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Perturbative instability of nonergodic phases in non-Abelian quantum chains
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An important challenge in the field of many-body quantum dynamics is to identify nonergodic states of matter
beyond many-body localization (MBL). Strongly disordered spin chains with non-Abelian symmetry and chains
of non-Abelian anyons are natural candidates, as they are incompatible with standard MBL. In such chains,
real space renormalization group methods predict a partially localized, nonergodic regime known as a quantum
critical glass (a critical variant of MBL). This regime features a treelike hierarchy of integrals of motion and
symmetric eigenstates with entanglement entropy that scales as a logarithmically enhanced area law. We argue
that such tentative nonergodic states are perturbatively unstable using an analytic computation of the scaling
of off-diagonal matrix elements and accessible level spacing of local perturbations. Our results indicate that
strongly disordered chains with non-Abelian symmetry display either spontaneous symmetry breaking or ergodic
thermal behavior at long times. We identify the relevant length and timescales for thermalization: Even if such
chains eventually thermalize, they can exhibit nonergodic dynamics up to parametrically long timescales with a
nonanalytic dependence on disorder strength.
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I. INTRODUCTION

The investigation of isolated quantum systems and whether
they “self-thermalize” has been the focus of much theoretical
and experimental work in recent years [1–5]. In particu-
lar, certain one-dimensional systems with strong quenched
randomness have been shown to completely evade thermal-
ization. These many-body localized (MBL) phases protect
quantum coherence and remain out of equilibrium at any
(effective) temperature and for infinite times [6–9]. Theoret-
ically, the hallmark of MBL is the emergence of a complete
set of exact local integrals of motion (LIOMs) [10–14]. The
existence of LIOMs has been used to establish that the MBL
behavior is not merely a nonequilibrium regime but a fully
stable eigenstate phase of matter. Further, the characteristic
properties of the MBL phase can be described as a conse-
quence of the LIOMs; in particular, the area-law scaling of
entanglement typical of gapped ground states applies to eigen-
states throughout the spectrum [10,15]. Additionally, these
eigenstates can exhibit quantum orders usually restricted to
zero temperature, including symmetry-breaking, topological,
and symmetry protected topological (SPT) orders [15–19].

Previous work has shown that the existence of a com-
plete set of LIOMs is incompatible with protected degenerate
excitations such as those that appear in non-Abelian symmet-
ric phases, in topological orders with non-Abelian anyons,
or in symmetry enriched topological order with excitations
that carry projective representations of the symmetry [19,20].
Thus, these systems cannot exhibit MBL. This motivates the
question of whether there are stable nonergodic eigenstate
phases outside the MBL paradigm, i.e., with some degree of
localization but without a full set of LIOMs. If not, the fate of
these systems is either thermalization or full localization but

with eigenstates that spontaneously break the symmetry to an
Abelian subgroup [20–23].

One promising proposal for such nonergodic eigenstate
phases are a class of states known as quantum critical glasses
(QCGs) [24–27]. These phases have eigenstates which are
as localized as possible while preserving the non-Abelian
symmetry [28]. They feature a hierarchical set of integrals of
motion at all length scales, most of which are local, while
a few involve a finite fraction of spins in the system. Like
the LIOMs for MBL, the existence of the hierarchical IOMs
strongly constrains the dynamical properties of QCGs. For ex-
ample, the entanglement growth after a quench in the presence
of these IOMs scales as ∼ log1/ψ t with ψ < 1, as compared to
the scaling ∼ log t for MBL phases [29–31]. Similarly, eigen-
states have logarithmically scaling entanglement [32] instead
of area law entanglement for MBL.

An approximate construction for the QCG states is pro-
vided by the strong disorder renormalization group for excited
states (RSRG-X) [24,25,33–38], building on ground-state
RSRG methods [39–41]. This construction yields at lowest
order a picture of QCG states as tree tensor networks with
irregular, disorder realization dependent shapes with an IOM
associated with each node of the tree. While approximate, this
construction is increasingly accurate as disorder strength is
increased, as can be confirmed on (small) finite-size systems
with exact diagonalization [26]. Thus, a natural starting place
for establishing the existence of QCG phases is to deter-
mine if RSRG-X reliably approximates the true eigenstates of
strongly disordered spin chains in the thermodynamic limit.
If it does not, understanding the microscopic processes that
cause the failure of RSRG-X will provide insight into whether
these systems are nonergodic or if they thermalize.
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FIG. 1. Symmetric operators acting on two neighboring sites can
only mix states whose IOMs differ only along the direct connecting
path (highlighted).

Previous efforts have shown that the LIOMs of MBL are
stable at sufficiently strong disorder, using both perturbative
analyses and nonperturbative considerations such as the in-
clusion of thermal regions [6,14,42,43]. At weaker disorder,
the presence of many collective many-body resonances desta-
bilizes the LIOMs and melts the MBL phase into a incoherent
thermal liquid [43–52]. The nonperturbative stability of MBL
remains an important question in various contexts [53–57], in-
cluding in dimension d > 1 and with long-range interactions.

The success or failure of RSRG-X for QCG phases can
also be understood through the lens of resonances. When the
distribution of couplings in the RSRG-X process flows to
an increasingly broad distribution, local resonances caused
by collisions of neighboring couplings are increasingly un-
likely. This scenario occurs in the infinite randomness fixed
points discussed in Refs. [24,25]. An extension of this analysis
to collisions of more distant couplings was considered in
Ref. [25], which found that these resonances were also irrel-
evant near the infinite randomness fixed point. Other studies
found scenarios where local resonances led to the breakdown
of RSRG-X, as in Ref. [24], which considered SU(2)k anyon
chains in the limit k → ∞, considered as a proxy for SU(2)
symmetric chains, and in Ref. [21], which considered O(2)
symmetric spin chains (also known as fermionic chains with
particle-hole symmetry O(2) = U(1) � Z2, where the non-
Abelian semidirect product structure reflects the nontrivial
action of a Z2 particle-hole symmetry on the conserved U(1)
charge).

The resonances considered in these analyses all involve
processes that couple a few IOMs. To probe stability against
many-body resonances, Refs. [28,58] introduced a technique
to analyze multispin processes that mix states that differ in
many IOMs [59]. These resonances involve processes that
couple approximate IOMs produced by RSRG-X at all levels
in the hierarchy, as indicated in Fig. 1, and thus are global
resonances involving a large fraction of the spins in the spin
chain. Applying their method to SU(2) symmetric spin chains,
they discovered a proliferation of these collective many-body
resonances in the thermodynamic limit, even with arbitrarily
strong disorder. Unlike in the MBL phase, where resonances

are likely to be spatially separated and involve disjoint sets
of LIOMs, the resonances they identified involve overlapping
sets of IOMs, which likely “percolate” and drive the system
to a thermal (ergodic) phase.

The studies above are all consistent with a general picture
where RSRG-X breaks down for chains with continuous non-
Abelian symmetries but is successful for strongly disordered
spin chains with discrete non-Abelian symmetry or for non-
Abelian anyon chains. However, no existing study of the latter
has considered multispin resonant processes as Refs. [28,58]
did for SU(2) symmetric chains. Numerical studies [23,26]
using exact diagonalization have been done for some exam-
ples of such systems, but generally speaking the effects of
rare collective resonances are not expected to show up on the
length or timescales accessible to these computations [60,61].
A quantitative understanding of the resonances would give
insight into the scales needed to study thermalization either
numerically or experimentally.

In this paper, we carry out an analysis of multispin resonant
processes for discrete non-Abelian chains and find that reso-
nances driven by these processes proliferate in large enough
systems. To show that the processes we identify indeed cause
many resonances, and to estimate the associated length scales
on which thermalization occurs, we use a combination of
explicit computations and analytic arguments. Our argument
is constructed as follows: In Secs. II and III, we identify
the resonant processes and describe the criteria we use for
determining the stability. In Sec. IV, we set up formalism for
the quantitative analysis of resonant multispin processes. We
express relevant matrix elements of local operators between
RSRG-X states in terms of Clebsch-Gordan tensors, deriving
a compact analytic formula. In Sec. V A, we compute numer-
ically the number of nonvanishing matrix elements and their
distribution for the resonant processes. In Sec. V B, we show
that these matrix element computations can be mapped to a
transfer matrix-like calculation, so that the size of the matrix
elements of local operators between typical QCG states is cap-
tured by the scaling of a random product of transfer matrices.
This allows us to extract the asymptotic scaling of the matrix
elements by estimating the Lyapunov exponent controlling
the growth of the random matrix product. We carry out this
computation for a number of discrete non-Abelian groups and
anyon theories, finding in each case a number of resonances
scaling as a power law in system size and that the exponents
match explicit counting of resonances. In Sec. V C, we argue
that the same result occurs generally for any non-Abelian
group and for all anyon chains with exceptions for Majorana
and parafermion chains. Finally, in Sec. VI we explicitly count
the number of resonances produced when locally perturbing
strongly disordered Fibonacci chains (a simple example of
anyonic chain). This count of resonances matches the com-
putations of Sec. V and confirms the scenario described in
Sec. III.

II. CRITERIA FOR PERTURBATIVE
INSTABILITY OF QCG

An unusual feature of the MBL phase is that the eigen-
states deep within the many-body spectrum, where the level
spacing is exponentially small in the system size, are stable
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to local perturbations. This arises because states connected
by a sizable matrix element of a local perturbation differ in
the value of a small number of LIOMs, and thus differ by
a constant-sized gap except in rare cases. Nearby states in
the spectrum can also be mixed by local perturbations, but
because they differ in many LIOMs, this mixing occurs at high
orders in perturbation theory and thus with matrix elements
that are thus exponentially suppressed in the number of flipped
LIOMs. The many-body Thouless parameter [43]

GV
ab = ln

∣∣∣ Vab

Ea − Eb

∣∣∣ (1)

captures the ability of a local perturbation V to mix eigenstates
|a〉 , |b〉 with energies Ea, Eb. As shown in Ref. [43], the MBL
phase is characterized by Gn,n+1 ∝ −L for typical neighboring
eigenstates |n〉 , |n + 1〉 in a spin chain of size L, while the
ergodic phase features Gn,n+1 ∝ +L.

We can use these criteria to characterize the perturbative
stability of tree eigenstates (say, produced by RSRG-X) in
strongly disordered non-Abelian chains against many-body
collective resonances. Let {|a〉} represent a basis of approxi-
mate RSRG-X eigenstates of such a chain with a Hamiltonian
H , and let

Diag(H ) =
∑

a

Ea |a〉 〈a|

be the diagonal part of H in the basis of such approximate
eigenstates. We argue that certain local operators V exhibit

GV
n,n+1 ∼ γ ′ln

L

L0
, (2)

with a positive constant γ ′. To connect that to the accounting
of resonances, note that each occurrence of log λ + GV

ab > 0 is
a resonance in

H ′ = Diag(H ) + λV ;

and thus the perturbation λV effectively hybridizes nearby tree
eigenstates whenever λ > λc = (L/L0)−γ ′

. Whenever γ ′ > 0,
the size of perturbation that destabilizes the tree eigenstates
goes to 0 in the thermodynamic limit. We use this as our
criterion for perturbative instability.

This perturbative instability naturally leads to a breakdown
in RSRG-X above disorder strength-dependent length and
timescales. At an RSRG-X step decimating a bond coupling of
strength Ji, terms in the Hamiltonian are discarded which are
local operators of strength δJ set by the neighboring couplings
δJ ∼ Ji±1. At strong disorder, δJ/J ∼ 1/W with W being the
disorder strength. The cumulative effect of these RSRG-X
errors can be interpreted in our perturbative framework by
setting λV = H − Diag(H ). By the above analysis, we can
thus extract a length scale

Lth ∼ L0

( J

δJ

)1/γ ′

,

above which many-body resonances proliferate and lead to
thermalization. A more detailed analysis of the thermaliza-
tion length scale was carried out in Ref. [58] for the SU(2)
symmetric disordered Heisenberg chain, yielding a result con-
sistent with this picture.

This thermalization length scale Lth can be converted to
a thermalization timescale tth using the dynamical scaling
[24] of QCG log t ∼ Lψ for some universal exponent ψ < 1,
valid for t � tth. This yields a stretched exponentially long
timescale

tth ∼ t0 exp

[
C

( J

δJ

)ψ/γ ′]
. (3)

For t 	 tth, the quantum dynamics is nonergodic and well
captured by RSRG-X, while at long times t 	 tth, many-
body resonances proliferate and the system thermalizes. Note
that even though the instability to thermalization through
many-body resonances is perturbative, this thermalization
timescale has a nonanalytic dependence on δJ . In particular,
this timescale can be extremely long at sufficiently strong
disorder, making the nonergodic behavior of QCG very robust
even though thermalization eventually takes over.

In the following, we will show that Eq. (2) holds, and
compute the exponent γ ′ > 0.

III. STRUCTURE OF THE RESONANT PROCESSES

In this section, we identify the resonant processes respon-
sible for the perturbative instability of QCGs indicated by
Eq. (2) in strongly disordered non-Abelian spin chains. The
critical feature of such nonergodic QCG states are the nonlo-
cal IOMs whose presence is guaranteed by the symmetry. As
we will show, local perturbations can couple these nonlocal
IOMs to a large number of other IOMs.

To understand why non-Abelian symmetry forces nonlocal
IOMs, we review the argument in Refs. [20,28]. Consider
two initially disconnected subsystems, A and B. Non-Abelian
symmetry dictates that eigenstates |i〉A , | j〉B of each piece
occur in degenerate multiplets which transform as representa-
tions ai and b j . Generically, the degenerate blocks are labeled
by irreducible representations. When the systems are cou-
pled, the combination splits into degenerate multiplets that
transform as representations c taken from the decomposition
ai × b j = ∑

c Nc
aib j

c. In the limit of weak coupling between
the systems, distinct multiplets of system A and B that lead
to the same combined irrep c do not hybridize. If this is
the case, the projectors onto the multiplets ai and b j acting
on the left and right of the system are integrals of motion, as
is the projector acting on A ∪ B that projects onto a multiplet
c. The states in each multiplet c are entangled combinations
of states in A,B and cannot be specified by a basis of IOMs
that factors onto the two subsystems.

This necessary structure of IOMs is captured by the
RSRG-X procedure for approximately diagonalizing strongly
disordered spin chains. At each stage of the RSRG-X pro-
cedure, a pair of neighboring spins (or anyons) coupled by
the strongest bond in the system is chosen. As the interaction
between these spins is typically much larger than that of
their neighbors, the spectrum splits into irreducible sectors in
which the two spins—which transform under the non-Abelian
symmetry as representations a and b—transform together as
a single irreducible representation c taken from the decom-
position a × b = ∑

c Nc
abc. If the dimension dc of the irrep c

is bigger than 1, the two spins can be replaced by a single
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effective “spin” transforming as c with renormalized coupling
to its neighbors. If dc = 1, a and b form a singlet and de-
couple completely, and there is an effective coupling between
their neighbors that can be computed within second order-
perturbation theory. If a, b are irreducible representations,
the corresponding lowest order wave functions of the spins
are thus completely constrained to be the Clebsch-Gordan
tensors for the fusion product a × b → c. If the initial spins
do not transform as irreducible representations of the non-
Abelian symmetry, the RSRG-X process replaces pairs of
these spins with effective spins consisting of an irreducible
multiplet of states—and thus Clebsch-Gordan tensors result
for subsequent decimations at larger length scales. Some
useful properties of Clebsch-Gordan tensors are reviewed in
Appendix A.

By repeating the RSRG-X decimation process until no
spins are left, a complete orthogonal basis of states indexed
by the outcomes of each fusion is generated. Each state is rep-
resented at lowest order by a tree tensor network of Clebsch-
Gordan tensors with an irregular, disorder-dependent, and
energy-dependent tree shape. The energy dependence in the
tree shape occurs because the choice of fusion outcome at one
step can change the order of decimations at later steps—but
only if the associated energy scales of those later steps were
close enough. In the limit of strong disorder, this happens
less frequently. Thus, for the purposes of evaluating our per-
turbative instability criteria, we can focus entirely on states
with the same tree shape (for each given disorder instance).
A quantitative analysis on how often RSRG-X histories di-
verge in tree shape was made in Ref. [26] with the same
conclusion.

We will thus do our analysis of the resonances of
Diag(H ) + λV using the complete basis of fusion states with
a fixed tree shape. With this simplification, each edge of the
tree corresponds to an approximately conserved IOM operator
which projects to a fixed irrep at that edge. As illustrated
in Fig. 1, local symmetric operators applied to a tree state
give a superposition of tree states that differ only their irrep
labels in part of the tree—particularly, the edges of the tree
above the microscopic spins on which the operator acts but
below the point where those spins fuse into a single irrep. The
number D of IOMs that are affected for a given local operator
scales with the depth of the tree in the region of that operator.
Our key argument for showing that resonances proliferate
developed below is based on understanding how the matrix
elements change as a function of D. In the computation of
the following sections, we show that the number of nonzero
matrix elements of a local operator scales exponentially in D
and the size of such matrix elements decays exponentially in
D. As bonds corresponding to the deepest cuts through the
tree have a tree-depth scaling logarithmically in the system
size, these scalings translate to power-law scaling in system
size. The basic mechanism for the proliferation of resonances
is that the number of connected states scales more quickly
with D than the size of the matrix elements decays, leading
to nearby level spacings between such states that are smaller
than the matrix elements [28].

In what follows, we will use explicit computation of matrix
elements to support these statements.

IV. EXACT FORMULA FOR MATRIX ELEMENTS
BETWEEN TREE STATES

A benefit of our simplification to a fixed tree shape is that
we can write an explicit formula for the matrix elements of
local symmetric operators that allow us to understand the scal-
ing of their size analytically rather than through brute-force
numerics. To derive this formula, we use a special basis of
local operators that act on two adjacent spins transforming
as irreps r1, r2 which are formed from two Clebsch-Gordan
tensors:

Oq
r1,r2

=

r1

r1

r2

r2

q

.

Here, q labels an irrep such that Nr1
qr1

, Nr2
qr2

> 0. All symmet-
ric operators acting on two spins can be written as a linear
combination of these operators, so the matrix element for
a generic two-site operator comes for free by decomposing
it in this basis. Operators on two anyons r1, r2 can also be
parameterized in the same way, now with q labeling an anyon
label—but in that case there is no interpretation as a contrac-
tion of two Clebsch-Gordan tensors. See Appendix A for more
details on anyonic Hilbert spaces. As an example, consider
an SU(2) spin chain built from spins which transform as the
irreps r1, r2 = 1

2 . The two allowed values of q are the spin-0
and spin-1 irrep, which correspond to the identity operator
and the �S · �S Heisenberg coupling, respectively. The “spin”
q transferred between the sites plays an important role in the
formula below.

To compute the action of such an operator on tree states,
let us label the edges in the relevant part of the tree geometry
as follows:

...

...

...

... ...

...

...

r1 r2

bm

b2

b1

dn

d2

d1

c

a3

a2

a1

e3

e2

e1

q

.

This shows only the relevant portion of the tree for an oper-
ator being applied to the spins labeled r1, r2; other branches
can exist below each of the ai, ei or otherwise can be only
connected to this portion of the tree through c. The numbers
of branches on the left and right of the tree will be referred to
as m and n respectively; the picture shows m = n = 3.

The local operator only connects tree states with different
values for the irreps corresponding to the edges labeled bi, di

094203-4



PERTURBATIVE INSTABILITY OF NONERGODIC PHASES … PHYSICAL REVIEW B 103, 094203 (2021)

but with identical irreps on all other edges, which we refer to
collectively as x = {ai, c, ei, . . .}. We will refer to each such
block of states as Bx. The values taken by each of the D =
m + n labels bi, di are constrained by the fusion rules of these
irreps with the irreps labeled ai, ei. The number of states in
such a block typically grows exponentially in D:

|Bx| ∼ da1 . . . dam de1 . . . den ∼ 2νD, (4)

where da is the (quantum) dimension of the irrep (anyon) a.
The exponent

ν =
∑

a

pa log2 da,

where pa is the fraction of the irreps labeled ai, ei that are of
type a. In the infinite temperature ensemble of tree states, for
edges sufficiently far from the bottom of the tree, the fraction
of states where a given edge is labeled by a is

pa = d2
a∑

a d2
a

, (5)

independently of the starting representations [62].
As both the operator Oq

r1,r2 and the tree states have been ex-
pressed as contractions of Clebsch-Gordan tensors, the matrix
elements of Oq

r1,r2 can be expressed as well as a tensor network
composed purely of Clebsch-Gordan tensors. However, rather
than performing a complicated tensor contraction, the proper-
ties of Clebsch-Gordan tensors allow for a vast simplification
of this overlap calculation, reducing in the end to a simple
product of D + 1 scalar numbers with no tensor contractions.
To derive our formula, it is helpful to consider the tensor
contraction

Oq
r1,r2

|Ψ =

...

...

... ...

...

...

r1 r2

r1 r2

bm

b2

b1

dn

d2

d1

c

q

.

Here, the edge with the irrep q has been drawn deformed to
facilitate the next step in the derivation, which is to insert
resolutions of the identity in terms of Clebsch-Gordan tensors

d ∈d×q

d q

d q

d=d q

on each of the combined q, di edges and the equivalent for
the b edges combined with the opposite orientation of q. This

results in a sum of diagrams of the following form:

b1

b2

bm

d1

d2

dn

where the sum is over values of the irrep labels b′
i ∈ bi × q̄,

d′
i ∈ di × q. Finally, we can simplify each of these diagrams

into a single tree state by substituting the following identity of
Clebsch-Gordan tensors:

e

d

b

q

d

b

= F qb e
d

bd

b
e

d

along the right branch of the diagram and a similar one along
the left branch. After these substitutions, each diagram in the
sum is a single tree state with a coefficient that consists of
m + n + 1 F symbols. The F symbols are a group theoretic
factor depending on 6-irrep labels defined via a contraction
of four Clebsch-Gordan tensors. From this, we can read off
the matrix element of the operator Oq

r1,r2 between any two tree
states:

〈� ′| O(q)
r1,r2

|�〉 = δxx′

(
m∏

i=1

(
F aibi−1q

b′
i

)
bib′

i−1

)

× (
F bmqd ′

n
c

)†

dnb′
m

(
n∏

j=1

(
F

qd ′
j−1e j

d j

)
d j−1d ′

j

)
, (6)

where the unprimed labels ai, bi, c, di, ei refer to the irrep
labels of |�〉, the corresponding primed labels refer to |� ′〉,
and b0 = b′

0 = r1, f0 = f ′
0 = r2. The same formula works for

anyonic tree states, which are defined via the F symbols
without the underlying Clebsch-Gordan tensors.

Via Eq. (6), we have an analytic handle on precisely which
matrix elements are nonzero and how big they are. We see
immediately that the connected tree states are not all of Bx

but only those with irrep labels b′
i ∈ bi × q̄, d′

i ∈ di × q. This
is a generalization of the selection rule described in Ref. [28]
for SU(2) tree symmetric tree states. In that example, the per-
turbing operator is V = �Si · �Si+1, q is the spin-1 irrep, and tree
states with a spin value of S on a tree edge are only connected
to tree states with S′ ∈ S × 1 = {S − 1, S, S + 1} on that edge.
These selection rules generally allow for multiple possible
labels for each of the D labels b′, d′ as long as dq > 1. The
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typical number of nonzero matrix elements from each tree
state is thus asymptotically exponential in D:

Nq ∼ 2αqD. (7)

The exponent αq depends only on the group theoretic data
and q. We compute it for various examples in the following
sections using Eq. (6). As at most all of the states in Bx can be
connected, we have the constraint that 0 � αq � ν.

The values of the matrix elements are products of D F
symbols, each of which is less than 1 in absolute value, and
thus the size of the nonzero matrix elements is asymptotically
exponentially decaying in D:∣∣V q

ab

∣∣ ∼ 2−βqD. (8)

Again, the exponent only depends on q, and we will compute
it for various examples in the following sections.

The energy denominators Ea − Eb between connected tree
states, which enter our criterion for resonances, are challeng-
ing to describe. First, we consider the simplest scenario for the
behavior of these quantities, which suggests that resonances
should be increasingly common as D increases. The examina-
tion of the accuracy of this scenario is postponed to Sec. VI.
Suppose that the 2αqD energy levels of the connected tree
states are distributed uniformly and randomly in an energy
window, with a typical level spacing 2−αqD. Then nearby states
in the energy spectrum will have

GV
n,n+1 ∼ ln2(αq−βq )D ∼ ln2γqD,

with γq = αq − βq. Under the same assumption, the expected
number of resonant connections from a given state is

NR ∼ λ2(αq−βq )D, (9)

which is the expected number of connected states that lie in
an energy window of size λV .

For every tree shape, there are some bonds for which the
connecting path between them reaches near the top of the tree,
which requires a length of path logarithmic in the number of
sites L. Thus, the exponential scaling of the resonant connec-
tions in Eq. (9) in D translates to a power-law scaling of L
for such worst-case bonds. Specifically, let Di,i+1 be the depth
D relevant for an operator at the sites i, i + 1. Reference [58]
shows that, for a specific model of random tree shapes where
the locations of spin fusions are independent and uniform,
Di,i+1 are distributed according to

p(D) = 1

2

(
2

3

)D

, D � 1.

The typical maximum value of D for a system of L sites can
be obtained from the condition p(Dmax) ∼ 1/L, giving

Dmax ∼ lnL

ln 3
2

. (10)

Among two-site operators, the most destabilizing perturba-
tion is Oq at the cut of the tree with the largest D, and with q
chosen among operators to give the one most likely to create
resonances, i.e., with the largest γq. For this perturbation,
Eq. (17) becomes

GV
n,n+1 ∼ γ ′lnL

with

γ ′ = ln2

ln 3
2

max
q

γq.

The tree eigenstates are unstable if any γq > 0.
This model of tree shapes is not necessarily the one realized

by RSRG-X for a given system, but depths of random trees are
generally logarithmic in the number of leaves. We parametrize
this unknown with a constant ρ, so that

Dmax ∼ ρ log2 L. (11)

Then instead γ ′ = maxq ργq and the number and size of ma-
trix elements scale as power laws Nq ∼ Lραq and V q ∼ L−ρβq .
The value of ρ does not affect whether tree states are stable but
does affect the relevant thermalization length and timescales.

The exact matrix element formula Eq. (6) thus gives us
a quantitative window into the stability of a broad swath of
non-Abelian QCGs without using much information about the
microscopics. The rest of this paper will be spent evaluating
these stability criteria and confirming the picture outlined in
this section. In Sec. V A, we will support our results regard-
ing the size and number of matrix elements by randomly
sampling tree states and numerically evaluating Eq. (6) for
particular non-Abelian groups and anyon theories. As these
matrix elements are relatively easy to compute, we can access
large systems of up to L = 215 spins, making the exponential
dependence on D clear. In Sec. V B, we discuss an even easier
way to compute αq and βq directly in the thermodynamic limit
without the need to sample tree states. For some cases, our
method even yields analytic formulas.

Finally, we remind the reader that the biggest limitation
of this section is the modeling of energy denominators. To
check whether the simplified picture regarding the statistics
of energy denominators described above yields the correct
asymptotic scaling of the number of resonances, we do an
exact counting of resonances in Sec. VI, finding strong sup-
porting evidence for the scenario presented here.

V. SIZE AND NUMBER OF MATRIX ELEMENTS

A. Numerical computation

To verify that the scaling of the number of nonzero matrix
elements and their values are indeed captured by Eqs. (7) and
(8), we now explicitly compute exact matrix elements and
generate their statistics. To do so, we generated random tree
states with the following procedure, starting with an initial
spin chain consisting of spins transforming as a non-Abelian
irreducible representation r. We then repeatedly choose a pair
of neighboring spins at random to fuse. The fusion outcome is
chosen using the infinite temperature ensemble

p(a, b → c) = dc

dadb
for c ∈ a × b, else 0.

With each tree state |�〉, we generate all nonzero matrix el-
ements connecting that state to other states [using Eq. (6)] for
each two-site perturbation Oq

r,r and at every possible position
of the operator at neighboring sites i, i + 1. This can be done
efficiently by iterating through each possibility b′

i ∈ bi × q,
d′

i ∈ di × q̄ for the irrep labels of a connected state |� ′〉 and
checking whether the resulting tree state is valid. Using this
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FIG. 2. Number (left) and typical size (right) of matrix elements in the basis of tree states on L spins, sampled from random tree states. The
matrix element distribution asymptotically depends only on D. The exponents closely match the Lyapunov calculation results for α (left) and
β (right) shown in Table I. (Top) Matrix elements of the D3 invariant operator O2

22. (Bottom) Matrix elements of the SU(2)4 operator O1
1
2 , 1

2
.

procedure, we can reach large system sizes of up to L = 215

spins, which we find is more than sufficient to obtain the
asymptotic scaling. For each state sampled, we tabulate the
number of nonzero matrix elements involving that state and
the typical size exp 〈log |V |〉 of the nonzero matrix elements
〈� ′|Oq

r,r |�〉. Results for two examples, the D3 symmetric
(dihedral group) spin chain and the SU(2)4 anyon chain, are
shown in Fig. 2. We see that the properties of the matrix ele-
ments are as described in the previous section: The typical size
and number of matrix elements of a local perturbation scale
exponentially in D. Additionally, we see that these quantities
have broad, log-normal-like distributions.

For D3, there are three irreducible representations, com-
monly referred to as the trivial irrep, the sign irrep, and the
fundamental irrep. The dimensions of these irreps are 1, 1,
and 2 respectively—for this reason the fundamental irrep is
denoted as 2. We will take the initial configuration of spins
for our D3 symmetric spin chain to be L spins that transform
as r = 2. The perturbing operator we use is O2

2,2. This is the
only choice for q that can lead to αq > 0, as taking q to be an
Abelian one-dimensional irrep gives at most one connected
tree state. Plotting the typical number of connected states
versus D and fitting gives α2 ≈ 0.46. Plotting the typical size
of the matrix elements versus D and fittings gives β2 ≈ 0.24.
In Sec. V B, we find exact expressions for these exponents
from an analytic calculation, which match the numerically
extracted values within the margin of error of our fitting.

For our second example, we use SU(2)4 anyons. In this
case, the anyon labels can take 5 types, conventionally called
0, 1

2 , 1, 3
2 , 2, with dimensions 1,

√
3, 2,

√
3, 1 respectively. In

this case, the basis of perturbing operators Oq
r,r is spanned

by q = 0, 1, 2, as these are the only anyon types q satisfying

TABLE I. Tabulated exponents computed using Lyupanov trans-
fer matrices for dihedral groups D2k+1 and for the anyon theories
SU(2)k and SO(3)k . Note the equivalence of SO(3)4 and D3, and
equal exponents for SO(3)k and SU(2)k for odd k.

A q ν μ ξ α β γ

D3 2 0.667 1.130 0.893 0.463 0.236 0.227
D5 2j 0.800 1.159 0.970 0.359 0.189 0.170
D7 2j 0.857 1.146 0.991 0.288 0.155 0.133

SU(2)2/Ising 1
2 /σ 0.250 0.500 0.375 0.250 0.125 0.125

SU(2)2/Ising 1/ψ 0.250 0.250 0.250 0.000 0.000 0.000
SU(2)3 1 0.502 0.920 0.702 0.418 0.218 0.200
SU(2)4 1 0.730 1.356 1.031 0.627 0.326 0.301
SU(2)5 1 0.931 1.750 1.307 0.819 0.444 0.375
SU(2)6 1 1.111 2.016 1.530 0.905 0.485 0.420

SO(3)3/Fib 1/τ 0.502 0.920 0.702 0.418 0.218 0.200
SO(3)4 1 0.667 1.130 0.893 0.463 0.236 0.227
SO(3)5 1 0.931 1.750 1.307 0.819 0.444 0.375
SO(3)6 1 1.085 1.982 1.493 0.897 0.489 0.407
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Nr
q,r > 0. Of these, only q = 1 also has dq > 1. We thus take

the starting configuration to be a chain of r = 1
2 anyons and

the perturbing operator to be O1
1
2 , 1

2
. As above, we sample

tree states and find clear exponential scaling with exponents
α1 ≈ 0.63 and β1 ≈ 0.34 extracted from the fit in Fig. 2.

In each case, α > β and so under the hypothesis of the
previous section we find that γ > 0 and the perturbative in-
stability criteria are satisfied. We also computed the number
and size of matrix elements for other examples of non-Abelian
symmetry groups and anyon theories. Each asymptotically
follows the predictions of Eqs. (16) and (17) with exponents
matching those derived in the following, Sec. V B, and dis-
played in Table I.

B. Random matrix product calculation

An appealing feature of Eq. (6) is that the indices on the
factors align as if the matrix element were one term in the
expansion of a product of matrices. We exploit this structure
below to compute the asymptotic scaling properties of the
matrix elements. In particular, we can express the following
three quantities as products of matrices:

(1) Nx, the number of states in Bx,
(2) Mx,q, the total number of nonzero matrix elements of

Oq between pairs of states in Bx, and
(3) F x,q, the sum of the absolute value of these matrix

elements.
Given these quantities, we can extract the mean number of

nonzero matrix elements per state Mx,q/Nx and the mean size
of the nonzero matrix elements F x,q/Mx,q.

We can count the number of states in Bx by the following
sum, where the unfixed labels b, d vary over all unconstrained
possibilities and the summand is 1 if all nodes in the tree
respect the fusion rules or 0 otherwise:

Nx =
∑
b,d

Nb1
a1r1

. . . Nbm
ambm−1

Nc
bmdn

Ndn
endn−1

. . . Nd1
e1r2

= (na1 . . . nam ñcnenT . . . ne1T )r1r2 , (12)

where na are matrices with matrix elements (na)bc = Nc
ab and

ña are matrices with matrix elements (ña)bc = Na
bc. We can

compute Mx,q analogously, but now with a double sum over
pairs of states with labels b, d and b′, d ′, and the summand
being 1 if the corresponding matrix element is nonzero. This
turns into an analogous matrix product:

Mx,q =(ma1 . . . mam m̃cm̄en . . . m̄e1 )(r1r1 )(r2r2 ), (13)

where m, m̃, and m̄ are matrices with matrix elements

ma,q
(bb′ )(cc′ ) = 1 if

(
F abq

c′
)

cb′ �= 0 else 0,

m̃c,q
(bb′ )(dd ′ ) = 1 if

(
F bqd ′

c

)†

db′ �= 0 else 0,

and m̄e,q
(bb′ )(cc′ ) = 1 if

(
F qc′e

b

)
cb′ �= 0 else 0.

Finally, F x,q is the same

F x,q =( f a1 . . . f am f̃ c f̄ en . . . f̄ e1 )(r1r1 )(r2r2 ), (14)

with

f a,q
(bb′ )(cc′ ) = ∣∣(F abq

c′
)

cb′
∣∣,

f̃ c,q
(bb′ )(dd ′ ) = ∣∣(F bqd ′

c

)†

db′
∣∣,

and f̄ e,q
(bb′ )(cc′ ) = ∣∣(F qc′e

b

)
cb′

∣∣.
The labels ai, ei which determine the factors in the matrix
product in Eqs. (12)–(14) are independent, as each is the
result of fusing disjoint sets of initial irreps and anyons. These
labels can be described as being randomly sampled from the
equilibrium probability distribution pa from Eq. (5).

Therefore, the typical behavior of Nx, Mx,q, and F x,q is
governed solely by the growth of a product of D + 1 random
matrices, each sampled from a fixed set of matrices—one for
each anyon or irrep type—with the given probability distri-
bution pa. In Eqs. (12)–(14), there are three distinct sets of
matrices used—one for the first m factors, another for the
middle factor, and a third for the last n factors. This happens
because of the direction of ingoing and outgoing arrows along
the left and right sides of the local geometry of the tree in
Eq. (6). As there is no physical distinction between the left
and right sides of the tree, the scaling properties are the same
when using either set of matrices.

Such random matrix products generically grow exponen-
tially, with the asymptotic growth controlled by an exponent
known as the leading Lyapunov exponent. We find that this is
true as well for the quantities in Eqs. (12)–(14). Let the three
growth exponents be ν, μ, ξ, so that

Nx ∼ 2νD,

Mx,q ∼ 2μqD,

F x,q ∼ 2ξqD. (15)

From these exponents, we can surmise that the mean number
of nonzero matrix elements per state is

Mx,q/Nx ∼ 2αqD, αq = μq − ν. (16)

Similarly, the mean size of a nonzero matrix element is

F x,q/Mx,q ∼ 2−βqD, βq = μq − ξq. (17)

We are particularly interested in the scaling of off-diagonal
matrix elements, while these formulas include diagonal matrix
elements as well. Equation (6) behaves the same for diagonal
and off-diagonal matrix elements—each is a product of the
same number of F symbols—and so we do not expect much
difference in their magnitudes. As there are many fewer di-
agonal matrix elements than off-diagonal, the diagonal matrix
elements only give a subleading contribution to the sum of
matrix elements F x and the number of matrix elements Mx,
and thus do not affect the scaling of these quantities. This can
be easily confirmed by modifying Eqs. (13, 14) to compute
the number and sum of only the diagonal matrix elements.

These random matrix products therefore give us an alter-
nate way to compute the exponents and evaluate the stability
criteria in Section III. We compute these exponents using a
straightforward Monte Carlo method, measuring the growth
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FIG. 3. (top) For the dihedral groups Dk : α, β, γ → 0 as k →
∞. (bottom) For SU(2)k anyon chains with q = 1: α → log2 3, β →
0.93, γ → 0.66 as k → ∞.

of the size of a random initial vector while multiplying it with
randomly sampled matrices from the set. Millions of samples
are needed to converge the estimate of the exponent; however,
as each matrix-vector multiplication is of a small fixed size
d2 where d is the number of irrep/anyon types, only a few
minutes of computation are needed to obtain the exponents
to 10−3 accuracy, directly in the thermodynamic limit. We
have computed the Lyapunov exponents numerically for a
number of non-Abelian symmetry groups and anyon systems
and summarized the results in Table I and Fig. 3.

As an additional check on our Monte Carlo method, we
see that our estimated Lyapunov exponents match exact values
in several cases where they are available. For all cases, our
numerically computed exponents of ν match the value

ν =
∑

a d2
a log2 da∑

a d2
a

,

from Section III. In Appendix B, we show that the exponents
for D3 are exactly

ν = 2

3
, μ = 2

3
log2(1 +

√
5) ≈ 1.129496,

and ξ = 2

3
log2

(
1 +

√
1 + 4

√
2√

2

)
≈ 0.893330.

Similarly, the exponents for Fibonacci anyon chains are

ν = 1 + ϕ

2 + ϕ
log2 ϕ, μ = 1 + ϕ

2 + ϕ
log2(1 +

√
2), and

ξ = 1 + ϕ

2 + ϕ
log2

ϕ
1
2 + 1 +

√
1 − 2ϕ

1
2 + ϕ + 8ϕ

3
2

2ϕ
.

These values match the results in Table I.

Our Monte Carlo estimates for the exponents ν, μ, and
ξ and the consequent values for α, β, and γ are shown
in Table I for the dihedral groups D2k+1, for non-Abelian
SU(2)k anyons, and for SO(3)k anyons (which correspond
to restricting SU(2)k anyons to only the subset with integer
spins). In all cases considered except one, γ > 0; the odd
case is that of the Ising anyon chain with γ = 0, discussed
further below. These families include several previously stud-
ied potential QCG phases. References [22,23] considered spin
chains with D3 symmetry, in which the potential QCG phase
occurs between spin glass phases which spontaneously break
the symmetry down to an Abelian subgroup. This phase di-
agram in particular contains a self-dual point that is known
to not break the symmetry. Our finding of γ > 0 shows that
the QCG is unstable, but does not a priori indicate whether
the leading instability is toward spontanous symmetry break-
ing or thermalization. The QCG region either shrinks to a
fine-tuned critical point (at the self-dual point) or is instead
replaced by an intervening ergodic phase. Anyon chains, on
the other hand, cannot by construction spontaneously break
the symmetry—so any instability can only be toward ther-
malization [63]. The QCGs of SU(2)k anyon chains were
previously considered in Ref. [24] and our finding of γ > 0
suggests asymptotic thermalization for all of these chains.

For Ising anyon chains, there are three anyon types,
traditionally denoted 1, σ, ψ , with dimensions 1,

√
2, 1 re-

spectively. The only operator with more than one matrix
element should then be Oq

ab with q = σ . However, the fusion
rules of the theory do not allow for an operator Oσ

σσ . For
a chain of σ anyons, there are thus only Abelian operators
such as Oψ

σσ and the corresponding exponents α, β, γ are 0.
For this reason, our analysis does not produce a conclusion
about the stability of the QCG in Ising anyon chains or simi-
larly, parafermion chains. An alternate viewpoint is that these
anyon chains are dual to critical points in Abelian spin chains
with Z2 symmetry (Zq for parafermions) rather than non-
Abelian spin chains and thus outside the scope of this paper.
We note that two very recent papers claimed—largely based
on numerical evidence from exact diagonalization—that the
phase transition between MBL phases in Ising (Z2) chains
are perturbatively unstable against thermalization [64,65]. It
would be interesting to generalize our approach to dealing
with Abelian critical MBL states to explain this instability
analytically. To realize an operator with dq > 0 with Ising
anyons, one can consider a chain with each site represented
by 1 + σ , where there is a local operator Oσ

ab with a = b =
1 + σ . The interpretation of such an operator could be that it
corresponds to the hopping of a σ anyon in a chain of itinerant
σ anyons [66]. In this case, we again find γ > 0.

We also examined the limiting behavior of two our fam-
ilies of non-Abelian chains as the group becomes large. For
dihedral group symmetric chains with odd k > 3, there are
two one-dimensional irreps and (k − 1)/2 two-dimensional
irreps labeled 2 j , j ∈ [1, . . . , k−1

2 ]. The Lyapunov exponents
are the same for each choice of q = 2 j . While γ > 0 for each
k, in the limit k → ∞, α, β, and γ approach 0, as shown in
Fig. 3. Intuitively, the reason for this limiting behavior is that
all F symbols of D2k+1 are 1 except those involving the two
one-dimensional irreps. These irreps become a vanishingly
small proportion of tree labels as k → ∞ in the equilibrium
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distribution, Eq. (5). In the k → ∞ limit, the representation
theory and F symbols of D2k+1 = Z2k+1 � Z2 approach those
of the group O(2) = U(1) � Z2, which has an infinite number
of irreps. However, starting from spins that transform as some
fixed irrep, say 21, the equilibrium distribution of irreps will
not be reached until L � k—and for O(2) tree states, it will
never be reached. This suggests that our approach breaks
down and that the thermodynamic limit and the k → ∞ limit
do not commute.

For SU(2)k chains, there are k + 1 anyon types labeled by
0, 1

2 , 1, . . . , k
2 . We analyzed the exponents for Oq with q = 1,

which is the nontrivial operator allowed on two 1
2 anyons.

Chains of 1
2 anyons coupled by O1 were argued in Ref. [27]

to approach the Heisenberg spin chain of spins 1
2 . We find that

α, β, γ increase monotonically with k, approaching limiting
values as k → ∞. The limiting value for α is found to be
log2 3, which indeed matches the corresponding result for
SU(2) tree states found by Refs. [28,58], as α = log2 3 means
that each tree state is connected via SiSi+1 to 3Di,i+1 other tree
states. However, our limiting values for β, γ do not match
those computed in Ref. [28] for SU(2), again suggesting that
the thermodynamic limit and the k → ∞ limit do not com-
mute.

C. Why is αq > βq?

In the examples considered above, it seems that we always
find the number of matrix elements is growing faster that
the size of the matrix elements shrinks. It is natural to ask
whether there holds generally. In fact, we note that there is an
obvious constraint on how small the matrix elements can be
on average, as the total operator norm of V is independent of
the basis:

Tr(VV †)

TrI
=

∑
ab

|Vab|2
/∑

a

1 = const.

Thus, the average norm of one column of V is constant. Such
a column has 2αqD nonzero matrix elements, so the root mean
square average of these is 2−αqD/2. Thus, the size of the matrix
elements measured by root mean square rather than the mean
decays with an exponent β (2)

q = αq/2. This can be confirmed
by extending our random matrix calculation to compute the
second moment of the matrix element distribution, replacing
the F symbols in Eq. (14) with squared F symbols. We did
this calculation and found that the root mean square size of
the matrix elements scales exponentially in D with exactly this
exponent. This argument gives the constraint that βq � β (2)

q =
αq/2. While this does not lead to an upper bound on βq, Table I
shows that βq ≈ αq/2 in all of the cases computed. As the
matrix element distributions, as shown in Fig. 3, are somewhat
featureless with a shape that does not change drastically with
D, it seems appropriate that the mean and root mean square
average of the matrix elements scale similarly with D.

The result seems to suggest that any perturbation of fixed
magnitude that couples many states—particularly a growing
number of states as system size increases—necessarily is
destabilizing. This is not the case. The local perturbations
discussed here are mostly off diagonal; an operator with larger
diagonal contributions to its norm could have smaller off

E

RG step

FIG. 4. Spectral tree generated by RSRG-X.

diagonal matrix elements. More importantly, perturbations
of constant size can avoid destabilizing states if there are
correlations between the energy denominators and the ma-
trix elements. Only the matrix elements between tree states
with nearby energies matter for the purposes of creating res-
onances. Our expectation is that such matrix elements behave
typically as if drawn from these featureless distributions. We
examine this point further in the next section.

VI. DIRECT COUNTING OF RESONANCES

To show that the off-diagonal matrix elements of local
operators indeed cause resonances, we need to consider the
energy denominators Ea − Eb of connected states. The hy-
pothesis of Sec. III is that small energy denominators occur
essentially randomly due to near collisions of the energy of
states that differ in many of the locally accessible IOMs. Some
motivation for this hypothesis can be taken from considering
the full set of RSRG-X states. The energy scaling for states
that only differ by a single IOM takes a stretched exponential
form:

�E ∼ e−(L/L� )ψ ,

with ψ < 1, whereas the full set of states has a level spacing
that decays exponentially. Thus, in the full spectrum of states,
neighboring states typically differ in many IOMs in the ther-
modynamic limit where L � L�, as states that differ in just a
few IOMs are much further spread in energy. This scenario
is depicted in Fig. 4. The set of locally accessible states are
a tiny subset of the set of all states corresponding to picking
the same branch of the RSRG process at all but D branchings.
Nonetheless, we hypothesize that for D > D� those branches
will also cross in energy and locally accessible states with
nearby energies will differ in many of those D IOMs. Show-
ing this is beyond our analytic arguments. More generally,
there may be correlations between the matrix elements and
the energy denominators that spoil the resonance counting in
Eq. (9).

We can resolve these questions definitively by numerically
computing the energies of locally connected tree states and
directly counting the resonances. We do this for the simplest
possible QCG phase, that in the disordered Fibonacci anyon
chain [67]. The Hamiltonian is

H =
∑

i

JiO
τ
i,i+1, (18)
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FIG. 5. Direct counting of resonances for Diag(H ) + λV in the Fibonacci chain where Diag(H ) is obtained using RSRG-X, as a function
of λ and the local tree depth D at the location of the perturbation. Left: The D scaling is close to the predictions of Sec. V with the exponent
γτ = 0.2 taken from Table I. Right: Thermalization length scale vs perturbation strength λ.

with the coefficients Ji randomly sampled from the uniform
distribution Ji ∈ [−1, 1]. The RSRG-X step for this system
takes the strongest bond in the system Ji and replaces the
corresponding τ anyons on sites i, i + 1 with either a singlet
or a single τ anyon. In the former case, the singlet drops out
and the anyons on sites i − 1 and i + 2 interact via an effective
second-order coupling Jeff = 2

ϕ2
Ji−1Ji+1

J2
i

. In the latter case, the
new anyon interacts with its neighbors on either side with
first-order couplings Jeff = −Ji±1/ϕ [26,68–70].

We generated random disorder instances of such chains
with sizes ranging from L = 25 to L = 212 anyons. For
each disorder instance, we randomly sampled an infinite-
temperature random RSRG-X state |�a〉. We then computed
for each tree state |�b〉 connected by a local perturbation
V = Oτ the quantity

GV
ab = ln

∣∣∣∣ 〈�b|V |�a〉
〈�b|H |�b〉 − 〈�a|H |�a〉

∣∣∣∣.
We counted the resonances in the Hamiltonian H ′ =
Diag(H ) + λV by counting the number of connected states
with GV

ab > − log λ, as discussed in Sec. II.
The result is shown in Fig. 5. As predicted, the number

of such resonances increases exponentially with D with an
exponent quite close to the value of γτ ≈ 0.2 computed in
Sec. V. This occurs for all values of λ with which we could
find enough resonances to get reliable statistical estimates.
The regime of exponential growth starts around D� ≈ 6. In
Sec. III, our hypothesis of uniformly random level spacing
predicted Nr ∝ λ, but the counting here is consistent with a
more general form,

Nr = λζ 2γτ D. (19)

Most importantly, for any λ the trends indicate that there is a
corresponding D beyond which resonances proliferate.

We can estimate the associated length scale for thermal-
ization using the result of this resonance counting as input.
First we estimate a λ-dependent D0 at which these resonances
proliferate in Diag(H ) + λV by setting a cutoff in the number

of resonances per state necessary to thermalize the system. We
arbitrarily set this cutoff at 1. By using the fits in Fig. 5, we es-
timate the threshold D0(λ) and the corresponding length scale
Lth(λ) ∼ 2D0(λ)/ρ . We use the estimate for ρ from Sec. III. The
result is shown in Fig. 5.

Finally, to convert this to a length scale for the proliferation
of resonances in the unperturbed Hamiltonian, we need to
estimate the size of λ for the coefficient of H − Diag(H )
along the direction of the most destabilizing operator. As
λ approaches 0 with increasing disorder strength, the corre-
sponding thermalization length can be made arbitrarily large.

VII. CONCLUSION

We considered the stability of QCG phases in spin chains
with non-Abelian symmetry and non-Abelian anyon chains.
We mapped the scaling of the size and number of matrix
elements of local perturbations to a random matrix product
problem. We evaluated the associated Lyapunov exponents
for the dihedral groups Dk , and the SU(2)k and SO(3)k anyon
systems. In all of these cases, the scaling suggests that local
perturbations drive resonances that flip many integrals of mo-
tion and that the density of these resonances increases with
system size.

A core distinction for QCG phases from MBL phases is
that the number of IOMs that can be flipped with one applica-
tion of a local operator scales with the tree depth Dmax of the
RSRG-X tree, with Dmax ∼ log L. The number of connected
states to a given tree state for any local operator is found
to scale exponentially in the number of accessible IOMs D,
while the size of these matrix elements decays exponentially
in D. The competition between these exponentials always
favors the number of connected states, so that for large D the
level spacings inevitably become too small to avoid resonant
mixing by the matrix elements. The main technical advance of
this paper is a method for computing the asymptotic exponen-
tial growth of the number and size of the matrix elements for
a basis of nearest neighbor operators, which is accomplished
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by exploiting a nice structure which occurs for these particular
matrix elements.

Taken together, the result of this work and Refs. [28,58]
strongly suggests that QCG phases are unstable for every
non-Abelian group, discrete or continuous. Systems with dis-
crete non-Abelian symmetries thus must either thermalize or
exhibit MBL combined with spontaneous symmetry break-
ing to an Abelian subgroup. Additionally, we conclude that
QCG phases are unstable in chains of non-Abelian anyons,
excluding chains of Majorana anyons or parafermions for
which our approach is not predictive. Spontaneous symmetry
breaking is not a viable option for either these non-Abelian
anyon chains or for spin chains with continuous non-Abelian
symmetry—thus, thermalization remains the only possibility
in these cases [20]. In all of these systems, the integrals of
motion produced by RSRG-X are approximately conserved
and continue to control the dynamics up to parametrically
long timescales t 	 tth, with tth given by Eq. (3). Our com-
putation allows us to estimate the time and length scales in
which many-body resonances proliferate. We find that these
scales are parametrically long as disorder strength increases,
and thus the QCG regime continues to be a valid description
for the dynamics at strong disorder at practically accessible
scales. However, our perturbative mechanism for instability
may be accompanied by other mechanisms, in which case the
QCG description may break down at even smaller scales than
we have reported.

Experimental systems with precise discrete non-Abelian
symmetries acting on-site are rare, with SU(2) symmetric sys-
tems being more common. Physical systems with non-Abelian
anyons are also quite rare, but there is substantial theoreti-
cal interest in the creation and manipulation of non-Abelian
anyons due to applications in quantum computation [71].
Proposals for creating non-Abelian anyons exist using frac-
tional quantum Hall systems, spin liquids, nanowires, and in
ultracold atoms [72,73]. Understanding of the thermalization
of these systems may inform proposals to use non-Abelian
anyons to store and manipulate quantum information.

While QCGs remain good examples of “almost” noner-
godic states up to stretched exponentially long timescales,
our work suggests that they eventually thermalize. Finding
genuine (and other long-lived) examples of nonergodic phases
beyond MBL remains a major challenge in the field, and
proving the stability of such tentative nonergodic states might
prove even more challenging. Transitions between distinct
MBL phases in the case of Abelian symmetries (say in the
random transverse-field Ising chain) provide an example of
a nonergodic state that goes beyond MBL, which is not
ruled out by our analysis. However, recent numerical studies
suggest that such MBL-MBL transitions are perturbatively
unstable against thermalization [64,65]. While the symmetry
structure in that case is not enough to explain this instability,
the approach considered in this paper (and Refs. [28,58])
might still provide a useful tool to analyze the stability of the
noninteracting Ising transition against adding interactions.
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APPENDIX A: PROPERTIES OF CLEBSCH-GORDAN
TENSORS AND TREE STATES

Tree states for non-Abelian spin chains are formulated in
terms of the following representation theoretic data:

(1) the set A of irreducible representations (irreps) of G =
{a, b, c, . . . },

(2) the identity irrep, which we will label 1 ∈ A,
(3) the dimensions of the irreps da for each a ∈ A,
(4) the conjugate irrep ā ∈ A for each a ∈ A,
(5) irrep fusion a × b = ∑

c Nc
abc for each a, b ∈ A,

(6) Clebsch-Gordan tensors C(a, b, c, μ) for each
a, b, c ∈ A, μ ∈ [1, 2, . . . Nc

ab].
The dimension of the representation a × b can be com-

puted before and after decomposing into irreps, resulting in
the relation

dadb =
∑

c

Nc
abdc. (A1)

The Clebsch-Gordan tensors C(a, b, c, μ) specify the irre-
ducible multiplets of states that mix under the action of G in
the tensor product of two irreducible representations. As all
cases we consider have all Nc

ab ∈ {0, 1}, we omit the fusion
multiplicity indices μ from the rest of the discussion. For
fixed a, b, the C(a, b, c) for c ∈ a × b form a complete and
orthonormal basis for the states in the Hilbert space Ha ⊗ Hb,
which leads to the following relations:

c

a b

a b

c = a b

c

c

ba = δc,c

c

where the Clebch-Gordan tensor C(a, b, c) is represented
graphically by

c

ba
.

For a spin chain with L sites, where each site carries an
action of the symmetry group G with representation r, a basis
of states can be recursively built for any binary tree shape
using Clebsch-Gordan tensors. The states in the basis are
identified by global quantum numbers—an irrep a ∈ A that
specifies what type of multiplet the state belongs to and an
integer m ∈ [1, . . . , da] that specifies which state in the mul-
tiplet it is—and additionally by irrep labels ai ∈ A assigned
to each leg i of the tree. The legs at the bottom of the tree
are labeled with the irrep r—or, if r is reducible, an irrep in
the decomposition of r. Each internal leg must be assigned
an irrep compatible with the fusion of the irreps immediately
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below it. As an example, the tree state

a,m

a1 a2

a3

r r r r r

represents a state of five spins transforming as the irrep r that
globally belongs to an irrep that transforms as a. As C(a, b, c)
only exists if the irrep c is part of the decomposition a × b,
which occurs if Nc

ab > 0, this tree represents a state only if

Na
a1a2

Na1
rr Na2

ra3
Na3

rr > 0.

As each tree shape generates a complete basis, the states of
tree bases with different shapes can be related to each other
with a change of basis transformation. For three sites, there
are two possible trees. The change of basis matrix between
the corresponding two bases is called the F symbol, which is
expressed in terms of the Clebsch-Gordan tensors as

d

d

e

a

f

b c
= F abc

def

d

.

The change of basis matrices between any two tree bases on a
larger number of sites can be decomposed into a product of F
symbols by repeatedly applying the relation

d
f

cba
=

e

F abc
def

d
e

a b c

.

For the anyonic Hilbert spaces considered in this paper, there
are equivalent notions of tree states and changes of basis
between them using F symbols. The tree states are not built
in this case using Clebsch-Gordan tensors—instead, the non-
product Hilbert space of many anyons is defined in terms
of the tree states. All relations that we derive in terms of F
symbols only for non-Abelian spin chains also work for anyon
chains. For more information on anyonic Hilbert spaces, see
Refs. [76,77].

Symmetric operators acting on a single irrep must be pro-
portional to the identity, a fact that is known as Schur’s lemma.
By inserting resolutions of the identity for a × b, we can see
that symmetric operators on two irreps a, b must take the form

c

αc

a b

a b

c=Oα
ab

,

that is, they must be linear combinations of projectors Pc
ab onto

a fixed combined irrep c. The constants are fixed by projecting

αc = 1

dc
Tr(PcOα ).

Using this formula and comparing to the definition of the F
symbol above, we see that the basis of operators used in the
text are

a

a

b

b

q
=Oq

ab
=

c

1
dc

F aqb
cba P c

ab.

To derive Eq. (6) for the matrix elements of the two-site
operator Oq

ab in a tree basis, one can use a sequence of F
moves to change the tree shape into one in which the two spins
on which the operator acts fuse immediately.

APPENDIX B: EXACT LYAPUNOV EXPONENTS IN
SELECT CASES

The Lyapunov exponents of the random matrix problems
described in Sec. V B can be computed exactly if the matrices
involved can be simultaneously diagonalized or if they have a
common leading eigenvector.

By (A1), the matrices na with matrix elements (na)bc = Nc
ab

all have a common eigenvector �d with components da the
dimensions of the irreps:

(na �d )b =
∑

c

Nc
abdc = dadb = da( �d )b.

By the Perron-Frobenius theorem, this is the unique largest
eigenvector of the matrices na, as na has all nonnegative en-
tries [62]. Repeated multiplications of any starting vector by
a sequence of na various a leads to convergence to a multiple
of �d: (

D∏
i=1

nai

)
�v → �({ai}) �d.

Similarly, the product of matrices itself converges to a multi-
ple of the projector onto �d:

D∏
i=1

nai → �({ai}) |d〉 〈d| .

Upon multiplying one more matrix naD+1 , the magnitude λ

grows by a factor of the leading eigenvalue daD+1 with proba-
bility pa. Thus, asymptotically the magnitude � grows as

� ∼
D∏

i=1

dai =
∏

a

dDpa
a .

Defining the Lyapunov exponent as λ = 1
D log2 �, we see that

λ →
∑

a

pa log2 da.

Similarly, we can compute the Lyapunov exponent
for other random products where the matrices have a

094203-13



WARE, ABANIN, AND VASSEUR PHYSICAL REVIEW B 103, 094203 (2021)

simultaneous leading eigenvector. For Fib, the probabilities
pa are

p1 = 1

2 + ϕ
, pτ = 1 + ϕ

2 + ϕ

and the matrices for the Mx random matrix product are

m1 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, mτ =

⎛
⎝0 1 1

1 0 1
1 1 1

⎞
⎠.

The leading eigenvalues of m1, mτ are 1, 1 + √
2 and clearly

involve a common eigenvector as the matrices commute. This
leads to the computed value

μ = 1 + ϕ

2 + ϕ
log2

(
1 +

√
2
)
.

Similarly, the matrices for the F x random matrix product are

f 1 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, f τ =

⎛
⎜⎝

0 1
ϕ

1

ϕ
1
2

1 0 1
1 1

ϕ
1
2

1
ϕ

⎞
⎟⎠.

The exact expression for the leading eigenvalue of f τ can be
computed using MATHEMATICA, giving the following expres-
sion for the exponent governing the growth of the random
matrix product:

ξ = 1 + ϕ

2 + ϕ
log2

ϕ
1
2 + 1 +

√
1 − 2ϕ

1
2 + ϕ + 8ϕ

3
2

2ϕ
.

The same method can also give the exponents for D3 . The
probabilities are

p1 = p−1 = 1/6, p2 = 2/3.

The matrices for the Mx random matrix product are

m−1 =

⎛
⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠,

m2 =

⎛
⎜⎜⎜⎝

0 0 1 1 1
0 0 1 1 1
1 1 0 0 1
1 1 0 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎠.

m1, f 1 are identity matrices. These matrices commute and
have a common eigenvector with eigenvalues 1, 1 + √

5 of
m−1, m2 respectively. Similarly, for F the matrices are

f −1 =

⎛
⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠,

f 2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1
2

1
2

1√
2

0 0 1
2

1
2

1√
2

1 1 0 0 1
1 1 0 0 1
1 1 1√

2
1√
2

0

⎞
⎟⎟⎟⎟⎟⎠.

The common leading eigenvector has eigenvalues of 1, 1 +√
1 + 4

√
2 for f −1, f τ respectively.

These examples are unique in that they have only one
non-Abelian irrep or anyon with da > 1. In all of the other
examples, the m and f matrices do not commute and the Lya-
punov exponent must be computed as described in Sec. V B.
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