied magnetic
field. It can be seen that below 106 T, the CY phase (with

FIG. 6. Magnetic field dependence of α (CY phase), and ϕ and
θ (V phase). Continuous lines represent the theoretical values and
filled symbols indicate the MC values.

α 
= 0) is the most stable among these four phases. For 107 T
� B � 110 T, only the UUD phase exists because (i) α −→
0 as B −→ 107− T (see Fig. 6), which means that the CY
phase becomes the UUD phase, and (ii) ϕ −→ 0 and θ −→
180◦ as B −→ 107+ T (see Fig. 6), which means that the V
phase becomes the UUD phase, so the UUD phase is stable
between 107 T and 110 T. In the range 111 T � B � 320 T,
the most stable phase is the V phase (with ϕ 
= 0 and θ 
=
180◦), while the saturation is reached (FM phase) for B �
325 T. More clearly, the stability of these phases can be seen in
the magnetic field dependence of the theoretical values of the
angles α (CY phase), and ϕ and θ (V phase) given in Fig. 6. In
the V phase, θ decreases monotonically from 180◦ (UUD) to
0◦ (FM) as B increases, whereas ϕ reaches a maximum value
of 30◦ at B = 190 T.

B. Monte Carlo results

As mentioned in Sec. II B, the choice of size L is essential
to simulate the true GS configuration. We select L = 49 that
is the smallest size for which kL = 0.3264 × 49 = 16 is an
integer, and L = 12 which is convenient for simulating the
commensurate phases. For Lz, we choose the smallest value
which is compatible with the PBC along the [001] direc-
tion, i.e., Lz = 2 according to Ref. [20]. For each simulation,
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FIG. 7. Comparison of the simulated GS energy per spin
E sim

GS (L = 49) with the energy per spin of the CY phase versus the
applied magnetic field for B � 70 T.

we consider a very slow cooling strategy (τ = 0.96 or 0.98)
where 5 × 103 MC steps are performed at each temperature.
For each value of B, MC simulations are repeated several
times starting from different initial magnetic configurations
where we check their convergence to the same GS configura-
tion.

To identify the simulated phase at ∼0 K, we compare
the simulated GS energy E sim

GS with the theoretical ener-
gies ECY, EUUD, EV, and EFM of each phase up to a
relative precision of 10−5. We also extract the angles θa

and θb during the simulations which allow determining the
orientation of each sublattice relative to the others and con-
sequently the nature of the simulated phase. Finally, we
verify the coplanarity of the magnetic moments based on
the two quantities u and v [Eqs. (2) and (3)] given in
Sec. II B.

For B � 70 T, numerical simulations with L = 12 con-
verge to one of the four commensurate phases: the CY phase
for 70 T � B � 106 T, the UUD phase for 107 T � B �
110 T, the V phase for 111 T � B � 320 T, and the FM
phase for B � 325 T. The magnetic field dependence of the
simulated angles α, ϕ, and θ are in excellent agreement with
the theoretical values as seen in Fig. 6. Consequently, our
simulated phase diagram at very low temperatures (T ≈ 0 K)
above 70 T is in an excellent agreement with our analytical
calculations presented in Fig. 5. It should be noted that the
stability range of the CY, UUD, and V phases is in a good
agreement with the experimental phase diagram [19]. Also,
our MC simulations provide a saturation field around ∼325 T
which is larger than the experimentally predicted one 270 T
[16] and 280 T [18].

For B � 65 T, the simulated GS energy E sim
GS of a system

of L = 12 is higher than that of L = 49 (Fig. 7). Our simu-
lations with L = 12 converge to the CY phase due to PBCs
(E sim

GS (L = 12) ≈ ECY). Consequently, since E sim
GS (L = 49) =

E∞
GS + δE (L = 49) < ECY, the energy E∞

GS of the stable phase
for B � 65 T is smaller than ECY evidencing that the CY
phase is no more stable, and therefore incommensurate Y

FIG. 8. Applied field dependence of the simulated magnetization
per Cr3+ ion (in μB) at ∼0 K.

states (ICY) become more stable. Therefore, incommensurate
Y phases (ICY) are expected to be stable below 65 T.

For all values of B, the magnetic moments of the simulated
GS lie in the yz plane (perpendicular to the [110]direction).
Consequently, our MC simulations reject the presence of non-
coplanar magnetic phases at very low temperatures contrary
to the calculated phase diagram of Ref. [17] where the ICU
phase was predicted. In Fig. 8, we plot the applied field de-
pendence of the magnetization per spin M at ∼0 K. The curve
exhibits a linear variation with M ∼ 0.5μB/Cr3+ at 50 T, and
a plateau between 107 T and 110 T which corresponds to the
UUD phase in agreement with Ref. [17]. However, no clear
evidence of such a plateau was seen in Ref. [19]. Importantly,
the magnetization per spin tends to its saturated value (3μB)
at 325 T.

IV. CONCLUSIONS

In this paper, we investigated the induced magnetic phases
in CuCrO2 at very low temperatures under magnetic fields
up to 325 T ‖ [001] direction by means of analytical
calculations and MC simulations based on a realistic 3D
classical Hamiltonian model. Below 70 T, the incommen-
surate Y phases are proposed to be the stable phases. For
B � 70 T, several commensurate phases (CY, UUD, V, and
FM) seen in this order as the applied field increases were
found to be stable confirming the recent published experimen-
tal phase diagram [19]. Interestingly, our MC results at ∼0 K
exclude noncoplanar magnetic phases previously predicted
by numerical simulations [17]. Moreover, saturation (M =
3μB/Cr3+) occurs at very high magnetic field around 325 T.
Our present paper shows that MC simulations are suited to
determine the magnetic field induced phases at very low tem-
peratures, opening up the prospect of the determination of
the complete H − T phase diagram of CuCrO2 and similar
compounds.
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