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High-harmonic generation from monolayer and bilayer graphene
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High-harmonic generation (HHG) in solids is an emerging method to probe ultrafast electron dynamics in
solids at attosecond time scale. In this work, we study HHG from monolayer and bilayer graphene. Bilayer
graphenes with AA and AB stacking are considered in this work. It is found that the monolayer and bilayer
graphenes exhibit significantly different harmonic spectra. The difference in the spectra is attributed to the
interlayer coupling between the two layers. Also, the intraband and interband contributions to the total harmonic
spectrum play a significant role. Moreover, interesting polarization and ellipticity dependence are noticed in total
harmonic spectrum for monolayer and bilayer graphene.
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I. INTRODUCTION

Thanks to the technological advances that have enabled
us to study strong-field driven processes in solids. Strong-
field-driven electron dynamics opens an avenue to control and
understanding carrier dynamics on attosecond time scale [1].
High-harmonic generation (HHG) is one such strong-field-
driven process in which radiation with integer multiples of
the incident driving frequency is emitted. After the pioneer-
ing work of Ghimire et al. [2], HHG in solids has opened
the door to study the electronic structure and its dynamics
with the characteristic time scale in solids [1,3,4]. In recent
years, HHG in solids has been employed to explore several
exciting processes such as band structure tomography [5–7],
probing the dynamics of the defects in solids [8,9], the re-
alization of petahertz current in solids [10,11], and Bloch
oscillations [12,13]. Moreover, HHG in solids offers an attrac-
tive all-solid-state compact optical device to obtain coherent
and bright attosecond pulses in the extreme ultraviolet energy
regime [1,3,14].

The realization of an atomically thin monolayer graphene
has catalyzed a series of breakthroughs in fundamental and
applied sciences [15]. Graphene shows unusual electronic and
optical properties in comparison to its bulk counterpart [16].
The unique electronic structure of graphene exhibits varieties
of nonlinear optical processes [17–19]. HHG from monolayer
and few-layer graphenes has been extensively studied in the
past [20–32]. The underlying mechanism of HHG in graphene
[33] was different from the one explained using a two-band
model by Vampa et al. [34]. The intraband current from
the linear band dispersion of graphene was expected to be
the dominating mechanism [29,30]. This is a consequence of
the highly nonparabolic nature of the energy bands [2]. In
contrast to this prediction, the interband and intraband mech-
anisms in graphene are found to be coupled [23,26,27,32]
except for low-intensity driving fields [23]. Vanishing band-
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gap and diverging dipole matrix elements near Dirac points
lead to strong interband mixing of valence and conduction
bands in graphene [33,35]. The ellipticity dependence of HHG
from graphene has been observed experimentally [24,26] as
well as discussed theoretically [24–27]. Taucer et al. [26] have
demonstrated that the ellipticity dependence of the harmonics
in graphene is atomlike, whereas a higher harmonic yield for
a particular ellipticity was observed by Yoshikawa et al. [24].
The anomalous ellipticity dependence was attributed to the
strong-field interaction in the semimetal regime [24,36].

Along with monolayer graphene, bilayer graphene is also
attractive due to its interesting optical response [37]. A bi-
layer graphene can be made by stacking another layer of the
monolayer graphene on top of the first. Three suitable config-
urations of the bilayer graphene are possible: (a) AA stacking
in which the second layer is placed exactly on top of the first
layer; (b) AB stacking in which the B atom of the upper layer
is placed on the top of the A atom of the lower layer, whereas
the other type of atom occupies the center of the hexagon;
and (c) twisted bilayer in which the upper layer is rotated by
an angle with respect to the lower layer. AB stacking, also
known as the Bernel stacking, is the one that is a more energet-
ically stable structure and mostly realized in experiments [see
Fig. 1(b)] [38,39]. Recently, electron dynamics [40–42] and
valley polarization in bilayer graphene on ultrafast time scale
have been discussed theoretically [43]. Avetissian et al. have
discussed the role of the multiphoton resonant excitations in
HHG for AB-stacked bilayer graphene [44]. Moreover, HHG
from a twisted bilayer graphene has been explored recently
[45]. However, the comparison of HHG from monolayer and
bilayer graphenes and a thorough investigation of the role of
interlayer coupling are unexplored.

In this work, we investigate HHG from monolayer and
bilayer graphenes with AA and AB configurations. Moreover,
the roles of interband and intraband contributions are investi-
gated in both cases. The role of interlayer coupling in HHG
from bilayer graphene is investigated. Furthermore, polariza-
tion and ellipticity dependences of the HHG are discussed.
This paper is organized as follows: The theoretical model and
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FIG. 1. Monolayer and bilayer graphene (AB-stacked). (a) and
(b) The top view of the monolayer and bilayer graphenes, respec-
tively. The carbon atoms are arranged in a honeycomb lattice with
two inequivalent carbon atoms (A and B). In bilayer graphene, the
B atoms of the top layer are placed on top of A atoms of the bottom
layer. (c) The band structure of the monolayer (green) and bilayer
graphene (violet).

numerical methods are presented in Sec. II, Sec. III presents
the results and discussion of our numerical simulations, and
the conclusions are presented in Sec. IV.

II. NUMERICAL METHODS

The real-space lattice of monolayer graphene is shown in
Fig. 1(a). Carbon atoms are arranged in a honeycomb lattice
with a two-atom basis unit cell. The A and B atoms in Fig. 1(a)
represent two inequivalent carbon atoms in the unit cell. The
lattice parameter of graphene is equal to 2.46 Å. Nearest-
neighbor tight-binding approximation is implemented by only
considering the pz orbitals of the carbon atoms. The Hamilto-
nian for monolayer graphene is defined as

Ĥ0 = −t0 f (k)â†
k b̂k + H.c. (1)

Here, âk , b̂k are, respectively, the annihilation operators as-
sociated with A and B types of the atoms in the unit cell;
f (k) is defined as f (k) = ∑

i eik·δi , where δi is the nearest-
neighbor vector. A nearest-neighbor in-plane hopping energy
t0 of 2.7 eV is used [46–48]. The eigenvalues of the Hamilto-
nian are given by E (k) = ± t0| f (k)|.

Similarly, the Hamiltonian for AB-stacked bilayer
graphene can be defined as

ĤAB = −t0 f (k)[â†
1kb̂1k + â†

2kb̂2k] + t⊥â†
2kb̂1k + H.c. (2)

Here, 1 and 2 denote the carbon atoms in the upper and
lower layers, respectively. An interplane hopping energy t⊥
of 0.48 eV is used for an interlayer separation equal to 3.35 Å
[47,48]. The band structure for the bilayer graphene is given
as E (k) = [±t⊥ ±

√
4| f (k)|2t2

0 + t2
⊥]/2.

Figure 1(c) presents the energy band structure of both
monolayer and bilayer graphenes. The band structure of

monolayer graphene has zero band gap and linear dispersion
near two points, known as K-points, in the Brillouin zone
(BZ). On the other hand, bilayer graphene near K-points
shows a quadratic dispersion. Due to the zero band-gap nature,
both monolayer and bilayer graphene are semimetals. Here,
electron-hole symmetry is considered by neglecting higher-
order hopping and overlap of the orbitals.

Semiconductor Bloch equation in Houston basis is solved
as [49–51]

i
d

dt
ρk

mn = Ek+A(t )
mn ρk

mn + i
δ̃mn

T2
ρk

mn

− F(t ) ·
∑

l

[
d k+A(t )

ml ρk
ln − d k+A(t )

ln ρk
ml

]
, (3)

where F(t ) and A(t ) are the electric field and vector poten-
tial of the driving laser field, respectively, and are related
as F(t ) = −dA(t )/dt . Ek

mn and d k
mn are the band-gap energy

and the dipole-matrix elements between m and n bands, re-
spectively. Here δ̃mn is defined as (1-δmn); dmn are calculated
as dmn = −i〈um,k|∇k|un,k〉, where |um,k〉 is the periodic part
of the wave function. A phenomenological term account-
ing for the decoherence is added, with a constant dephasing
time T2. For HHG from monolayer graphene, a dephasing
time within the range of 2–35 fs has been used in the past
[26,27,32]. Moreover, a detailed investigation about dephas-
ing time dependence on HHG from monolayer graphene has
been discussed in Ref. [27]. In this work, dephasing time of
10 fs is considered for monolayer and bilayer graphene.

The total current at any k-point in the BZ is calculated as

J(k, t ) =
∑
m,n

ρk
mn(t ) p k+A(t )

nm

=
∑
m �=n

ρk
mn(t ) p k+A(t )

nm +
∑
m=n

ρk
mn(t ) p k+A(t )

nm

= Jinter (k, t ) + Jintra (k, t ). (4)

Here, pk
nm are the momentum matrix elements, and Jinter (k, t )

and Jintra (k, t ) are interband and intraband contributions to the
total current, respectively. The high-order harmonic spectrum
is determined from the Fourier transform of the time deriva-
tive of the current as

I (ω) =
∣∣∣∣FT

{
d

dt

[∫
BZ

J(k, t ) dk
]}∣∣∣∣

2

. (5)

In the present work, driving laser pulse with an intensity of
1 × 1011 W/cm2 and wave length of 3.2 μm is used. The laser
pulse is eight cycles in duration with a sin-squared envelope.
The intensity of the driving pulse is much below the damage
threshold and lower than the one used in experimental HHG
from graphene [24,26]. The same parameters of the driving
laser pulse are used throughout unless stated otherwise.

III. RESULTS AND DISCUSSIONS

Figure 2 presents the HHG spectra of monolayer graphene
and its comparison with the spectra of the bilayer graphene
for a linearly polarized laser pulse having polarized along
the x axis (�-K in the BZ). Here, AB stacking of bilayer
graphene is considered. The intensity of the HHG spectra
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FIG. 2. (a) High-harmonic spectrum of the monolayer (green)
and bilayer (violet) graphenes with AB stacking. A linearly polarized
pulse along the �-K direction is considered here. The high-harmonic
intensity is normalized to the total number of electrons in monolayer
and bilayer graphenes. The interband and intraband contributions
to the high-harmonic spectrum for (b) monolayer and (c) bilayer
graphenes. The total harmonic spectrum is also plotted for the ref-
erence. The relative harmonic yield (integrated) for different orders
from interband and intraband contributions is plotted in the insets of
(b) and (c), respectively. (d) The normalized optical joint density of
states (JDOS) of monolayer (green) and bilayer (violet) graphenes.

is normalized with respect to the total number of electrons
in monolayer and bilayer graphenes. It is apparent that the
third harmonic (H3) is matching well in both cases. However,
harmonics higher than H3 show significantly different behav-
ior as the interlayer coupling between the two layers plays a
meaningful role.

The contributions of interband and intraband to the total
harmonic spectra for monolayer and bilayer graphene are
shown in Figs. 2(b) and 2(c), respectively. Both contributions
play a strong role to the total spectra as reflected from the
figure. A strong interplay of interband and intraband con-
tributions was reported for monolayer graphene [23,26,27].
Unlike the wide band-gap semiconductors [52], the interband
and intraband transitions take place at the same energy scales

for both monolayer and bilayer graphenes [53] due to the
vanishing band gap. The relative (integrated) harmonic yield
from interband and intraband contributions is plotted in the
insets of Figs. 2(b) and 2(c). Here intraband contribution dom-
inates up to H3, whereas interband contribution dominates
for fifth (H5) and higher-order harmonics for both monolayer
and bilayer graphenes. The enhanced contributions from in-
terband transitions at higher orders can be attributed to the
increased joint density of states at higher energies as shown in
Fig. 2(d).

Also, as the low-energy band structures are different for
monolayer and bilayer graphenes [Fig. 1(c)], the nature of
harmonic spectra is not obvious from the band-structure point
of view. To have a better understanding of the underlying
mechanism of the harmonic generation in both cases, the role
of the interlayer coupling in HHG is discussed in the next
subsection.

A. Role of interlayer coupling in HHG

To understand how the interlayer coupling between two
layers affects the harmonic spectrum of bilayer graphene,
the harmonic spectrum as a function of interlayer coupling
strength (t⊥) is shown in Fig. 3(a). Reducing the interlayer
coupling strength is equivalent to moving the two layers of
graphene farther apart. The red dashed line in Fig. 3(a) corre-
sponds to the interlayer coupling used in simulations shown
in Fig. 2. It is evident from Fig. 3(a) that H5 and higher-order
harmonics are changing with respect to t⊥. Moreover, differ-
ent harmonic orders affected differently. Therefore, harmonic
orders are non-linear functions of interlayer coupling.

To explore further how different hopping terms affect the
HHG in bilayer graphene, an additional hopping term, t3,
between B atoms of the top layer and A atoms of the bottom
layer is introduced. The modified Hamiltonian for AB-stacked
bilayer graphene can be written as,

ĤAB = − t0 f (k)[â†
1kb̂1k + â†

2kb̂2k]

+ t⊥â†
2kb̂1k − t3 f ∗(k)â†

1kb̂2k + H.c. (6)

Here, a hopping energy t3 of 0.3 eV is used [54,55]. The cor-
responding harmonic spectrum is presented in Fig. 3(b). It is
evident from the figure that the additional interlayer coupling
t3 affects all the harmonics higher than H3. It is apparent that
the interlayer coupling has a strong role in determining the
nonlinear response of bilayer graphene.

Now let us discuss how HHG depends on different stacking
configurations of the bilayer graphene. As discussed in the
introduction, bilayer graphene can be realized in AA and
AB stacking. AA stacking of bilayer graphene is realized by
stacking the monolayer precisely on top of the first layer. The
top view of the AA-stacked bilayer looks exactly as a mono-
layer graphene [Fig. 1(a)], where A1 couples with A2 and B1

couples with B2 with a coupling strength of t⊥. The harmonic
profile of the bilayer graphene with AA configuration matches
well with the spectrum of monolayer graphene as presented in
Fig. 3(c).

The band structures near the K-point for AB and AA
stacked bilayer graphene are shown in the insets of Figs. 3(b)
and 3(c), respectively. For AB-stacked bilayer graphene, a
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FIG. 3. (a) High-harmonic spectrum of bilayer graphene with
AB stacking as a function of interlayer coupling (t⊥), where t⊥ = 0
corresponds to the HHG from monolayer graphene. The red dashed
line corresponds to the actual value of t⊥ used in the calculations.
(b) HHG from bilayer graphene (in AB stacking) with t⊥ (B1-A2)
coupling only (violet) and with both t⊥ and t3 (A1-B2) coupling
(orange). (c) HHG from bilayer graphene with AA stacking (red)
and monolayer graphene (green). In (b) and (c), the band structures
near the K-point are shown in the inset. (d) and (e) show the non-zero
momentum matrix elements in AB and AA stacked bilayer graphene,
respectively.

slight change in band structure results in a significant change
in the spectrum [see Fig. 3(b)]. On the other hand, for AA-
stacked bilayer graphene, the difference in the band structure
is not reflected in the spectrum [see Fig. 3(c)].

A better understanding about the HHG mechanism can
be deduced by considering the roles of the band structure as
well as the interband momentum-matrix elements. The energy
bands of the AA-stacked bilayer graphene within nearest-
neighbor tight-binding approximation are given by E (k) =
± t⊥ ± t0| f (k)|. This is equivalent to the shifted energy
bands of monolayer graphene by ± t⊥. Also the correspond-
ing momentum matrix elements give nonzero values only
for the pairs t⊥ ± t0| f (k)| and −t⊥ ± t0| f (k)| as shown in
Fig. 3(e). On the other hand, in AB-stacked bilayer graphene,
all pairs of bands have nonzero momentum matrix elements
near the K-point as shown in Fig. 3(d). The similar band

FIG. 4. Polarization dependence of the normalized harmonic
yield for (a) monolayer and (b) bilayer graphenes. Here, θ is an
angle between laser polarization and the x axis along �-K in the BZ.
An illustration of the semiclassical real-space model with nearest
neighbors of (e) A-type and (d) B-type carbon atoms. The first,
second, third, and fourth nearest neighbors are shown using brown,
orange, green, and violet colors, respectively.

dispersion and joint density-of-states compared to monolayer
graphene result in similar harmonic spectrum in AA-stacked
bilayer graphene. On the other hand, in bilayer graphene,
an electron in the conduction band can recombine to a hole
in any of the valence bands near the K-points as shown in
Fig. 3(d). These different interband channels interfere and
therefore generate the resulting harmonic spectrum for the
AB-stacked bilayer graphene.

From here onward only bilayer graphene with AB stacking
is considered, as the HHG spectra of the monolayer and bi-
layer graphenes with AA stacking are the same. In the next
subsections, we explore polarization and ellipticity depen-
dences of the HHG from monolayer and bilayer graphenes.

B. Polarization dependence of the high-harmonic spectrum

The vector potential corresponding to a linearly polarized
laser pulse can be defined as

A(t ) = A0 f (t ) cos(ωt )[cos(θ )êx + sin(θ )êy]. (7)

Here, f (t ) is the envelope function and θ is the angle between
laser polarization and the x axis (�-K in the BZ).

The polarization-direction dependence of the harmonic
yield for monolayer and bilayer graphenes is presented in
Figs. 4(a) and 4(b), respectively. All the harmonics mimic the
sixfold symmetry of the graphene lattice. As reflected from
the figure, H3 exhibits no significant polarization sensitivity
for both monolayer and bilayer graphenes. The reason for this
isotropic nature can be attributed to the isotropic nature of the
energy bands near K-points. However, harmonics, higher than
H3, show anisotropic behavior in both cases. Moreover, H5 of
monolayer and bilayer graphenes shows different polarization
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dependence. The harmonic yield is maximum for angles close
to 15◦ and 45◦ in monolayer graphene.

To understand the polarization dependence of the harmonic
yield in monolayer graphene, we employ a semiclassical
explanation as proposed in Refs. [56,57] by assuming that
the interband transitions can be translated to a semiclassical
real-space model [1,58]. One-to-one correspondence between
interband transition and interatom hopping in graphene was
shown by Stroucken et al. [53]. Here, we assume that an elec-
tron can hop between two atoms when the laser is polarized
along a direction in which it connects the atoms. The contribu-
tions to the harmonic yield from different pairs of atoms drop
significantly as the distance between the atoms increases. This
is in principle governed by the interatom momentum matrix
elements [53]. By assuming a finite radius for atoms, farther
atoms show sharper intensity peaks as a function of angle of
polarization.

Figures 4(c) and 4(d) show the nearest neighbors of A
and B types of atoms in the unit cell, respectively. Brown-,
orange-, green-, and violet-colored atoms are, respectively,
first, second, third, and fourth neighbors. By only considering
the nearest-neighbor hopping in graphene, we can see that the
maximum yield should be for 30◦ (�-M direction). However,
the maximum yield is near 15◦ and 45◦ as seen from Fig. 4(a).
This means that the contributions up to the fourth nearest
neighbors should be considered to explain the polarization
dependence of H5 and seventh harmonic (H7) of monolayer
graphene.

In bilayer graphene, H7 follows the same qualitative
behavior as that of H5 and H7 of monolayer graphene
[Fig. 4(b)]. In contrast, H5 shows different behavior and obeys
the symmetry of the second nearest neighbor. It is clear from
Fig. 3(d) that there are multiple paths for interband transitions
for bilayer graphene. In bilayer graphene, interband transi-
tions from different pairs of valence and conduction bands
can contribute to a particular harmonic, and these different
transitions interfere. This makes the mechanism of harmonic
generation from monolayer and AB-stacked bilayer graphene
different.

It is important to point out that the polarization dependence
is sensitive to the wavelength of the driving laser pulse. For
longer wavelengths, electron dynamics occur in the isotropic
parts of the reciprocal space (close to K-points), and as a result
the harmonic spectrum can be entirely isotropic. We have
confirmed that the different symmetry observed for monolayer
and bilayer graphenes is consistent with varying wavelengths
of the driving laser (not shown here), and our explanation
remains consistent.

C. Ellipticity dependence of the high-harmonic spectrum

The HHG spectra for monolayer and bilayer graphenes cor-
responding to different polarizations of the driving laser pulse
are shown in Fig. 5. The vector potential corresponding to the
elliptically polarizsed pulse with an ellipticity ε is defined as

A(t ) = A0 f (t )√
1 + ε2

[cos(ωt )êx + ε sin(ωt )êy]. (8)

Here, the same laser parameters are used as mentioned in
the Sect. II. Both monolayer and bilayer graphenes show

FIG. 5. High-harmonic spectrum for (a) monolayer and (b) bi-
layer graphenes for different ellipticities of the driving laser pulse.
Here, ε = 0 corresponds to a linearly polarized pulse and ε = 1
corresponds to a circularly polarized pulse.

significant ellipticity dependence in the harmonic yield. A
negligible harmonic yield is obtained for circularly polarized
laser pulse. This indicates that using a single color midinfrared
circular driver is not an appropriate method to generate cir-
cularly polarized harmonics from graphene. This has already
been experimentally demonstrated [24,26]. Recent theoretical
studies revealed that efficient generation of circularly polar-
ized harmonics is possible from graphene either by using a
near-infrared circular laser pulse [28] or by using midinfrared
bicircular counter-rotating laser pulses [31]. The harmonic
spectrum corresponding to bilayer graphene shows the (6n ±
1) harmonic orders for circularly polarized laser, as expected
from the symmetry considerations [30]. To have a better un-
derstanding about the variation of the harmonics as a function
of ellipticity of the driving laser, we show the integrated har-
monic yield below.

The harmonic yield as a function of ellipticity for the
monolayer (top panel) and bilayer graphenes (bottom panel)
are presented in Fig. 6. The total harmonic yield is normalized
with respect to the harmonic yield for ε = 0. The ellipticity
dependence of all the three harmonics agrees qualitatively
well for monolayer and bilayer graphenes. The atomiclike
ellipticity dependence of H3 can be attributed to its isotropic
nature (see first column of Fig. 6). However, H5 and H7
show a characteristic ellipticity dependence. The harmonic
yield has a maximum for a finite value of the ellipticity and
is polarized along the normal direction of the major axis
of the ellipse. This interesting feature was observed for the
monolayer graphene experimentally and explained as a conse-
quence of the semimetallic nature of the monolayer graphene
[24]. Since bilayer graphene is also semimetallic, it is also
expected to exhibit similar ellipticity dependence, which we
confirm here.

The different qualitative behaviors of the ellipticity depen-
dence of H3 compared to H5 and H7 are also consistent with
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FIG. 6. Ellipticity dependence of the integrated harmonic yield
for 3rd (H3), 5th (H5), and 7th (H7) harmonics of the monolayer
(top panel) and bilayer graphenes (bottom panel). The integrated har-
monic yield and its x and y components are shown by brown, red, and
orange color lines, respectively. The green line shows the ellipticity
dependence on the averaged ellipticity of the emitted harmonics. An
elliptically polarized pulse with an intensity of 1 × 1011 W/cm2 is
used for HHG.

the findings that the interband and intraband mechanisms re-
spond differently to the ellipticity of the driving laser [59] [see
also insets of Figs. 2(b) and 2(c)]. The characteristic ellipticity
dependence of monolayer graphene was shown to be domi-
nated by interband contributions in Ref. [27]. The ellipticity
of the maximum yield is different for bilayer graphene as a
consequence of interlayer coupling.

The averaged ellipticity of the emitted harmonics as a
function of the laser ellipticity shows interesting behavior as

shown in Fig. 6 (see green color). The averaged ellipticity of
H3 of monolayer and bilayer graphene shows monotonically
increasing behavior. On the other hand, the behavior is highly
nonlinear for harmonics higher than H3. It is also interesting
to note that harmonics with higher ellipticity can be obtained
by a nearly linearly polarized pulse (ε < 0.3).

IV. CONCLUSIONS

In summary, HHG from monolayer and bilayer graphenes
having AA and AB stacking is discussed. The harmonic spec-
tra of the monolayer and bilayer graphenes are significantly
different and exhibit characteristic features of having a van-
ishing band gap. The HHG spectrum of the bilayer graphene
shows signatures of the interlayer coupling, which affects
high-order harmonics nonlinearly and different harmonics are
affected differently. The role of interlayer coupling was also
found to be stacking dependent, resulting in the similar har-
monic spectrum for monolayer and bilayer graphenes with
AA stacking. A strong interplay of the interband and intraband
contributions to the total harmonic spectrum is noticed. More-
over, characteristic polarization and ellipticity dependence are
observed in monolayer and bilayer graphenes.
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