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Diffusion, relaxation, and aging of liquid and amorphous selenium
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Relaxation and aging rates of amorphous selenium and its undercooled melt are calculated by molecular
dynamics based on an interaction model derived from density functional calculations. After a fast initial relax-
ation immediately following the quench, the decrease of diffusivity and the simultaneous increase of dynamic
heterogeneity follow an exponential law given by defect annihilation. As observed previously in a Lennard-Jones
glass, the non-Arrhenius aging of atomic volume and energy is determined by the time dependence of the
diffusivity. The aging time is determined for long times by the diffusivity and diverges exponentially with
decreasing temperature. Amorphous selenium differs from metallic glasses in that the breaking of covalent
bonds is important for the long time decay of the intermediate self-scattering function (ISSF). Surprisingly
for the temperatures investigated, aging of the relaxation times of the ISSF and the bond decay follow the aging
of the diffusivity.
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I. INTRODUCTION

When a liquid is quenched, the atomic motion slows and
its relaxation rates decrease, as seen, for example, in the vis-
cosity. Crystallization at the melting point Tm can be avoided
by a sufficiently rapid quench, which leads to an undercooled
or supercooled liquid that is metastable with respect to the
crystal. Eventually it leaves thermodynamic equilibrium at a
temperature where the relaxation rate is roughly equal to the
quench rate. If the quench is stopped at lower temperatures,
the liquid relaxes towards equilibrium, a process known as
aging. Since relaxations generally slow upon cooling, so does
aging. Studies on aging have a long history [1], and recent
reviews cover metallic [2] and network glasses [3].

The slowing down of the relaxation rate is often used to
define the glass transition temperature Tg; η(Tg) = 1012 Pa s,
where η is the viscosity. Despite relaxation times exceeding
1000 ps below Tg, the glass relaxes (ages) at these tempera-
tures, and its properties evolve with time and depend on the
waiting time tw after the quench. While glasses often behave
like solids and have ubiquitous uses, the absence of a sudden
structural change at Tg means that they are often viewed as
frozen liquids.

The function Tg(Q) depends on the quench rate Q and is
defined as the temperature where the liquid leaves equilibrium
[4–6]. As with aging, the glass/liquid relaxes towards
equilibrium, and one can define a generalized Tg(Q, tw ),
Tg(Q, tw ) > Tg(Q, t ′

w ) for tw < t ′
w. An alternative calorific

glass transition temperature is frequently used, particularly by
experimentalists (see, for example, Ref. [7]), and is defined by
the change of the specific heat upon cooling from the liquid
to the amorphous state. This definition of Tg does not coincide
fully with the dynamic definition, but also shows aging
effects. Careful measurements with modulated differential
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scanning calorimetry (MDSC) can detect small changes of Tg

after years of aging [8].
By contrast, mode coupling theory (MCT) for simple

glasses predicts a transition at a critical temperature Tc some
20% above Tg. This temperature marks a transition from a
flow dominated regime at higher temperatures to a region
characterized by atomic hopping [9] and is related to the
sharp increase of the viscosity often observed, particularly in
“fragile” glasses [10]. Despite being originally designed for
simple glasses, MCT behavior has been found in a large range
of materials. A detailed review of the theoretical aspects of the
glass transition can be found in Ref. [11].

Glasses are formed by substances as diverse as metals,
polymers or biological materials [7,12] and Se glass is of spe-
cial interest. It is the only glass containing a single element,
and its predominantly chain structure places it at the boundary
between polymer and network glasses. Its extensive literature
includes recent reviews [13,14]. The dynamics of disordered
Se has been studied by classical molecular dynamics (MD)
[15,16], Monte Carlo [17–19], density functional methods
[20–24], and methods that combine experiment and computer
simulation for specific problems [25]. Density functional
methods are often free of adjustable parameters, but are lim-
ited even with modern computers to a few hundred atoms and
times of up to ns. This limits their applicability to high tem-
peratures if one aims to describe relaxation and aging reliably.

Classical MD allows us to study the dynamics for longer
times (μs) and samples of thousands of atoms. The reliability
of the results for specific materials depends crucially on the
choice of interaction potential. We use here the three-body
interaction derived by Oligschleger et al. [26], which was
derived to reproduce the structures of small clusters and prop-
erties of the trigonal and α-monoclinic crystals. We focus here
on the aging time dependence of simple quantities, includ-
ing energy, volume and diffusivity, as well as the relaxation
of the intermediate self scattering function (ISSF) and the
nearest-neighbor bonds. The aging relaxation towards equilib-
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rium is commonly described by a Kohlrausch-Williams-Watts
(KWW) [27,28] stretched exponential expression. While this
expression gives a good fit over long times, the physical origin
of the stretching remains disputed, and the time transforma-
tion t → t + tw is not clear. KWW expressions have been
derived for a number of relaxation models, see Ref. [3] for
a review. In multicomponent glasses with strongly differing
dynamics of the components, the stretching exponents for the
relaxations of atomic energy and volume have been found
to differ [29]. Recent experiments found that for long times
relaxations no longer follow a KWW law but a simple expo-
nential one [30].

In our previous work on aging of a binary Lennard-Jones
(LJ) glass [31], we have shown that the relaxation of a number
of properties can be understood in terms of the aging of the
instantaneous atomic mobility and the subsequent evolution
of the mean square displacement (msqd). This description
satisfies the t → t + tw transformation requirements and in
the long-time limit the relaxation law becomes exponential.
A much slower relaxation of volume and enthalpy than of
diffusivity was found. The present work aims to show the
more general validity of these results by simulating Se, a
glass from a different class of materials, and to extend it
to additional properties. In the present investigation, we use
constant pressure (NPT) ensembles instead of the constant
volume (NVT) ones in the previous work, which shows that
the results do not depend on the details of choice of ensemble
in the simulation. Since we are interested in the medium to
long-time aging the starting ensembles were not produced by
a rapid quench from a much higher temperature [32] but by
a slower quench of rate Qr = 1011 K/s. In the LJ glass, we
found the atomic mobility as the only determining factor for
aging. In the following, we refer to this as diffusive relaxation
channel. Se has strong covalent bonds and one expects the
rearrangement of these bonds without diffusion as a second
relaxation mechanism, a nondiffusive relaxation channel.

II. SIMULATION

We have performed MD simulations at fixed pressure
(NPT ensemble) for ten independent systems of N = 5488
atoms with periodic boundary conditions. The calculations
were done on the JURECA computer at FZ-Jülich utilizing an
“in house” program used earlier in previous work by Caprion
et al., e.g., Ref. [33]. The temperature was adjusted by velocity
scaling and the pressure by the Parrinello-Rahman algorithm
[34]. The equations of motion are integrated with a velocity
Verlet algorithm [35] with a time step of 1 fs. The volume
mass parameter was set to W = √

NmSe, where mSe is the
mass of the Se atom. A small volume damping term was
added to reduce volume fluctuations at high temperatures. The
interatomic interaction of Se was simulated by the three-body
potential of Oligschleger et al. [26], whose parameters had
been adjusted to reproduce properties of Se clusters [36] and
the trigonal and α-monoclinic allotropes, including geome-
tries, energies, and phonon spectra [37,38]. This interaction
model has been useful in a range of contexts [6,16,33,39–45],
and its high-temperature results agree well with a re-
cent density functional study using 600 atoms [24]. The
interaction model does not distinguish between intra- and

interchain interactions, and it reproduces the experimental
structure factor and pair correlation function at room tem-
perature (see Sec. VI A). Density and temperature deviate by
a few percent from the experimental values. This could be
rectified somewhat by adjusting the length and energy param-
eters of the interaction, but this was not carried out here, so
that present and earlier works are compatible. The results are
compared with experiment in Sec. VIII.

First, the ten samples were equilibrated at T = 650 K and
then quenched by reducing the velocities at each time step
(1 fs) corresponding to 0.001 K down to T = 420 K and
0.0001 K below. Figure S7 in Ref. [46] shows the evolu-
tion of the instantaneous temperature for one sample. The
quench rate measured by the reduction of the mean temper-
ature was ≈4×1011 K/s down to T = 420 K and ≈4×1010

K/s below. The slower quench rate covers the temperatures
most relevant in the present work. We then chose quenched
configurations near the temperatures used in the aging study.
The configurations used were taken all at the same quench
time. This means there was a distribution of initial instan-
taneous temperatures spanning about 5 K. Subsequently the
configurations were rapidly quenched to the exact desired
temperature. Properties were then monitored for up to 800 ns,
depending on temperature. Figure S8 in Ref. [46] shows for
one sample at T = 290 K the distributions of initial velocities
for the as quenched state and after aging for 300 ns. The
shift of the maximum reflects the temperature drop from the
instantaneous temperature of T = 297 K of the as quenched
sample to T = 290 K during aging. Otherwise no statistically
relevant change is seen. To check for possible effects of the
velocity scaling procedure additional runs at constant energy,
i.e., without any velocity scaling, were done. These did not
show any significant effect, due to system size and smallness
of the rescaling. To check for possible size effects, additional
samples with 49392 and 148 176 atoms were simulated at
T = 350 and 500 K. No significant effect was seen in the
evolution of the atomic energy and volume or the structure
factor, see Figs. S9–S11 in Ref. [46].

Data were collected at intervals of typically 1 to 10 ps,
and results were averaged when deemed necessary over time
spans that were negligible compared with the aging time.
Aging was studied as usual as a function of waiting time,
tw, i.e., the time between reaching the desired temperature
in the original quench and the time when properties (e.g.,
volume and energy) were measured, or the starting time for
the measurement of bond breaking and intermediate self-
scattering function (ISSF). Our aim is to understand aging
over long times, and short time aging, typically less than a
picosecond, was not studied in detail. The lowest temperature
(T = 270 K) was dictated by computing requirements, and
the highest (T ≈ 500 K) by the chosen quench rate and the
merging of ballistic and diffusional effects.

III. AGING AND RELAXATION

The dynamics of liquids and glasses exhibit relaxations
both above and below the glass transition. In equilibrium
these relaxations are on average independent of time. Quan-
tities like volume and energy at a given temperature T are
constant and the dynamics, as a simple example the mean
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square displacement (msqd) 〈s2(t )〉, depends only on the time
t elapsed from the start of the measurement, but not on the
waiting time tw before the measurement started. This holds no
longer for unequilibrated systems. For example, the atomic
volume V taken at a time t depends on tw the time the
observation started. Obviously V (T, tw, t ) = V (T, t ′

w, t ′) for
tw + t = t ′

w + t ′ holds for the evolution of the volume and
other quantities that measure the state of the system as func-
tion of time. An exponential relaxation obeys this relation
trivially. However, in experiments and simulations one finds
a slowing down of the relaxation with time. This is often
described by a Kohlrausch-Williams-Watt (KWW) stretched
exponential expression. Without an additional dependence of
the prefactor on tw, a KWW law violates the t + tw invariance.

Our previous work on aging of a binary Lennard-Jones
glass [31], a model for a metallic glass, showed that aging
is closely related to diffusion. The relaxation of the glass
after the quench was driven by diffusion over distances of
about a nearest-neighbor distance, and the diffusional mo-
bility (diffusivity) of the atoms decreased during aging. This
can be understood as the annihilation of local structures that
favor mobility, which can be described for long times by a
linear rate equation. At the temperatures investigated, non-
linear effects would have to be taken into account for times
of typically less than 1 ps. The magnitude of these nonlinear
effects depends on the details of the production process, and
they were not studied in detail. In the present work, we follow
the previous approach for the diffusivity and its effect on
the aging of the properties of the glass. By construction, the
expressions obey the t + tw-invariance condition.

Unlike most metallic glasses, Se has strong covalent bonds.
In addition to the diffusive relaxation in the simple metallic
glass, some of these bonds break during relaxation. This can
be triggered by diffusion when Se atoms of different chains
come close and chains reconnect, but we show below that ad-
ditional bond breaking occurs that does not show the signature
of diffusion.

We study here the relaxation (aging) for long times, and the
figures show the aging of different properties for T = 290 K.
Figures for other temperatures are given in Ref. [46]. Curves
showing the temperature dependence are given in the separate
sections and/or the summary, as appropriate. We study first
the elementary processes diffusion and bond breaking. The
change of the ballistic motion/vibration with aging has little
influence on the long time behavior and is not studied in detail.

IV. DIFFUSION

The equilibrium diffusion coefficient can be determined
from the long time limit of the atomic mean square displace-
ment (msqd)

D∞(T ) = 1
6 lim

t→∞ 〈s2(t )〉T , (1)

where s(t ) denotes the atomic displacement and 〈. . . 〉T indi-
cates averaging over atoms and ensembles at temperature T .
If the melt or amorphous material relaxes to an equilibrium,
D∞(T ) depends only on temperature T . If no such equilib-
rium is reached, D∞(T ) depends on the production history.
At the temperatures considered here this dependence is small
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FIG. 1. (Left) Mean square displacement at T = 290 K for wait-
ing times up to 142 ns in double logarithmic representation. (Right)
Mean square displacement in linear representation. As quenched
samples, tw = 0, top and aged samples (tw = 40 ns) bottom. Solid
black lines: simulation result, dashed red and blue lines: fit with
Eq. (4), and dotted red line: msqd calculated from D∞.

and of minor importance. The msqd at finite times, however,
strongly depends on the production history as well as on
temperature. To make this effect tractable in aging studies,
one generally adopts a common starting point, normally a
quench to the required temperature T followed by aging of
the samples at this T . After a waiting time tw, we investigate
the aging of various properties, i.e., their dependence on tw.

To study the aging effects on diffusion, we introduce a
time-dependent diffusion coefficient (diffusivity) D(T, tw, t ),
which converges to D∞(T ) in the limit t → ∞

D(T, tw, t ) = 1

6

d

dt

〈
s2(tw, t ) − s2

ball(tw )
〉
T . (2)

Here, sball(tw ) accounts for displacements due to ballistic
and/or vibrational motion, shown, for example, in Fig. 1 as
the value at t = 1 ps. The ballistic term depends slightly on tw,
mainly due to the dependence of the boson peak [47] on aging,
but this effect is negligible here. Equation (2) applies only for
times beyond the ballistic regime. A different definition of the
time-dependent diffusion coefficient is often used:

Dintegral(T, tw, t ) = 1

6t

〈
s2(tw, t ) − s2

ball(tw )
〉
T

= 1

6t

∫ t

0
D(T, tw, t ′)dt ′. (3)

Both experiment and simulations show that the diffusiv-
ity D(T, tw, t ) decreases with t , and the apparent diffusion
constant Dintegral(T, tw, t ) and the msqd at time t are reduced
with increasing waiting time tw. We have shown [48] that this
decrease with aging of the diffusion coefficient of a binary
Lennard-Jones glass can be described a defect-type model,

D(T, tw, t ) = D∞(T ) + Ddef (T )cdef (T, tw ) exp (−αD(T )t ).

(4)

For different waiting times the concentrations are related by
cdef (T, tw ) = cdef (T, t ′

w ) exp (−αD(T )(tw − t ′
w )). Such a de-

scription is widely used, e.g., to describe defect annihilation
in radiation experiments. Here “defect” does not relate to a
specific defect type but to unspecified deviations from the
(quasi)equilibrium structure of the melt or glass reached after
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long aging times. These defects enhance the diffusion, and the
decay of their concentration is treated in linear approximation
by a rate equation that should hold after a short run-in time.
After a rapid quench, the glass can be too far from equilibrium
to be treated by a linear rate equation, but Eq. (4) holds after
the fast initial relaxation. The initial “defect” concentration
reflects strongly the production history of the system, includ-
ing the quench rate and the waiting time before the measuring
commences.

The decay constant αD, however, changes only weakly with
history. The mean square displacement (msqd) follows from
Eqs. (2) and (4) as〈

s2(tw, t ) − s2
ball

〉
= 6t

[
D∞ + Ddef cdef (tw )

αD
(1 − exp (−αDt ))

]
. (5)

Here we have omitted the contribution of the plateau in the
msqd, which becomes important at lower temperatures. At
the temperatures of the present simulations, the plateau acts
mainly as a small time shift that is negligible in the long-time
aging. In the context of diffusional aging discussed below, it
is important to calculate the waiting time dependence, i.e.,
the time tx when the msqd reaches a given value. For times
t > 1/αD, tx changes exponentially with tw, which is reflected
in shifts of the bond breaking time discussed below (Fig. 5)
and the decay time of the intermediate self-scattering function
(Fig. 11).

As an example, Fig. 1 shows in a double logarithmic plot
(left) the time evolution of the mean square displacement
(msqd) at T = 290 K for waiting times of up to 142 ns. The
msqd is recorded relative to the configuration of the sample
after a waiting time tw following the quench. The temperature
is kept constant during the waiting time. As expected, the
msqd for a given time decreases with waiting time before the
start of the measurement, and the diffusivity of the Se atoms
decreases with aging. For well-aged samples, at T = 290 K
after a waiting time tw ≈ 80 ns, the msqd s2(tw, t ) becomes
independent of tw, and further aging has no visible effect.
In this plot, the initial increase ∝ t2 due to ballistic motion
and vibration is not resolved. The aging effects on these are
not significant for the present investigation. For t < 0.1 ns,
the plateau, typical for glasses is visible and becomes more
pronounced with aging.

Figure 1 (right) shows that Eq. (4) provides an excellent fit
to the diffusivity and the resulting msqd. The curves for the
simulation results and the fit nearly coincide. It holds both
for the as quenched system and the aged ones, e.g., after
tw = 40 ns. The values of D∞ and αD are independent of
tw, they do not change with aging. The dashed lines showing
the fit are hardly distinguishable from the simulation results,
shown by solid lines. The extrapolation from long times using
D∞ (straight line in the double logarithmic plot) shows the
large effect of aging on the apparent diffusion, Dintegral(tw, t ).
We do not observe an additional change of diffusivity on even
longer timescales than the one given by 1/αD(T ). Such a
long-time change could be effected by even slower relaxations
that necessitate the breaking of stable bonds. The effect on
the diffusivity of the volume change during aging is small
compared with the “defect aging” and can be neglected. The

FIG. 2. Diffusion coefficient and its aging rate as functions of
inverse temperature. (Left) Asterisks show D∞(T ) calculated from
Eq. (4), dashed green line: Arrhenius fit for low temperatures, open
diamonds: values from Ref. [16]. (Right) Asterisks show the aging
rate αD(T ), dashed green line: Arrhenius fit for low temperatures, and
open circles: long-time rate of rate of diffusion over nearest-neighbor
distance, αNN.

same was observed in the previous study of a Lennard-Jones
glass [31]

By fitting the time dependence of the msqd with Eq. (4),
the long-time diffusion coefficients D∞(T ) can be evaluated
for lower temperatures when a direct calculation by Eq. (1)
is ruled out by excessive computing demands. Figure 2(left)
shows by (black asterisks) the diffusion coefficients D∞(T )
for temperatures above T = 270 K. For comparison we show
(open diamonds) the values calculated for the same system
with a quench rate of 1013 and equilibration times of 9 to
16 ns at each temperature [16]. As expected, the calcula-
tions agree at high temperatures when the quench rate is
sufficiently low or the subsequent aging or observation time
long enough. Below about T = 330 K, the long times of the
earlier calculation are still insufficient, and the diffusivity is
already overestimated by two orders of magnitude on cooling
to 250 K. As the calculations agree at high temperatures, the
fit of D(T ) by the mode coupling theory (MCT) [49] of the
previous work holds. The high-temperature diffusion coeffi-
cient follows an MCT law D(T ) ∝ (T − Tc)γ , with a critical
temperature of about Tc = 330 K and γ = 1.88 [16]. Below
that temperature, the diffusivity follows an Arrhenius law
D∞(T ) = 2.23×109× exp (−8850/T ) in units of nm2/ns.

The value of D∞(T = 500) = 0.677×10−5 cm2/s agrees
well with the neutron scattering result of Axmann et al.
[50] (≈0.4×10−5 cm2/s). Phillips et al. [51], however, give
a much lower estimate (≈2.2×10−7 cm2/s). A recent den-
sity functional calculation estimates D(T = 500) = 0.096 →
0.178×10−5 cm2/s.

The aging rate αD(T ) is shown in the right part of
Fig. 2. Like the diffusion coefficient itself it can, at
low temperatures, be fitted by an Arrhenius law αD(T ) =
4.4×1010× exp −8026/T . The exponent is about 10% lower
than the corresponding one in D∞(T ). This means that the
aging times of the diffusion coefficient increase not as fast
as D∞(T ) with cooling. For comparison we also show the
long-time rate of diffusion over a nearest-neighbor distance
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RNN.

αNN(T ) = 6 ∗ D∞(T )/R2
NN. (6)

These values are less than αD(T ) by more than a factor of 3.
After an initial fast relaxation for times t < 1 ps, the Se atoms
move on average less than a nearest-neighbor distance during
the aging time 1/αD of D(T ).

A. Dynamic heterogeneity

The dynamic heterogeneity (DH) is a typical “glassy”
property. In a high-temperature liquid, the dynamics is nearly
homogeneous, and all atoms are equally mobile. An under-
cooled liquid is still homogeneous when averaged over long
times, but at intermediate times atoms or groups of atoms
differ in their mobility; some are slow, others fast. Over long
times, slow atoms convert to fast atoms and vice versa, an
effect called dynamic heterogeneity. The timescale for this
conversion increases with cooling. Upon cooling to the glass
transition this heterogeneity increases dramatically. It affects
all dynamic properties e.g. vibration [52] where it is connected
to quasi-localized modes or the viscosity [53]. The DH is often
studied by using four point correlation functions [54]. DH is
observed most easily in the msqd and the atomic diffusivity.
A common measure is the non-Gaussianity parameter (NGP)
α2 [55]

α2(t ) = 3〈�s4(t )〉
5〈�s2(t )〉2

− 1. (7)

The NGP is normalized to α2(t ) = 0 for homogeneous vibra-
tions and diffusion. The temperature and time dependence of
α2(t ) for our system has been reported earlier [40], and we
focus here on the change during aging, as exemplified for
T = 290 K. Figure 3 shows the evolution of the NGP with
time for different waiting times tw. After a small increase
due to the inhomogeneity of the vibrations, not shown here,
the NGP increases ∝ √

t for all waiting times. This increase
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FIG. 4. Waiting time dependence of time and value of the maxi-
mal non-Gaussianity. Red lines: fit with an exponential aging rate αD

determined from the aging of the diffusivity, Eq. (4).

with
√

t is seen also in the previous study of the temperature
dependence of the NGP. It can be explained as a signature of
collective motion, i.e. groups of atoms move collectively [40].
In the present case such collective motion is to be expected
due to the chain structure. The NGP then passes through a
flat maximum and finally decays. For the well-aged samples,
the decay is approximately ∝ t−2/3. The NGP decays more
slowly for shorter waiting times, an effect of the interplay of
the increase of α2(t ) with aging and the decay for long times.
The increase of the NGP with aging is similar to the one with
cooling, see Ref. [40] and Fig. S2 in Ref. [46]. The NGP of the
as-quenched samples corresponds roughly to the one at T =
320 K after aging. Therefore the as quenched samples can
be assigned a heterogeneity temperature Theterogeneity ≈ 320 K.
Aging reduces this temperature by 30 K.

As observed for the LJ glass [48], the aging rate of the
NGP is the same within the error bars as that of the diffusivity
αD(T ). This holds for both the value and time of the maximal
α2(t ), see Fig. 4. At T = 290 K, the maximal NGP increases
by a factor 2 upon aging. Cooling further to T = 270 K this
factor increases to 3. For a different quench procedure, these
values will of course differ. However, the aging constants and
the general trend will still hold.

B. Diffusion-driven aging

Diffusion and non-Gaussianity are essentially single par-
ticle properties, and their aging can be described by the
annihilation of “defects” during the transition to a more ideal
glass structure. The relaxation of extensive quantities—such
as energy, volume, or pressure—is much slower for a metal-
lic like system [31], but it is driven by diffusion, and the
time dependence can be explained by the evolution of the
mean square displacement that reflects the aging of the dif-
fusion coefficient. There are then two timescales for aging in
an LJ glass: a shorter one for diffusivity and heterogeneity,
given by Eq. (4), and a longer one for energy, pressure, and
volume. These timescales begin to diverge near the critical
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temperature. As seen above the shorter timescale can be ex-
pressed by a defect annihilation process, whereas the second
is related to diffusion-driven aging and given by the msqd
(diffusive aging).

The aging of some quantity A(T, t, tw ) is described by

A(T, t, tw ) = A∞(T ) + �A(tw )e−〈s2(t,tw )−s2
ball〉/�2

A(T )

= A∞(T ) + �A(tw )e−6Dintegral (t,tw )t/�2
A(T ) . (8)

Here, �A(tw ) denotes the initial deviation from the long-time
limit and depends on the production procedure and waiting
time. The length �A is characteristic for the aging of the
quantity A. It indicates how far, on average, an atom diffuses
during the aging time tA

aging(tw ). We expect it to be of the
order of the nearest neighbor distance and independent of
tw. For long times, Dintegral(t, tw ) → D∞(T ), aging becomes
exponential, and the limiting aging time is given by the diffu-
sion coefficient. Upon cooling the diffusion coefficient (and
the aging rate) will eventually decrease exponentially with
decreasing temperature. The enhanced diffusivity for shorter
times causes a faster aging at those times, often described
by stretched exponential (KWW) expressions. From Eq. (8)
we can define two different aging times, the standard one by
the decay of the aging effect to 1/e, tA

aging, and a second one,
tA
aging,∞, for the limit of long-time aging that is determined by

D∞(T ). tA
aging depends on the initial state, but tA

aging,∞(T ) does
not. Since the diffusivity decreases with time one always has
tA
aging < tA

aging,∞. The aging times are given by

�2
A(T )

/〈
s2

(
tA
aging, tw

) − s2
ball

〉 = 1 (9)

and

tA
aging,∞(T ) = �2

A(T )/(6D∞(T )), (10)

respectively.

V. BOND BREAKING

In a strongly covalent material such as Se, one expects ad-
ditionally to the timescale due to atomic mobility a second one
given by the breaking of the covalent bonds. Bond breaking
can be triggered by diffusive motion but also occurs nondiffu-
sively. In an ideal Se crystal, each atom has covalent bonds to
two nearest neighbors. In amorphous Se one expects a similar
nearest-neighbor number per atom. Taking the usual defini-
tion of nearest neighbor, namely, each atom closer than the
distance of the first minimum of the pair correlation function
g(r), r < rmin, we find an average nearest-neighbor number
of nNN(0) = 2.05, nearly independent of aging. Since g(rmin)
does not vanish, this number depends slightly on the choice of
cutoff, but this does not influence the following discussion. To
investigate the waiting time dependence of bond breaking, we
determine the nearest neighbors of each atom at waiting times
tw and follow the evolution of the neighborhood. The chain
structure is changed locally, even when the average number
of nearest-neighbor bonds changes little with time: individual
bonds are broken, nearest-neighbor pairs break up, and new
pairs are formed.

The solid lines in Fig. 5 (left) show the time decay of
the original neighbor bonds for different waiting times. Com-
parison with Fig. 1 shows that this decay is slower than the
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FIG. 5. (Left) Decay of the initial nearest-neighbor bonds per
atom (double counting of bonds) nNN (t, tw ), for waiting times tw =
0, 4, 20, 80, 142 ns (from bottom to top). Solid lines simulation re-
sults, and hardly distinguishable dashed lines fit with Eq. (11). Dotted
lines at bottom: exponential decay of bonds not affected by diffusion.
(Right) Change of bond decay times with waiting time. From bottom
to top: decay to 1/e, 0.1, and 0.05 of initial value, respectively. The
red line indicates an exponential fit.

slowing down of the atomic mobility (diffusivity), which fol-
lows Eq. (4). We describe this decay by two terms: a decay
driven by diffusion according to Eq. (8) and an an addi-
tional exponential decay describing the nondiffusive breakup
of bonds. The decay of the nearest-neighbor number is then

nNN(T, t, tw ) = nNN(T, 0, tw ) exp (−αbb(T )t )

× [
fbb(T, tw ) + (1 − fbb(T, tw ))

× exp
(−〈

s2(t, tw ) − s2
ball

〉/
�2

bb(T )
)]

. (11)

Here nNN(T, 0, tw ) denotes the average nearest-neighbor co-
ordination number present initially. The dependence on T
and tw is slight and unimportant for the present results. Each
nearest neighbor bond is then counted twice. nNN(T, t, tw )
denotes the average number of original connections present
at time t , fbb(T, tw ) gives the fraction of bonds not broken by
a diffusive process, αbb(T ) is the nondiffusive bond-breaking
rate, and �bb(T ) is the characteristic length for diffusive bond
breaking. With �bb = 0.338 nm, it is slightly larger than the
nearest-neighbor distance and independent of tw. The fit by
Eq. (11) (dashed lines in Fig. 5) shows that the curves are
nearly indistinguishable. Most bonds break with a diffusive
process, and the fraction of other bonds fbb(T, tw ) increases
from an initial 10% to 15% with increasing waiting time
(dotted lines). fbb(T, tw ) depends on production history and
aging.

Figure 5 (right) shows the increase of the bond breaking
times with aging, from bottom to top decays to 1/e, 0.1,
and 0.05, respectively. Except for the initial value for the
as-quenched glass, the increase of the decay time can be fitted
by an exponential law

tbb(T, tw ) = tbb(T, tw → ∞) − �tbd(T ) exp(−αbbtw ). (12)

The aging time 1/αbb for bond breaking is much shorter than
the bond-breaking time itself (note the different timescales in
Fig. 5, left and right). It is comparable to the aging time of
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FIG. 6. Decay times of the nearest-neighbor bonds as function
of inverse temperature. For large waiting times (tw → ∞), the times
(inverse rates) for the decay to 1/e of nondiffusive and diffusive
parts of the bond decay are shown by asterisks and blue diamonds,
respectively. The red line shows the decay time for the as quenched
samples. The green triangles show for two temperatures and well
aged samples the times for a bond decay to 1/e, 0.1, and 0.05 of their
respective original values. The open magenta circles give the aging
times 1/αbb of the rates for bonds to decay to 1/e. The dashed lines
show the Arrhenius approximations for the various decay times. The
insert shows the fraction fbb of the bonds decaying nondiffusively in
aged samples.

the diffusion coefficient. At T = 290 K the same exponent,
αbb = 0.29 ns−1 reproduces the values for decays down to 5%.
This results from the small contribution of the nondiffusive
decay channel. For lower temperatures the nondiffusive decay
gains importance, insert in Fig. 6, and the exponential fit of
the decay times requires different exponentials, depending on
the final fractions.

Since at all temperatures the relative weight of the two
decay channels changes with production history and waiting
time the bond breaking time will do likewise. Furthermore,
the relative weights of the two channels also change with the
definition of decay time, i.e., the slower nondiffusive channel
becomes more important when one asks for a larger fraction
of bonds to be broken. The decay time of the diffusive channel
reaches its maximal value in the limit of long aging times
(tw → ∞): �bb(T )/(6D∞(T )). These times are shown by blue
diamonds in Fig. 6. The characteristic length �bb(T ) increases
with temperature from 0.32 nm at T = 270 K to 0.49 nm at
T = 400 K. For the nondiffusive channel no marked change
of the rate with aging was observed. The times, shown by
black asterisks, are always larger than their diffusive coun-
terparts. The temperature dependencies of both times follow
approximately Arrhenius laws with a change of activation
energy at about 340 K. The approximate activation energies
are 7900 and 2700 kT for the diffusive channel and 8900
and 2700 kT for the nondiffusive channel, respectively. Low-
ering the temperature the nondiffusive bond breaking gains
in importance. The insert of the figure shows as function of

inverse temperature the fraction of the bonds that are broken
via a nondiffusive mechanism in the aged samples. Below
T = 350 K, this mechanism rapidly gains in weight and even-
tually dominates.

A bond lifetime, defined by the decay of the original bonds
to some fraction funbroken is influenced more strongly by the
slower nondiffusive channel the smaller funbroken. We illustrate
this for well aged samples at two temperatures by green trian-
gles. At T = 290 K, the decay of the bond number to 1/e is
dominated by the diffusive channel whereas the decay to 5% is
dominated by the slower nondiffusive one. At T = 400 K, the
diffusive process always dominates. The bond breaking in not
fully aged samples is faster than given by the limiting values.
The red line in Fig. 6 shows bond decay time to funbroken = 1/e
for the as quenched samples.

Finally we show by red circles in Fig. 6 the aging times,
as expressed by Eq. (12), for decays of the bonds to a fraction
1/e. The aging times are about an order of magnitude shorter
than the corresponding bond-breaking times. They follow an
Arrhenius law with an activation energy of 8100 kT, similar to
the aging times of the diffusivity. This confirms that the aging
of the bond-breaking rate is initially dominated by diffusion
which inhibits a flip flop of bonds.

VI. AGING OF ONE-TIME FUNCTIONS

Properties such as structure factors, energy or volume are
determined by the state of the system at a given time. In
the context of aging, they depend on the production process
and the subsequent waiting time, and one needs to determine
the value after some time t and not how it has evolved. An
example is the instantaneous diffusion coefficient (diffusivity)
D(T, tw, t ) discussed above. Other quantities, such as mean
square displacements, bond breaking dynamics, or intermedi-
ate scattering functions, quantify the evolution over given time
intervals and are two-time functions. The evolution history
determines ultimately the one-time properties, and D(T, tw, t )
is given by the msqd at time t without showing the previous
history. We look first at the aging of typical one-time func-
tions.

A. Structure

Amorphous Se is formed by chains and rings of Se atoms.
Using a cutoff distance of 0.28 nm at T = 350 K, we find 18%
of the atoms in rings and 82% in chains of varying lengths. As
definition of ring we take here a loop of of atoms that do not
have a third atom within the cutoff distance. This means no
threefold coordinated atoms are in the loop. Five-membered
rings make up about half of the ring atoms, the others being
distributed over larger rings with 6, 7, 8, and more atoms
(15%, 9%, 13%, and 13%, respectively). These numbers agree
semiquantitatively with those of a density functional calcu-
lation [24]. The experimental situation concerning ring and
chain structure is unclear [24]. Apart from the earliest stages
of aging, changes in the number of atoms forming rings were
insignificant, but there was a small change in the distribution
of ring sizes. It is difficult to determine if this is a random fluc-
tuation or a true aging effect. 93.5% of the atoms are twofold-,
6% threefold-, and 0.4% singly coordinated. Depending on
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FIG. 7. Pair correlation function of Se at T = 290 K.

the connectivity at threefold coordinated atoms different chain
lengths can be defined. We have not investigated this further,
but have focused on the pair pair correlation factor (PCF) g(r)
and static structure factor (SSF) S(q).

The strong aging of the mobility is not reflected in these
simple quantities used to identify structure. The PCF in an
isotropic system is defined as

g(r) = V

4πr2N2

〈∑
i

∑
j �=i

δ(r − ri j )

〉
, (13)

where ri j is the distance between atoms i and j and 〈. . . .〉
denotes the configurational average. Independent of aging,
the PCF (Fig. 7) shows a well separated first neighbor peak,
reflecting the ideal coordination number 2 of Se, and a well
defined peak for the second neighbors. The integral up to the
minimum between the first two maxima gives a coordination
number of 2.05 for our amorphous samples. The positions of
the first three peaks at 0.235, 0.364, and 0.443 nm lie within
the experimental ranges reported in the literature [56,57]. No
marked change with aging was discernible within the numer-
ical accuracy of this calculation. This could be different for
a more brutal quench program, e.g. an instantaneous quench
from significantly higher temperatures. We focus here on
long-time aging effects when the fast initial aging after such a
rapid quench would have decayed. Short time effects follow-
ing a rapid quench depend more on the details of the sample
preparation. No attempt was made to follow the evolution with
waiting time tw of the minuscule change of g(r).

There are slightly larger aging effects on the static structure
factor S(q), which we calculated by direct Fourier transform
using q vectors compatible with the periodicity. This avoids
artifacts due to cutoffs of g(r) at large r when using the Fourier
transform of the PCF.

S(q) = 1 + 1

NqN

〈∑
|q|=q

∑
i

∑
j �=i

exp (−iq(Ri − Rj))

〉
, (14)

where Nq denotes the number of q values with |q| = q.
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FIG. 8. Static structure factor, S(q), at T = 290 K; dotted red
line: as quenched, solid black line: after a waiting time of 219 ns. The
blue diamond indicates the long wave length limit calculated from
the experimental compressibility [58] and density and the dashed
blue line gives the neutron scattering results at t = 293 K [56].

As an example we show S(q) at 290 K in Fig. 8. The
calculated SF agrees well with the one derived from neutron
scattering [56] and the peak positions agree with the reported
experimental ones [59,60]. With increasing temperature the
peaks broaden but shift little. During aging the first main
peak grows by about 5%. This growth is compensated by a
deepening of the first minimum. No aging effect is seen at
higher q. As shown in Fig. 9, the increase of S(q) with waiting
time is compatible with an expression analogous to the one for
D(T, tw, t ) Eq. (4),

Smax(T, t ) = Smax(T, t = ∞) − �Smax exp (−αDt ), (15)

where Smax(T, t = ∞) is the final, long time, value, �Smax

is the deviation at the start of the observation, and αD is the
decay constant determined from the diffusivity. The small
variation with time, combined with the strong scatter of the
data, prohibits a definite conclusion. Since the total number
of nearest-neighbor bonds stays constant during aging, we
do not expect bond breaking effects without diffusion to be
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FIG. 9. Waiting time dependence of the height of the first peak
of the structure factor. The red line shows the fit by Eq. (15).
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FIG. 10. Decrease of the atomic energy (top) and volume (bot-
tom) with time; black: simulation result, red lines: fit by Eq. (16),
green dashed lines: fit of the long-time relaxation using the long-time
diffusion coefficient D∞(T ).

prominent in the aging of the structure factor. The contribution
of nondiffusional bond breaking is very small.

As in earlier simulations a prepeak is seen at around
q = 10 nm−1 that has been ascribed to correlations between
holes in the structure [16,61]. The prepeak vanishes under
high pressure, indicating the removal of holes by compacting.
The prepeak intensity also diminishes during aging, and we
interpret this as a signature of the annihilation of holes. This is
consistent with the shrinking of the atomic volume discussed
below. The experimental curve shows a slight shoulder, not a
prepeak, which may be a resolution effect.

B. Volume and energy

The effect of aging on the atomic volume and energy is
more pronounced than in the PCF and structure factor. At T =
290 K, the atomic volume shrinks from an initial, as quenched
value of 0.0292 nm3 to a long time limit of 0.0285 nm3.
The corresponding values for the energy are −2.364 eV and
−2.372. This means that in our system with N = 5488 about
130 atomic volume units are annealed by aging on average.
This value is of course strongly dependent on the production
history or quench rate. What part of this “free volume” is
localized in voids or spread out is not clear.

In our previous work on the LJ glass [31], we found that
the atomic volume and energy age on much longer timescales
than the diffusivity. Energy and pressure aged in parallel, and
the aging could be understood as driven by diffusion. This
also holds in the present case, see Fig. 10. The relaxation with
aging of both volume and energy is reproduced very well by
diffusive aging, Eq. (8):

E (T, tw, t ) = E∞(T ) + �E (tw )

× exp
(−6Dintegral(tw, t )t/�2

E ,V (T )
)
,

TABLE I. Lengths in nm for diffusional bond breaking, decay of
the ISSF, and aging of volume and energy.

T (K) �bb (nm) �E,V (nm) �ISSF (nm)

270 0.31 0.28 0.17
280 0.31 0.26 0.17
290 0.35 0.26 0.17
300 0.36 0.26 0.17
310 0.39 0.22 0.17
330 0.43 0.25 0.17
350 0.49 0.21 0.17

V (T, tw, t ) = V∞(T ) + �V (tw )

× exp
(−6Dintegral(tw, t )t/�2

E ,V (T )
)
. (16)

The simulation results (black lines) and the fit results (red
lines) are nearly indistinguishable. To show the effect of the
aging of the diffusivity, we show (green dashed lines) a fit
to the long time relaxation using in Eq. (16) the long-time
diffusion coefficient D∞(T ) instead of the time dependent
Dintegral(tw, t ). This shows that when the diffusivity reaches
its equilibrium at around t = 70 ns the aging of energy and
volume follows a simple exponential law exp −(αt ) with α =
6D∞(T )/�2

(E,V)(T ). The characteristic length scale is for both
energy and volume �(E,V) = 0.255 nm, i.e., approximately
the nearest-neighbor distance. It does not change markedly
between T = 270 and 350 K, Table I. The length �(E,V)(T ) is
about 25% shorter than its counterpart seen in bond breaking,
�bb(T ). One would expect an additional contribution to the
relaxation by the bond breaking not coupled to diffusion. If
present, it is to is too small to be observed in the evolution of
energy and volume. This might be explained by the fact that
the total number of nearest-neighbor bonds does not change
markedly during aging. A linear relation between enthalpy
and volume relaxation, as follows from Eq. (16), has been
observed also in an experimental relaxation study over 105 s
[62].

In the binary LJ glass, which is often studied as a model of
a simple glass that follows the predictions of mode coupling
theory [63], a pronounced cusp of �(E,V)(T ) was seen near the
mode coupling temperature [31]. In the present case, we do
not see such a cusp.

VII. INTERMEDIATE SELF-SCATTERING FUNCTION

In the evolution of properties such as the volume or energy
t and tw are interchangeable. Some properties change very
little, including the static structure factor and the coordination
number. More insight is gained by studying the dynamics, i.e.,
the evolution of some property with time, starting at a time tw
the result depends on both tw and t . At the temperatures used
in this investigation, the glasses exhibit considerable change
of the dynamics as shown, e.g., in Fig. 1 if one concentrates
on the evolution of msqd itself instead of using it merely to
calculate the diffusion coefficient. Also in the study of bond
breaking we have seen a marked change of the dynamics, not
only an aging dependence of the bond decay time (Fig. 5).

A commonly used tool to gain information about
the dynamics in glasses and liquids is the intermediate
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FIG. 11. Intermediate self-scattering function, Fs(q, T ), of Se at
T = 290 K and q = 21.1 nm−1. (a) Solid lines Fs(q, T ) for the
as-quenched samples (black) and after a waiting time of tw = 80 ns
(upper red line); dashed lines: Gaussian approximation; dotted lines:
expansion including lowest order non-Gaussianity. (b) Decay of the
intermediate scattering function on a logarithmic timescale for wait-
ing times tw = 0, 4, 20, 80, and 142 ns (from bottom to top). The
simulation results (solid lines) and the fit with Eq. (19) (dotted) are
hardly distinguishable. Lower dotted lines indicate the exponential
decay for long times. Using a linear timescale, the insert emphasizes
the long-time logarithmic decay. (c) Waiting time dependence of the
amplitudes in Eq. (19), lower line: AF,l (tw ), upper line: AF,d (tw ), dot-
ted line exponential approximation to AF,l (tw ). (d) Relaxation times
as function of waiting time. From bottom to top: decay of the ISSF
to 1/e, 0.1, 0.05, 0.01.; dotted lines: exponential approximation of
long-time aging.

self-scattering function (ISSF)

Fs(q, t ) = 1

N

〈[∑
i

eiqri (t )

][∑
i

eiqri (0)

]〉
, (17)

where <> indicates the average over angles and configura-
tions. The ISSF can be extracted experimentally by various
scattering techniques, e.g., incoherent neutron scattering. Its
time decay divides into three regimes. At the shortest times
(t < 0.1 ps), not treated here, Fs(q, t ) decays rapidly due
to ballistic and vibrational motion. At about 1 ps this de-
cay is fully evolved. At long times, Fs(q, t ) decays to zero
on timescales of a few picoseconds in the hot liquid, a
few nanosesonds in the undercooled liquid and finally the
timescale diverges in the glass as T → 0. This decay is associ-
ated with the α relaxation. A shoulder or plateau related to the
β relaxation evolves for intermediate times in the undercooled
liquid and even more strongly in the glassy state.

Figure 11(a) shows Fs(q, t ) for q corresponding to the first
main peak of the static structure factor, S(q). It shows the
usual behavior both for the as quenched samples and after

a waiting time of 80 ns. In the ballistic/vibrational regime,
t < 0.3 ps, little aging effect is discernible. This is in agree-
ment with the absence of major aging effects on both g(r) and
the average number of nearest neighbor bonds. The shoulder
following the ballistic regime becomes more pronounced with
aging, and stretches to about 1 ns for the aged samples. The
strongest effect is seen in the α-relaxation regime where the
relaxation time increases by orders of magnitude during aging.

The short time behavior of the ISSF can be described by
expanding the exponential in Eq. (17) [3,64]

Fs(q, t ) = exp

(
−q2〈s2(t )〉

6

)

×
[

1 + 1

2

(
−q2〈s2(t )〉

6

)2

α2(t ) + · · ·
]
. (18)

The first (Gaussian) term describes fully homogeneous dy-
namics. It describes the vibrational part adequately, but
fails already for the onset of the shoulder [dashed lines in
Fig. 11(a). The vibrational non-Gaussianity is relatively small
and changes little during aging, Fig. 3. The second term
accounts in lowest order for the dynamical heterogeneity as
expressed by the non-Gaussianity coefficient α2. It extends the
validity of the expansion to about 100 ps, covering the main
part of the shoulder of Fs(q, t ) (dotted lines). The evolution
of the shoulder is strongly aging dependent, as also seen for
the non-Gaussianity itself (see Fig. 3). Following the ballistic/
vibrational regime for all waiting times, the NGP increases
as α2(t ) ∝ √

t . This universal increase has been found [40] to
be independent of temperature. The change of the height of
the shoulder is, therefore, given by the strong dependence of
〈s2(t, tw )〉 on the waiting time. The time when Fs(q, t ) breaks
from the shoulder correlates with the time when α2(t ) breaks
from α2(t ) ∝ √

t . The formation of the shoulder (plateau) can
thus be traced to the heterogeneity. The extent of the shoulder
is given by the breakaway from the

√
t-increase towards the

maximum of α2(t ). The variation in height reflects the de-
crease of the short time mean square displacement with aging.

The expansion of Fs(q, t ) breaks down for times of order
ns and beyond. The NGP passes its maximum around 1 ns
and is strongly affected by aging. At this point, the time-
dependence of the msqd is still dependent on aging and is not
yet linear. To study this time regime in more detail, Fig. 11(b)
shows Fs(q, t ) (solid lines) for a number of waiting times in a
logarithmic-linear plot as in (a) and a linear-log plot as insert.
An expression analogous to Eq. (11) gives an excellent fit for
all waiting times (dashed) lines that is hardly discernible from
the simulation result.

Fs(q, t, tw ) = exp(−αISSFt )
[
AF,nd(T, tw ) + AF,d(T, tw )

× exp
(−〈s2(t, tw )〉/�2

ISSF

)]
. (19)

This implies that two distinct mechanisms drive the decay of
the ISSF, one driven by diffusion and a second by nondiffusive
bond breaking. The two factors in the exponent, 1/αISSF =
83 ns and �ISSF = 0.167 nm, are independent of tw, whereas
AF,nd(T, tw ), AF,d(T, tw ), and the msqd vary with aging. The
length �ISSF is again somewhat less than the nearest-neighbor
distance and is shorter than its counterparts in the volume and
energy relaxation, �E ,V , and in the bond breaking, �bb. The
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FIG. 12. Temperature dependence of the decay and aging times
of the intermediate self-scattering function (ISSF) at q = 21.1 nm−1.
Black asterisks decay of the ISSF to 1/e, red circles to 1/10, blue
diamonds decay to 1/20. The green triangles indicate the aging time
of the decay time. The dashed lines show the Arrhenius laws for the
lower temperatures.

insert in Fig. 11(b) shows the long time exponential decay
of the ISSF. The exponential contribution given by Eq. (19)
is shown by dotted lines. Fig. 11(c) shows the increase of
the nondiffusive contribution to the ISSF with aging and the
concomitant drop of the diffusive contribution. The waiting
time dependence of AF,nd(T, tw ) follows an exponential law

AF,nd(T, tw ) = 0.405 − 0.39 ∗ exp(−tw/33). (20)

The decay of the ISSF is frequently used to define a re-
laxation time. In Se, where at least two distinct mechanisms
with different timescales contribute to the decay, the relative
importance of the mechanisms depends on the definition of
the relaxation time. In Fig. 11(d), the waiting time dependence
of the relaxation time is shown for decays to 1/e, 0.1, 0.05,
and 0.01. The time dependence for long waiting times can be
described by a simple exponential law

tISSF(tw, f ) ≈ tISSF(0, f ) + �tISSF( f ) exp
(−tw

/
t aging
ISSF

)
, (21)

where f denotes the fraction to which the ISSF has decayed.
At T = 290 K, the aging time tα,aging = 30 ns is indepen-
dent of f and similar to the aging time of the nondiffusional
amplitude. This indicates that the main aging mechanism for
the ISSF is the shift from diffusive to nondiffusive decay, in
agreement with the similarity of the aging times of the ISSF
and the diffusivity (1/αD = 27 ns).

The decay with time of the ISSF and its aging time are
summarized for temperatures from 600 to 270 K in Fig. 12.
The decay times tISSF for decays to Fs(q, t, tw ) = 1/e, 0.1,

and 0.05 are indicated by black asterisks, red circles, and blue
diamonds, respectively. Below 300 K, the decay follows an
Arrhenius law

tISSF(T, tw → ∞) = 2.81×10−14 exp (−10 000/T ) ns, (22)

shown( dashed line) for the decay to 1/e. The decay to lower
values shows a similar decay rate. The fast decay for the
as-quenched sample is not covered by this law. In the case of
T = 290 K the Arrhenius law is valid for times larger than
10 ns, see Fig. 11(d). The decay times for “as-quenched”
samples will in general be shorter and depend on the exact
history.

The aging time, t aging
ISSF (T ) of tISSF(T, tw ) is shown by green

triangles (for decay to 1/e). For low temperatures, it is less
than the corresponding tISSF(T ), at higher temperatures this
is reversed. Fs(q, t, tw ) decays to 1/e before the correspond-
ing aging time is reached. Note that the aging effect here is
always taken relative to the sample with tw = 0. In the limit
tw → ∞, the effect of aging vanishes and the “incomplete”
aging becomes irrelevant. At low temperatures the aging time
again follows an Arrhenius law (dashed),

t aging
ISSF (T ) = 2.910−11 exp (8000/T ) ns. (23)

The aging of the ISSF and the bond breaking time at the lower
temperatures follow the same Arrhenius law as the aging of
the diffusion coefficient, which suggests strongly that they
have a common origin.

VIII. COMPARISON WITH EXPERIMENT

Comparisons with experiment have been given in several
places above. In summary, the calculated PCF and SF com-
pare well with experiment and the long wave length limit of
the SF agrees with the one calculated from the experimental
compressibility and density. The experimental values for the
diffusion coefficient vary greatly, but the calculated value lies
in the range of both experiment and the density functional
calculation.

The distributions of rings and chains was not studied
systematically in this work. The present results agree semi-
quantitatively with those of the recent density functional
calculation [24]. One obvious result is the dominance of
five membered rings in particular over eight membered ones.
Experimental studies concentrated mainly on the fraction of
atoms in chains versus eight membered rings. The difference
between the Raman active modes in trigonal Se (A1, 233
cm−1) and monoclinic Se (250 cm−1) has been interpreted
as the signature of eight-membered rings in the glass [65]. It
was found that the relative fraction of chain- and ring atoms
changes with temperature [47]. It was reported that the chain-,
ring- structure changes, even on a scale of months [8], which
far exceeds the timescale of any simulation. However, Se5,
Se6, and Se7 molecules are more prevalent in the vapor above
liquid Se [66], pointing to their presence in the liquid.

The interaction model used was constructed to fit small
molecules and crystalline allotropes. Small deviations of the
predicted values for the density and temperature variation
have to be expected. These should not affect the basic mech-
anisms of aging that are the subject of this paper. Figure 13
shows that at room temperature the calculated density as
quenched is about 7% higher than the experimental one. Ag-
ing increases this discrepancy. This is probably mainly due
to limitations of the interaction model and could be reduced
somewhat by a rescaling of the length parameter. This would
not change the present conclusions and has not been carried
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FIG. 13. Temperature dependence of the density: black line den-
sity after the quench; red asterisks final density after aging (ρ∞(T ))
according to Eq. (16); blue diamonds experimental density [67,68];
and green circle density after aging of expanded sample, see text.

out, so remaining consistent with earlier simulations with this
model interaction.

The absence of larger voids that are suppressed by the
periodic boundary conditions is another possible effect, and
Andonov [57] estimated that they comprise 10% of the vol-
ume at room temperature. To check for their presence, we
have performed an additional run with N = 148176 under
constant energy conditions (NPE), starting from the relaxed
NPT sample at T = 350 K. All lengths were scaled by 1.03%
and the evolution of volume/density was monitored for 4.5 ns.
The final state, shown by a green circle in Fig. 13, was at
a temperature of 366 K with a density of 4.31 g/cm3. This
change is in the right direction, but is not conclusive. Even
this large sample is small on experimental scales and would
suppress larger voids in the glass.

The calculated thermal volume expansion coefficient in
the liquid αV = 3.4 ± 0.1×10−5 K−1 agrees reasonably well
the experimental value αV = 3.5 ± 0.01×10−5 K−1 [69,70].
Approaching Tg the calculated coefficient reduces to about
αV ≈ 2.1×10−5 K−1 (taken between 350 and 400 K).

We are not aware of experimental data which allow a
quantitative comparison of the aging data. In particular, a
simultaneous measurement of diffusion and properties such
as volume relaxation would be useful.

IX. SUMMARY

In addition to a rapid initial relaxation on a picosecond
scale, we have identified three mechanisms in relaxation and
aging in the temperature range from T = 270–500 K, span-
ning the glass transition of Se. These are a slowing down
of the atomic mobility, a relaxation driven by diffusion, and
a decay of remaining nearest-neighbor bonds. The first two
were identified previously for the “metallic” LJ glass [31]
and the present results confirm and expand these findings.
In addition to the first two effects, bond breaking without
accompanying diffusion could be seen in the time dependence
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FIG. 14. Temperature dependence of typical aging times. Black
asterisks: aging of the diffusion constant, red diamonds: long-time
aging of atomic volume and energy, blue circles: aging of the bond
breaking time, and magenta crosses: aging of the decay time of the
ISSF. The dashed lines indicate the Arrhenius laws for the aging time
1/αD of the diffusion coefficient (black) and of 6D∞(T )/�2

E,V(T )
(red).

of the bond breaking itself and the decay of the ISSF but not
in the volume and energy relaxation. This might be different
for glasses whose dynamics are more strongly affected by
covalent bonding.

We summarize in Fig. 14 the temperature dependence
of typical aging times, i.e., the time for the long-time ag-
ing to decay to 1/e. The aging time of the diffusivity
1/αD is shown by black asterisks. As shown in Sec. IV, it
follows below about 300 K an Arrhenius law 1/αD(T ) =
2.27×−11× exp (8026/kT ) ns. The aging of the bond break-
ing time and the decay time of the ISSF are shown by blue
circles and magenta crosses, respectively. They follow below
300 K the aging of the diffusion constant as demonstrated
for T = 290 K above. This shows that, once the diffusion
constant has aged, so have the relaxation times of diffusion-
driven relaxations. By contrast, the relaxation of volume and
energy are much slower. After a sufficient waiting time, their
aging is dominated by D∞(T ) [Eq. (16)], not by the aging of
the instantaneous diffusion coefficient [Eq. (4)]. Apart from a
small variation of �E ,V (Table I), volume and energy aging be-
low 300 K slow down exponentially with the low temperature
law of the diffusion coefficient D∞(T ), apart from possible
small contributions due to bond rearrangement seen in long
time experiments [8].

Figure 14 shows that diffusion dominates in the aging pro-
cess near Tg. It also illustrates the difference in aging toward
an infinite time equilibrium structure [seen in the aging of
E (T, tw ) and V (T, tw )] and the aging of the decay time of
a correlation function (bond decay, ISSF) whose decay is
dominated by atomic motion. Table I gives the lengths for the
diffusional relaxation processes. These lengths are of the order
of the nearest-neighbor distance. We find no temperature vari-
ation of �ISSF and a moderate lowering of �E,V with increasing
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TABLE II. long-time limits of diffusional aging time 1/αD, diffusional decay time (�2/6D∞), and non-diffusional decay fbb(∞) and
1/αISSF), limiting fraction of nondiffusional decay fbb(∞) and AF,nd(∞), decay times for the as-quenched samples [tbb(0) and (tISSF(0)] and
long-time aged samples [tbb(∞) and (tISSF(∞)], and α-relaxation time tα for tw → ∞. All times in nanoseconds.

bond decay ISSF

T (K) 1/αD �2
bb/6D∞ fbb(∞) 1/αbb tbb(0) tbb(∞) �2

ISSF/6D∞ AF,nd(∞) 1/αISSF tISSF(0) tISSF(∞) tα

270 237 2000 >0.35 104 9.9 600 >0.36 >1000 190
280 64.5 400 0.3 1700 230 490 115 >0.34 220 4.8 >62 125
290 26.7 180 0.23 1000 83 177 40 0.39 83 2.5 27.5 38
300 13.4 69 0.17 170 35 63 15 0.38 25 1.07 8.6 12
310 3.24 27 0.16 77 16 22 5.1 0.31 (8) 0.59 2.7 3.6
330 0.84 6.2 0.12 6.2 4.3 4.7 0.93 0.25 (11) 0.22 0.37 0.51
350 0.15 2.4 0.06 1.7 1.7 0.28 0.06 0.09 0.14
400 0.071 0.52 0.37 0.37 0.01 0.01 0.018
450 0.02 0.20 0.15 0.15 0.004 0.004 0.005
500 0.01 0.12 0.09 0.09 0.002 0.002

temperature. The more rapid increase in the corresponding
value for bond decay may reflect the larger probability for
bonds to reconnect at higher temperatures, provided that the
atoms do not move too far apart.

Table II collates typical times for bond decay and ISSF
and compares them with the decay time 1/αD of the diffusion
coefficient after the fast initial drop. We have seen that the
aging of the diffusion coefficient is faster in the limit of long
time aging than the diffusive decays of bond correlation and
ISSF, which in turn are faster than the nondiffusive decays.

1/αD(T ) < �2
x (T )/6D∞(T ) < 1/αx, (24)

where x denotes bb and ISSF, respectively. The contribution
fx of the nondiffusive channel increases strongly as the tem-
perature is lowered. For the temperatures studied here, the
decay times after long aging tbb(∞) and tISSF(∞) are largely
determined by the diffusive process. At lower temperatures
the nondiffusive process increases in importance due to the
increase of fx, and this is also true if one considers instead
of the decay to 1/e one to a lower fraction. The decay times
after an arbitrary production history can be smaller by orders
of magnitude, as shown by the decay times tx(0) for the as-
quenched samples in Table II.

When comparing tISSF(T ) and �2
ISSF(T )/6D∞(T ), it should

be noted the former measures the decay from an initial value
unity, while the latter includes only the decay after the ini-
tial ballistic/vibrational decay of Fs(q, T ). The decay from
the value of Fs(q, t ) that follows the ballistic decay and an
eventual decay from a plateau value is usually referred to as
α-decay. Estimates of the decay time tα are given in the last
column of Table I. Ballistic decay is included by taking the
value of Fs(q, t ) for t = 1 ps as the starting value for the α-
decay. At 1 ps, the decay of Fs(q, t ) due to ballistic/vibrational
motion is largely evident [see Fig. 11(a)]. The value shows
the dominance of the diffusive channel in the α relaxation,

notwithstanding the takeover by the nondiffusive decay of
Fs(q, t ) for longer times t > tα . At higher temperatures the
simple separation into ballistic and α relaxation adopted here
breaks down, particularly when tα drops to the picosecond
range.

X. CONCLUSIONS

There are three time domains for the aging of undercooled
liquid and hot glassy Se. There is a rapid initial relaxation on
timescales of picosecond that depends strongly on the quench
history; it is stronger for larger quench rates. In the second
stage, aging can be described by the annihilation of “defects,”
i.e., local structures enhancing the atomic mobility, that can
be described by a simple rate equation for the atomic mobility.
Relaxation is driven by atomic diffusion, and the typical decay
of the relaxation rate with time can be attributed to the aging of
the diffusivity due to the “defect” annihilation. This accounts
for the non-Arrhenius behavior.

For very long times, diffusional aging follows an Arrhenius
law given by the equilibrium (infinite time) diffusion coeffi-
cient and a length that is of the order of the nearest-neighbor
distance for all quantities studied here. The same scenario
was observed previously for a simple metallic glass. An ad-
ditional bond breaking occurs in Se that does not correlate
with diffusion and affects the final stage of the ISSF decay.
Nevertheless, aging of the ISSF is dominated by diffusion for
the temperatures studied here. Since the diffusion coefficient
in the glass drops exponentially with inverse temperature, the
final aging slows exponentially as the temperature is lowered,
and the aging time diverges when T → 0.
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