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Quantum mold casting for topological insulating and edge states
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We study the possibility of transferring fermions from a trivial system as a particle source to an empty
system but in the topological phase as a mold for casting a stable topological insulator dynamically. We
show that this can be realized by a non-Hermitian unidirectional hopping, which connects a central system
at topological phase and a trivial flat-band system with a periodic driving chemical potential, which scans over
the valence band of the central system. The near exceptional point dynamics allows a unidirectional dynamical
process: the time evolution from an initial state with a fully filled source system to approximately a stable
topological insulating state. The result is demonstrated numerically by a source-assistant Qi-Wu-Zhang model
and Su-Schrieffer-Heeger chain in the presence of random perturbation. Our finding reveals a classical analogy
of quench dynamics in quantum matter and provides a way for topological quantum state engineering.
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I. INTRODUCTION

Preparing a topologically nontrivial state is of great interest
for the task of quantum information processing. In general, a
natural way to prepare a topological insulating state is cooling
a system down to its ground state by suppressing the thermal
fluctuations. Another intuitive way for the preparation of a
topological insulating state is to follow a mechanical way by
filling the topological energy band with fermions dynamically.
However, it is tough to move fermions one by one from a
particle source to an empty system since fermions obey the
Schrodinger equation rather than Newton’s laws. Recently, a
dynamical way of realizing the topological phases by applying
time-periodic global driving on a topologically trivial initial
state was proposed. It has been shown that these periodic
perturbations lead to the realization of new topological phases
of matter which have no equilibrium counterparts [1–6], in-
cluding topological insulators [7,8] and edge states [9,10]. It
opens up a way to realize a topological phase dynamically. In
the studies above, both the effective Hamiltonian dictating the
nonequilibrium dynamics of the system and the initial static
Hamiltonian are Hermitian. Nevertheless, a non-Hermitian
Hamiltonian is no longer forbidden both in theory and experi-
ment since the discovery that a certain class of non-Hermitian
Hamiltonians could exhibit entirely real spectra [11,12]. The
origin of the reality of the spectrum of a non-Hermitian
Hamiltonian is the pseudo-Hermiticity of the Hamiltonian
operator [13]. It motivates a non-Hermitian extension of the
dynamical preparation of a topologically nontrivial state. In
addition, the peculiar features of a non-Hermitian system
manifest not only in statics but also dynamics. Non-Hermitian
systems exhibit many peculiar dynamic behaviors that never
occur in Hermitian systems. One of the remarkable features
is the dynamics at the exceptional point (EP) [14–16] or
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spectral singularity [17–21], where the system has a coales-
cence state. Exclusively, EP dynamics recently emerged as
a transformative tool for dynamically evolving quantum sys-
tems into a quantum phase with desirable properties [22–24].
It is expected that the introduction of non-Hermitian elements
benefits the scheme for quantum state engineering.

In this work, we focus on the EP-related dynamic behavior
for the many-body system. From the perspective of non-
Hermitian quantum mechanics, it is also a challenge to deal
with many-particle dynamics. As an application, we study the
possibility of transferring fermions from a trivial system as a
particle source to an empty system but in the topological phase
as a mold for casting a stable topological insulator dynami-
cally. We show that this can be realized by a non-Hermitian
connection between a central system in the topological phase
and a flat-band system with a periodic driving chemical poten-
tial. After a sufficiently long time, the near exceptional point
dynamics allows the time evolution from an initial state with
a fully filled source system to approximately a stable topolog-
ical insulating state. Schematics for the system and process of
quantum mold casting are presented in Fig. 1. We demonstrate
the scheme by numerical simulations for a source-assistant
Qi-Wu-Zhang (QWZ) model and Su-Schrieffer-Heeger (SSH)
chain in the presence of random perturbation. The result re-
veals a classical analogy of quench dynamics in quantum
matter and provides a method for topological quantum state
engineering. It also shows that a unidirectional tunneling sup-
ports an exclusive feature that never occurs in a Hermitian
system, which can be utilized for quantum state engineering.
Our findings pave the way for establishing EP dynamics based
techniques as a powerful and versatile tool for topological
state engineering.

This paper is organized as follows. In Sec. II, we de-
scribe the model Hamiltonian and give the conditions for
the existence of the coalescing state. In Sec. III, based on
the solutions, we present the characteristics of the EP dy-
namics in a source-assistant QWZ model and the details of
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FIG. 1. Schematics for the system and process of quantum mold
casting. (a) The system consists of two parts, the central system
Hc and the source system Hs. The target state is the ground state
of Hc, which can be topologically nontrivial or not. Hs is a topo-
logically trivial system, providing the supply of fermions. Both Hc

and Hs are Hermitian, while Hin is non-Hermitian, representing the
connection between Hc and Hs and taking on the job of transporting
fermions unidirectionally from Hs to Hc. (b) A tight-binding model
for the scheme, which contains three sets, A, B, and D. Lattices A
and B (red and blue solid circles) embedded in the shadow area
are topological insulators, while lattice D (yellow solid circles) is
a flat-band (hopping-free) system but with an oscillating chemical
potential. Green arrows represent unidirectional hopping from the D
to B lattice. The aim of this work is to realize the following process
via time evolution. Initially, the D lattice is fully filled, while A and B
are empty. The final state is expected to be a half-filled ground state
of Hc. (c) The underlying mechanism of the dynamic process. At
instant tk, the chemical potential and energy levels of Hc are resonant,
leading to exceptional points. The corresponding (EP) dynamics al-
lows a complete transfer of fermions between the degenerate energy
levels. In the long-time limit, such dynamics occurs at each k sector
again and again. The band color of Hc illustrates the band inversion,
indicating that the energy band can be a topological insulating band
[25]. It is expected that the lower band of Hc can be completely filled.

the dynamical formation of a topological insulating state. In
Sec. IV, we propose a dynamical way to cast edge states in
a source-assistant Rice-Mele (RM) model. Finally, we give a
summary and discussion in Sec. V.

II. MODEL AND COALESCING STATE

We consider a non-Hermitian time-dependent Hamiltonian

H = Hc + Hs + Hin, (1)

with

Hc =
N∑

i, j=1

(
Ti ja

†
i b j + Ai ja

†
i a j + Bi jb

†
i b j + H.c.

)
(2)

and

Hs = μ(t )
N∑

j=1

d†
j d j , Hin = γ

N∑
j=1

b†
jd j, (3)

where a j , b j , and d j are fermion operators and μ(t ) = μ0 +
W
2 cos(ωt ) is the periodic driving chemical potential, with

parameters {Ti j, Ai j, Bi j} depending on Hc (μ0 is an average
of the negative energy levels and W is the bandwidth of Hc).
Here, both Hc and Hs are Hermitian, describing the central
system and source system, respectively. Notably, Hin is a non-
Hermitian term, representing the connection between the two
systems, Hc and Hs.

For a central system with the periodic boundary condi-
tion, after performing Fourier transformation, we have H =∑

k Hk, where the sub-Hamiltonian Hk in each invariant sub-
space can be expressed as

Hk = (
a†

k b†
k d†

k

)
hk

⎛
⎝ak

bk
dk

⎞
⎠, (4)

where

(
a†

k b†
k d†

k

) =
∑

r

eik·r
√

N
(a†

r b†
r d†

r ). (5)

In general, the Bloch matrix hk has the form

hk =
⎛
⎝ Bz(k) Bx(k) − iBy(k) 0

Bx(k) + iBy(k) −Bz(k) γ

0 0 μ(t )

⎞
⎠, (6)

where a term related to the identity matrix I3 is neglected.
Here, vector B(k) is obtained with the set of parameters
{Ti j, Ai j, Bi j}. We note that the time-dependent μ(t ) does not
break the translational symmetry (or any other symmetry),
allowing the exact diagonalization of H via that of each 3 × 3
matrix. Accordingly, the time evolution can also be computed
via the complete set of 3 × 3 matrices.

Here, we focus on two points of particular interest: (i) We
note that in k space, the central Hamiltonian can be expressed
as

Hc =
∑

k

(
a†

k b†
k

)
Bk · σ

(
ak
bk

)
(7)

by Pauli matrices σ and then can be topologically nontrivial
or not, depending on the explicit form of Bk. (ii) For a given
k, matrix hk contains a Jordan block at instant t = tk, where
tk satisfies the equation

μ(tk ) = ±|B(k)|. (8)

In this case, there are only two eigenstates for hk, which
are the eigenstates of Bk · σ , and then the completeness of
eigenstates is spoiled.

Actually, in general, matrix hk can be rewritten as

hk = |B(k)|
⎛
⎝ cos θk sin θke−iϕk 0

sin θkeiϕk − cos θk γk
0 0 �k

⎞
⎠, (9)

where parameters in the matrix elements are defined as

tan θk = Bz(k)

|B(k)| , tan ϕk = By(k)

Bx(k)
,

γk = γ /εk, �k = μ/εk, εk = |B(k)|. (10)
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Note that although matrix hk is non-Hermitian, its eigenvalues
are always real. Three eigenvectors are obtained as

|ψ+
k 〉 =

⎛
⎝ cos θk

2
eiϕk sin θk

2
0

⎞
⎠, |ψ−

k 〉 =
⎛
⎝ − sin θk

2
eiϕk cos θk

2
0

⎞
⎠,

∣∣ψ�
k

〉 = 1√



⎛
⎝ γke−iϕk sin θk

γk (�k − cos θk )
�2

k − 1

⎞
⎠, (11)

with the eigenvalues

ε±
k = ±εk, ε

�
k = �kεk, (12)

where 
 = �4
k + �2

kγ
2
k − 2�2

k − 2�kγ
2
k cos θk + γ 2

k + 1 is
the normalization coefficient in the context of a Dirac inner
product. It shows that when taking �k = ±1 or at t = tk, the
matrix hk reaches the EP. And we have |ψ�

k 〉 = |ψ±
k 〉; that is,

the coalescing state appears, which is crucial for the scheme
in this work.

III. EP DYNAMICS AND PERIODIC DRIVING

Based on the above analysis, the dynamics of H is gov-
erned by the time evolution operator

U (t ) = exp(−iHt ) =
∏

k

Uk(t ), (13)

where the time evolution operator in subspace k has the form

Uk(t ) = T exp[−i
∫ t

0
Hk(t ′)dt ′], (14)

with T being the time-order operator. We first consider the
case with slowly varying Hk(t ) (i.e., very small ω). The time
evolution around the instant t = tk is crucial and can be de-
scribed approximately by the operator

Uk(t ) ≈ exp[−iHk(tk )t], (15)

which obeys an exclusive EP dynamics.
We consider a time-independent hEP

k at the EP,

hEP
k = εk

⎛
⎝ cos θk sin θke−iϕk 0

sin θkeiϕk − cos θk γk
0 0 −1

⎞
⎠, (16)

which contains a Jordan block, satisfying

hEP
k |ψ±

k 〉 = ±εk|ψ±
k 〉 (17)

and

A|ψa
k〉 = |ψ−

k 〉, (18)

where the matrix

A =
(

hEP
k

εk

)2

− I3 =
⎛
⎝0 0 − sin θk

2
0 0 eiϕk cos θk

2
0 0 0

⎞
⎠. (19)

Here, the vector

|ψa
k〉 = (0, 0, 1)T (20)

can be referred to as the auxiliary vector, while |ψ−
k 〉 is the

coalescing state of the matrix A since

A|ψ−
k 〉 = 0. (21)

0 1 2
0

1(a)

0 1 2
0

1

=0.5
=0.1
=0.05
=0.001

(b)

FIG. 2. Plots of n(t ) and F (t ), which are defined in Eqs. (29)
and (30), obtained by exact diagonalization for the finite system. The
parameters are N = 20 × 20, u = 1.2, μ0 = −2, W = 2.6, and γ =
0.5. Four typical values of ω are taken and are indicated in the panels.

A straightforward derivation shows that

exp
(−ihEP

k t
) = −γkεkt

2

×[sin (εkt ) + i(1 + 2 sin2 εkt

2
)]A

+ cos (εkt )I3 − i sin (εkt )

(
hEP

k

εk
+ γkA

2

)
. (22)

The time evolution operator contains terms with linear and
periodic functions of t . Then the time evolution for the initial
state |ψa

k〉 is∣∣ψEP
k (t )

〉 = exp
( − ihEP

k t
)∣∣ψa

k

〉

= −γkεkt

2

[
sin(εkt ) + i

(
1 + 2 sin2 εkt

2

)]
|ψ−

k 〉

+ cos (εkt )
∣∣ψa

k

〉−i sin (εkt )

(
hEP

k

εk

∣∣ψa
k

〉 + γk

2
|ψ−

k 〉
)

.

(23)

It indicates that the long-time evolution of the initial state
d†

k |0〉k (|0〉k is the vacuum state for operators ak, bk, and dk.)
turns it into the coalescing state |ψ−

k 〉 due to the linear-time
dependence of the first term. Obviously, the action of Uk(t )
at long times is the projection of any pure initial state on the
component |ψ−

k 〉, which is the perfect transport of the fermion
from the source to the central system. For the many-particle
case, we note that all the time-dependent hk cannot reach their
hEP

k simultaneously. The dynamics for hk near EP may result
in the oscillation of the particle number between the source
and the central systems, although the hopping term is uni-
directional. Nevertheless, periodically varying μ(t ) passing
by the EP of every hk is expected to transport the fermion
from the source to the central system in each k sector almost
completely. Ideally, if this occurs in every k sector, the fully
filled initial state ∏

j

d†
j |0〉 =

∏
k

d†
k |0〉 (24)

will evolve to the ground state of the central system, while
becoming empty in the source system. Note that the initial
state is a trivial many-particle state, a saturated filled state.
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FIG. 3. Plots of the skyrmion pattern at several typical instants, which are defined in Eq. (32), obtained by exact diagonalization of the
finite system. The corresponding fidelity is also plotted for comparison. The parameters are N = 20 × 20, ω = 0.001, γ = 0.5, and (a1)–(d1)
u = 3.2, μ0 = −3.21, W = 3.94 and (a2)–(d2) u = 1.2, μ0 = −2, W = 2.38, which correspond to the central systems in topologically trivial
and nontrivial phases, respectively. (f1) and (f2) are the plots of fidelity, which is defined in Eq. (30). Three typical values of λ are taken and
indicated in the panels.

The aim of the scheme is to prepare a nontrivial state from
such an initial state through the time evolution in the context
of non-Hermitian quantum mechanics.

To illustrate our scheme and investigate its efficiency, we
consider the central system as a QWZ model introduced by
Qi et al. [26]. The Bloch Hamiltonian is

hk = Bxσx + Byσy + Bzσz, (25)

where the field components are

Bx = sin kx, By = sin ky,

Bz = u + cos kx + cos ky. (26)

It is well known that the Chern number of the lower band is

c = 0, |u| > 2,

c = ±1, 0 < ±u < 2. (27)

Numerical simulation is performed to verify the efficiency
of the scheme. Here, the computation of the time-ordered
integral is performed using a uniform mesh in the time dis-
cretization for the time-dependent Hamiltonian hk(t ) with
different ω. We compute the time evolution for the initial state
|ψk(0)〉 = d†

k |0〉k and compare the evolved state |ψk(t )〉 with
the target state

|ψc
k〉 =

(
sin

θk

2
a†

k − eiϕk cos
θk

2
b†

k

)
|0〉k, (28)

which is the coalescing state of hk [Eq. (25)] at the EP with
negative energy. The observables are the particle number left
in the source system

n(t ) = 1

N

∑
k

〈ψk(t )|d†
kdk|ψk(t )〉

||ψk(t )〉|2 (29)
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and the fidelity

F (t ) = 1

N

∑
k

∣∣〈ψc
k

∣∣ψk(t )〉∣∣∣∣∣∣ψc
k

〉|ψk(t )〉∣∣ , (30)

which measure the efficiency of the transport. The numerical
results for finite systems with presentative parameters are plot-
ted in Fig. 2. We see that the optimal efficiency occurs when
ω = 0.001, and the transport efficiency decreases gradually
with the increasing of ω.

We also compute the time-dependent skyrmion to charac-
terize the formation process of the target state. To this end we
introduce the auxiliary matrices

�α =
(

σα 0
0 1

)
, �0 =

(
I2 0
0 1

)
, (31)

where σα is Pauli matrix in the α (α = x, y, z) component
and I2 is the unit matrix. The time-dependent skyrmion is
evaluated as

〈σα〉k,t = 〈ψk(t )|�α|ψk(t )〉
〈ψk(t )|�0|ψk(t )〉 . (32)

Unlike the expectation value of the Pauli matrix σα in the usual
study [27], 〈σα〉k,0 = 0 for all α and

∑
α=x,y,z (〈σα〉k,t )

2 � 1.
In the case in which all the fermions have been transported to
the central system in the long-time limit the skyrmion obeys
the pattern

〈σ 〉k,∞ = B(k)

|B(k)| , (33)

which characterizes the topological feature of the phase.
The numerical results for finite systems with presentative
parameters 〈σα〉k,t at different times are plotted in Fig. 3. Fig-
ures 3(e1) and 3(e2) clearly show that in the long-time limit
the skyrmion exhibits approximately the pattern defined in
Eq. (33), corresponding to the central systems in topologically
trivial and nontrivial phases, respectively. In Figs. 3(f1) and
3(f2), we recalculate the fidelity by adding a back-hopping
term, i.e., Hin → Hin = γ

∑N
j=1 b†

jd j + λγ
∑N

j=1 d†
j b j , where

a small λ controls the situation near the EP (λ > 0) and sym-
metry breaking (λ < 0), respectively. The results show that
the small back-hopping term does not influence the efficiency
of the scheme too much. In the Appendix, we present a de-
tailed derivation.

IV. EDGE STATE ENGINEERING

The aforementioned formalism is developed in the system
with translational symmetry in order to simplify the calcula-
tion procedure. This section will be devoted to the realization
of quantum mold casting in a system without the translational
symmetry. The essential step for this extension is replacing the
index k by the eigenmodes of Hc. The fact that the flat band
of Hs and uniform hopping in Hin, still allow H to be block
diagonalizable.

FIG. 4. Schematic of the system with a generalized RM chain
as the central system Hc. Each part of the system is represented by
Eqs. (34) and (35).

To demonstrate this point, we consider the central system
Hc to be a generalized RM chain with the Hamiltonian

Hc =
N−1∑
j=1

(
w ja

†
j b j + v ja

†
j+1b j + H.c.

)

+V
N∑

j=1

(
a†

j a j − b†
jb j

)
, (34)

where w j and v j are position-dependent hopping amplitudes
(including random distributions). The other Hamiltonians
have a slight change from their original forms,

Hs = μ(t )
N∑

j=1

d†
j d j, Hin = γ

N∑
j=1

(
a†

j d j + b†
jd j

)
. (35)

A schematic of the system is presented in Fig. 4. The Hamil-
tonian Hc can be written as the diagonal-block form

H =
N∑

n=1

Hn, (36)

Hn = (
f †
a,n f †

b,n f †
d,n

)
hn

⎛
⎝ fa,n

fb,n

fd,n

⎞
⎠, (37)

which reduces the eigenproblem of the present H to that of
the 3 × 3 matrix. Here, the Bloch-like matrix hn has the form

hn =
⎛
⎝ V ε0(n) γ

ε0(n) −V γ

0 0 μ(t )

⎞
⎠, (38)

and three sets of canonical fermion operators are defined as

f †
a,n =

N∑
j=1

An
ja

†
j , f †

b,n =
N∑

j=1

Bn
j b

†
j,

f †
d,n =

N∑
j=1

Bn
j d

†
j , (39)
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FIG. 5. (a) The profiles of p( j, t ) at several typical instants,
defined in Eq. (49), showing the formation of the edge state. (b) Cor-
responding fidelity defined in Eq. (52). The parameters are N =
140,V = 0, v = 5, w = 3, μ0 = 0,W = 2, γ = 0.5, ω = 0.001.

with real coefficients An
j and Bn

j being obtained by single-
particle eigenstates of Hc at V = 0, with eigenvalues ±ε0(n),
satisfying the orthonormal complete relations

∑
j

(
Am

j

)∗
An

j =
∑

j

(
Bm

j

)∗
Bn

j = δmn,

∑
n

(An
i )∗An

j =
∑

n

(Bn
i )∗Bn

j = δi j . (40)

Actually, the Hamiltonian of the SSH chain is diagonalized as

Hc(V = 0) =
N∑

n=1

ε0(n)( f †
+,n f+,n − f †

−,n f−,n), (41)

where ε0(n) > 0 is the positive energy spectrum with n ∈
[1, N] and

f †
±,n = 1√

2
( f †

a,n ± f †
b,n) (42)

due to the fact that the SSH chain is a bipartite lattice. We
note that hn is essentially the counterpart of hk in Eq. (9) with
a slight difference. The time evolution driven by hn is similar
to that of hk, including the EP dynamics.

0

0.5

sites A
sites B
sites D

0

0.5

0

0.5

0

0.5

0 50 100 150 200 250 300 350 400
0

0.5

t=50

t=100

t=150

t=0

t=200

FIG. 6. The profiles of p( j, t ) at several typical instants in the
presence of random perturbations with different random strengths w j

and v j defined in Eq. (51). The parameters are N = 140,V = 0, v =
5, w = 3, μ0 = 0,W = 2, γ = 0.5, ω = 0.001, R = 1.2.

The central system Hc is the simplest prototype of a topo-
logically nontrivial band insulator with a symmetry-protected
topological phase [28,29]. In recent years, it has attracted
much attention, and extensive studies have been carried out
[30–37]. In the uniform case, w = w j < v = v j , there are
two edge sates with eigenvalues ±V for large N , which are
explicitly expressed as

|L〉 = �

N∑
j=1

(
−w

v

) j−1
a†

j |0〉, (43)

|R〉 = �

N∑
j=1

(
−w

v

)N− j
b†

j |0〉, (44)

where the normalization factor is � =
√

1 − ( w
v

)2. In addi-
tion, small random perturbations on w and v cannot remove
the edge states or change their eigenvalues. Taking a suitable
value of V , two edge states can lie within the gap of the spec-
trum. In the following, we perform a numerical simulation of
the time evolution for the fully filled initial state

|ψ (0)〉 =
∏

j

d†
j |0〉 =

∏
n

d†
n |0〉 (45)

by taking several different values of ω in μ(t ). The evolved
state obeys

|ψ (t )〉 =
∏

n

|ψn(t )〉 = U (t )
∏

n

d†
n |0〉, (46)

where the time evolution operator has a form similar to
Eq. (13),

U (t ) =
∏

n

Un(t ), (47)

and the time evolution operator in subspace n has the form

Un(t ) = T exp[−i
∫ t

0
Hn(t ′)dt ′]. (48)
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The purpose of this process is the generation of a single-
particle edge state in Hc at levels V = 0, which is isolated in
the midgap.

We define the time-dependent distribution of particle prob-
ability p( j, t ) in the central system as

p(3l − 2, t ) = |〈0|al |ψ (t )〉|,
p(3l − 1, t ) = |〈0|bl |ψ (t )〉|,

p(3l, t ) = |〈0|dl |ψ (t )〉| (49)

for the evolved state to measure the efficiency of the scheme.
Ideally, the target state with a perfect edge state has the distri-
bution pE( j),

pE(3l − 2) = �2
(w

v

)4l−2
,

pE(3l − 1) = �2
(w

v

)2N−2l
,

pE(3l ) = 0. (50)

In the case with nonuniform distributions {w j} and {v j}, the
corresponding pE can be obtained numerically from exact
diagonalization of the Hamiltonian.

Numerical simulations of the formation processes of the
single-particle edge state in the absence and presence of
random perturbations with different random strengths. The
computation is performed by taking two sets of random
numbers, {w j} and {v j}, around w and v, i.e.,

w j = w + ran(−R, R), v j = v + ran(−R, R), (51)

where ran(−R, R) denotes a uniform random number within
(−R, R). We employ the fidelity

f (t ) = |〈ψT|ψ (t )〉| (52)

to characterize the efficiency of the scheme, where the target
state |ψT〉 is the midgap state. The profiles of p( j, t ) for sev-
eral representative situations with fixed w and v are presented
in Fig. 5, and profiles with different random strengths {w j}
and {v j} are presented in Fig. 6. We can see that the evolved
state with fixed w and v is very close to the perfect edge
state. In the presence of random perturbations, although the
probability distribution seems to be irregular, it is evidently
the edge state. These results agree with our predictions. This
scheme can be extended to the cases with nonzero V or two-
and three-dimensional central systems for preparing edge and
surface states. Unlike the bulk states, these states are responsi-
ble for the topological features. Furthermore, we consider the
nonzero V term to show that the scheme has a wide range
of applications. (i) For V = 0, which we discussed above,
the two energy levels corresponding to the two edge states
degenerate at zero. Due to the degeneracy of the states, we
can get an edge state where one half is on the left and the other
half is on the right, as shown in Figs. 5 and 6. (ii) For V �= 0,
the degenerate midgap zero-energy levels are separated by a
magnitude of 2V . Two edge states are still robust under the
random perturbations on the hopping terms, but we can get
only either a left edge state (red one) or a right edge state
(blue one) at a time. Numerical simulations for nonzero V are
the same as those in Figs. 5 and 6, but a set of parameters has
only the half of the plots.

V. SUMMARY

In summary, we presented a scheme to realize quantum
mold casting, i.e., engineering a target quantum state on
demand by the time evolution of a trivial initial state. The
underlying mechanism is EP dynamics. We have proposed
a quantum mold model for dynamically casting stable topo-
logical insulating states and edge states. We introduced the
periodic driving chemical potential, which causes EPs to exist
in different subspaces and allows fermions to be transferred
from the fully filled trivial source system to the corresponding
subspaces of the topological central system. As examples, we
considered the central system to be the QWZ model and a gen-
eralized RM model to dynamically cast topological insulating
states and edge states, respectively. Numerical simulations
showed that the scheme is efficient. The advantage of the
scheme is that the robust topological edge and surface states
can be engineered without filling the whole valence band.
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APPENDIX

Here, we provide a way to understand what happens to the
efficiency of the scheme if the system deviates slightly from
the EP. We start by considering a two-level system with

h =
(

0 1
λ 0

)
. (A1)

It has time-reversal symmetry, i.e., T hT −1=h, where
T

√−1T −1= −√−1 is the conjugation operator. The eigen-
vectors and eigenvalues are expressed as

|φ±〉 = 1√|λ| + 1

(±1√
λ

)
, (A2)

ε± = ±
√

λ, (A3)

which indicates that the EP occurs at λ = 0. For a given initial
state

|ψ (0)〉 = 1√
|a|2 + |b|2

(
a
b

)
, (A4)

the time-evolved state |ψ (t )〉 can be obtained for following
three cases.

(i) For λ = 0, the system is at the EP. The time evolution
operator is

U (t ) = e−iht = 1 − it

(
0 1
0 0

)
(A5)

because
(0 1

0 0

)2 = 0. Then we have

|ψ (t )〉 = 1√
|a|2 + |b|2

[(
a
b

)
− it

(
b
0

)]
. (A6)
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(ii) For λ > 0, the eigenvalues are real since the symmetry
is not broken, T |φ±〉 = |φ±〉. For nonzero λ, we always have

|ψ (0)〉 = 1√
|a|2 + |b|2

(
a
b

)

=
√|λ| + 1

2
√

|a|2 + |b|2
(

b√
λ

+ a

)
|φ+〉 +

(
b√
λ

− a

)
|φ−〉.

(A7)

Then we have

|ψ (t )〉 =
√|λ| + 1

2
√

|a|2 + |b|2
[(

b√
λ

+ a

)
e−i

√
λt |φ+〉

+
(

b√
λ

− a

)
ei

√
λt |φ−〉

]
, (A8)

which is a periodic function with period 2π/
√

λ. For small√
λt , we have

|ψ (t )〉 ≈
√|λ| + 1√
|a|2 + |b|2

[(
a
b

)
− it

(
b
0

)
− iaλt

(
0
1

)]
. (A9)

(iii) For λ < 0, the eigenvalues are imaginary, and the
time-reversal symmetry is broken, i.e., T |φ+〉 = |φ−〉 �=

c|φ+〉. In this case, we have

|ψ (t )〉 =
√|λ| + 1

2
√

|a|2 + |b|2
[(

b√
λ

+ a

)
e
√|λ|t |φ+〉

+
(

b√
λ

− a

)
e−√|λ|t |φ−〉

]
, (A10)

which is not a periodic function. However, for small
√|λ|t ,

we still have

|ψ (t )〉 ≈
√|λ| + 1√
|a|2 + |b|2

[(
a
b

)
− it

(
b
0

)
− iaλt

(
0
1

)]
. (A11)

In summary, the dynamics of systems with small but
nonzero λ are the same as those of zero λ, within the duration√|λ|t � 1, i.e.,

|ψ (t )〉 ≈ 1√
|a|2 + |b|2

[(
a
b

)
− it

(
b
0

)]
. (A12)

This result indicates that the EP dynamics can be extended to
the near-EP dynamics. The efficiency of the scheme does not
change suddenly when the system deviates slightly from the
EP.
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