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Parity-time (PT )-symmetric or, more generally, non-Hermitian systems have opened a new area for uncon-
ventional management of waves, with significant applications, especially in optics. However, fewer proposals are
found in acoustics, possibly due to the lack of a simple mechanism for coherent gain. In this paper, we propose
a composite non-Hermitian system in acoustics consisting of assemblies of PT -symmetric Helmholtz resonator
(HR) dipoles. Like meta-atoms are used as building elements in metamaterials, we propose PT -symmetric
dipoles to design non-Hermitian systems intended to engineer complicated directivity fields. We theoretically
analyze, numerically confirm, and experimentally show the symmetry breaking in a two-dimensional space of
non-Hermitian dipoles consisting of a pair of Helmholtz resonators with different levels of gain and loss. In
particular, we explore, as an application, a metastructure to concentrate the sound pressure inside the circular
array formed by PT -symmetric dipoles. The proposed HR dipoles may be a convenient composite element for
smart control of sound.
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I. INTRODUCTION

Non-Hermitian systems, in particular, those holding invari-
ance under parity-time (PT ) inversion, have recently opened
new horizons for the smart manipulation and control of clas-
sical waves, despite having been discovered in the frame
of quantum mechanics [1]. Possibly, the most exceptional
property of PT -symmetric systems is the spontaneous break-
ing of the spatial symmetries at a PT symmetry-breaking
point. In particular, an asymmetric response arises when the
real and imaginary parts of the complex (non-Hermitian) po-
tentials are related by the spatial Kramers-Kronig relations
(Hilbert transform) [2,3]. Thus, such a space symmetry break-
ing occurs for potentials with specific spatial shifts between
real and imaginary parts. The spatial modulation design of
such potentials can be either discrete, based on localized
oscillators, or continuous, based on a spatially distributed
modulation of gain/loss (real part) and wave velocities (imag-
inary part). In one-dimensional systems, symmetry breaking
manifests as the difference between the reflections from
the right and left. Higher-dimension non-Hermitian systems
allow not only uniform symmetry breaking and uniform
directivity but also spatially dependent directivities, deter-
mined by a local (generalized) Hilbert transform [4,5]. This
extends the possibilities of wave control to exotic effects
such as wave localization or self-cloaking [6], among others.
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Possibly, the most convenient and most explored playground
for the observation of non-Hermitian effects is optics, where
coherent gain arises from the stimulated emission of radia-
tion, permitting a feasible design for non-Hermitian systems.
Non-Hermitian systems, being either discrete (pointlike) with
PT -symmetric couplings [7,8] or continuous (with a spa-
tially distributed bulk gain/loss), have been both theoretically
considered [9–12] and experimentally demonstrated [13,14]
and even applied for practical purposes [15]. Yet a col-
lection of discrete elements may also be used to build a
metamaterial, i.e., a continuous system where the individual
elements and the distances between the individual elements
are significantly smaller than the wavelength. Such is the
main idea behind metamaterials for microwave electromag-
netic resonators, where the role of the meta-atom is played
by a resonant circuit or antenna [16–18]. Such metamate-
rials are passive due to the lack of compact amplification
mechanisms in this wavelength range. However, they can
show a negative refractive index and other striking direc-
tional properties such as unidirectional invisibility [6,19].
In acoustics, asymmetric absorption has been demonstrated
by detuned Helmholtz resonators (HRs) in one-dimensional
waveguides [20]. More recently, one- and two-dimensional
arrays of HRs were designed to achieve efficient sound ab-
sorption and diffusion [21]. Accordingly, a spatial distribution
of HRs with modulated resonant frequencies and gain/loss
can be feasible acoustic metamaterials, analogous to those
in optics and microwave ranges. There is no clear way to
achieve acoustic amplification in continuous systems, and in
fact, all PT symmetry effects in acoustics have been demon-
strated on discrete systems using intricate gain/loss methods,
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(a) (b)

FIG. 1. (a) A HR dipole consisting of two HRs with amplifi-
cation and attenuation, coupled to a planar waveguiding structure.
The microphone-loudspeaker arrangement is illustrated in the inset.
Such a dipole, as shown in the text, is expected to show directional
scattering. The distances of the loudspeaker and the microphone to
the center of the dipole are defined as rs and rm, respectively, and the
incident and observation angles are defined as αin and αout, respec-
tively. (b) An ensemble of PT -symmetric dipoles with a specific
arrangement to form the patterns of sound flows. In this particular
example the dipoles are arranged to form a sink in the symmetry
center.

like a net of microphones and loudspeakers with elec-
tronic amplification/attenuation in between. However, many
examples of PT -symmetric systems without positive gain
may exhibit the same expected effects, just with an additional
homogeneous loss.

Possibly, the simplest method to construct PT -symmetric
lattices is the arrangement of individual PT -symmetric
dipoles (PT dipoles) showing asymmetric scattering [22].
The directivity at each spatial point will be given by the
orientation of the PT dipoles at a particular location. Here, we
propose ensembles of HR dipoles, each one consisting of an
amplifying HR and an attenuating HR, to build active acoustic
metamaterials. The benefit of using HRs as PT -scattering
elements stems from their high sensitivity to long wavelengths
as compared to their size. This feature confers flexibility to
the geometric configuration. The main body of this paper is
devoted to the calculation and experimental demonstration
of the radiation properties of PT -symmetric HR dipoles as
building blocks of complex non-Hermitian metastructures;
see Fig. 1(a) for illustration. This is the minimum system to
break the spatial symmetry in a non-Hermitian way and to
demonstrate the control of sound.

The study is performed in a two-dimensional (2D) space,
such as the minimal configuration to demonstrate the sound
directivity arising from the asymmetric scattering, which is
the main goal of the paper. In turn, different sophisticated
sound manipulation effects may be expected from given
PT -dipole arrangements; for instance, Fig. 1(b) is intended
to archive strong concentrations of sound, which have also
been proposed in the field of transformation optics/acoustics
[23–25]. The last part of the work proposes oriented PT -
symmetric HR dipole structures.

II. HELMHOLTZ RESONATOR DIPOLES IN 2D SPACE

A. Single Helmholtz resonator

We first introduce the governing equations of a Helmholtz
resonator (HR) and briefly discuss the derivation of the
HR gain function (the full derivation is provided in

FIG. 2. (a) Frequency responses and gain function G(ω) of a
single HR with (i) loss (dotted curve), (ii) neither loss nor active
gain (neutral; solid curve), and (iii) gain (dashed curve). Nega-
tive (positive) loss factors γ0(ω0) correspond to active gain (active
losses) generating peak amplitudes higher (lower) than 1 and sharper
(smoother) phase shifts. (b) Total pressure field created by the in-
cident plane wave and the scattered wave from a neutral HR at the
origin. The source frequency is f = 429.1 Hz, corresponding to the
peak of the gain functions. Fringes are observed around the HR,
indicating the interference between the incident and scattered fields.
The parameters were set as a = 2 mm, d = 20 mm, l ′ = 13.07 mm,
f0 = 436.3 Hz, and c = 340 m/s.

Appendix A). We assume a HR placed at �r = �0, subjected
to an input pressure field Pin(ω), emitting an isotropic pres-
sure field Pscat (�r) = H (2)

0 (kr)Pout (ω), where H (2)
0 (kr) denotes

a Hankel function of the second kind. The gain function may
be defined as

G(ω) = Pout (ω)

Pin(ω)
, (1)

which for the considered geometry of the HR (see
Appendix A) is expressed as

G(ω) = 1

G−1
0 (ω) − 1 − i 2

π
ln

(
2

εka

) , (2)

where ω is the angular frequency, k (= ω/c) is the wave
number, c is the sound velocity, a is the cross-section radius
of the HR neck, and the parameter ε = 1.7812;

G0(ω)−1 = iγ −1
c2

(
ω2

0

ω2
− 1

)
− γ0(ω) (3)

where ω0, γc2, and γ0(ω) denote the resonant angular fre-
quency of the HR, the coupling loss factor, and the relative
loss factor of the HR in a two-dimensional space:

γc2 = Sh

4dl ′ , γ0(ω) = γ

γc2ω
, (4)

where d is the thickness of the 2D field, l ′ is the corrected HR
neck length, Sh is the cross section of the HR neck, and γ is
the loss factor of the HR. Unless otherwise specifically noted,
hereafter, we omit ω from G, Pin, and Pout for brevity.

Figure 2 depicts a numerical integration of the gain func-
tion [Eq. (2)]; it provides an example of the resonant curves
for three different situations: (i) a HR with loss [γ0(ω0) =
0.5], (ii) a neutral HR [γ0(ω0) = 0 with neither active gain nor
loss], and (iii) a HR with gain [γ0(ω0) = −0.5]. In Fig. 2(a),
we observe that the peak of the gain is 1 for a neutral HR
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[γ0(ω0) = 0], becoming either smaller or larger for the cases
with loss and active gain, respectively [for γ0(ω0) = 0.5 and
−0.5]. Further, the peak frequency ( f = 429.1 Hz) is ob-
served to be lower than the resonant frequency ( f0 = 436.3
Hz). This is a consequence of the coupling to the 2D field;
indeed, it derives from the imaginary term inside the denomi-
nator of Eq. (2). Note that Eq. (2) has a sense for amplification
when γ0(ω) < 0. In the case of large gain, γ0(ω) � −1, the
HR starts “generating.” The effect is similar to a pitch sound in
a closed-circuit microphone-amplifier-loudspeaker when the
microphone is placed too close to the loudspeaker. An exam-
ple of the full field distributions from a plane wave exciting
a neutral HR without loss [situation (i)], located at �r = �0,
is shown in Fig. 2(b). The source frequency in this case is
f = 429.1 Hz, precisely at the peak of the gain function. The
pressure field is normalized by the absolute incident pressure.
We can clearly observe fringes from the center to the sur-
roundings except in the direction of the incident wave due to
the interference of the incident field and field scattered by the
HR.

B. Ensemble of Helmholtz resonators

Next, we consider the scattered field from a general ensem-
ble of N HRs. We assume N different HRs with respective
gain functions G1, . . . , GN located at a particular spatial po-
sition in a 2D space �r1, . . . , �rN . The source is located at �rs,
while the pressure field scattered from all the HRs is observed
at a position �rm. In this case, instead of Eq. (2), the system is
described by the system of equations

pin = p0 + H0 pout,

pout = Gpin, (5)

with

p0 = hs( �rs)P0, pin =
⎛
⎝Pin1

...

PinN

⎞
⎠, pout =

⎛
⎝Pout1

...

PoutN

⎞
⎠,

hs( �rs) =

⎛
⎜⎝

H (2)
0 (k| �r1 − �rs|)

...

H (2)
0 (k| �rN − �rs|)

⎞
⎟⎠,

G =

⎛
⎜⎜⎜⎝

G1 0 · · · 0

0 G2
. . .

...
...

. . .
. . . 0

0 · · · 0 GN

⎞
⎟⎟⎟⎠,

H0 =

⎛
⎜⎜⎜⎝

0 H21 · · · HN1

H12 0 . . . HN2
...

. . .
. . .

...

H1N H2N · · · 0

⎞
⎟⎟⎟⎠,

Hn1n2 = H (2)
0

(
k
∣∣ �rn2 − �rn1

∣∣),
where p0, pin, and pout are the vectors of pressures at the
positions of the HRs for the incident field, input field Pin, and
scattered field Pout. The difference between p0 and pin is that
the former includes only the pressure direct from the source

and the latter includes the pressure from the source and the
scattered wave from other HRs (excluding the pressure from
itself). Note that the fields at the entrance of each resonator
depend on the fields at the output of each resonator plus the
sound from the source. The system is solved by a matrix
inversion:

pout = (I − GH0)−1Gp0. (6)

Also, when the interaction between the HRs is neg-
ligible, which is equivalent to satisfying the condition
max{G1, G2}H12 � 1, the first Born approximation holds, and
we may assume

pout � Gp0. (7)

Finally, the pressure at any arbitrary observation point �rm may
be obtained as

Pscat ( �rs, �rm) = hm( �rm)T G̃hs( �rs)P0, (8)

with

hm( �rm) =

⎛
⎜⎝

H (2)
0 (k| �rm − �r1|)

...

H (2)
0 (k| �rm − �rN |

⎞
⎟⎠,

G̃ = (I − GH0)−1G.

In the following section we consider a HR’s dipole; hence,
N = 2.

C. Helmholtz resonator dipole

We propose a non-Hermitian dipole as the building block
for sound directivity formed by two geometrically identical
HR that are the same as the previous example in Fig. 2, but
with different loss factors [γ0(ω0) = ±0.9]. We here explore
the asymmetric response of the HR dipole, whose results are
summarized in Figs. 3 and 4. Both HRs are assumed to be
at the positions (x, y) = (±D, 0), i.e., placed at a distance
of | �r1 − �r2| = 2D. In this case, we consider the source and
observation points, namely, rs and rm, located far enough
(rm > 4D2/λ) to allow assuming plane waves for both the
incident and scattered waves. The response of the system is
evaluated by scanning both �rs and �rm in 360◦. The results
are mapped in Fig. 3. We want to note that the concept of
directivity of the dipole is different from the directivity of an
antenna. For antennas, the directivity diagrams are commonly
plotted in polar coordinates, which fully characterize the an-
tenna (for a given frequency). For the scattering of the HR
dipole, the angular radiation diagram should be calculated for
each incidence angle. Figure 3 summarizes this study, show-
ing polar directionality diagrams for several incidence angles
for a particular frequency of the source [see Figs. 3(b)–3(f)].
These diagrams are vertical cross sections from the full 2D
multistatic matrix [26] Ḡ(αin, αout ) depicted in Fig. 3(a). Here,
the multistatic matrix is calculated as

Ḡ(αin, αout ) = Pscat ( �rs, �rm)

P0H (2)
0 (k| �rs|)H (2)

0 (k| �rm|) . (9)

Throughout this paper, the incident angle αin is defined as the
angle of the incident wave vector towards the origin, which is
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FIG. 3. (a) Multistatic matrix, i.e., the dependence of scatter-
ing on incidence angle αin and observation angle αout. The source
frequency is f = 432 Hz, D = 0.05 m, rs = rm = 100 m, and the
rest of the parameters are the same as in Fig. 2. (b)–(f) Polar plots
of directivity for several incidence angles (which are the vertical
cross sections of the map). Note that due to symmetries only 1/4
of the map is plotted (other quadrants can be obtained by mirror
symmetries).

therefore 180◦ opposite �rs, while the observation angle αout di-
rectly corresponds to the angle of �rm pointing in the direction
where the pressure is measured. Because of the symmetry of
the system’s geometry about the x axis, Fig. 3(a) illustrates
only the angular region of 0 � αin � 180◦ and 0 � αout �
180◦. We clearly observe a symmetry about the diagonal line
(αin + αout = 180◦), which is due to both the symmetry of the
geometry about the x axis and the reciprocality. In contrast,
we observe significant asymmetry about the other diagonal
line (αin = αout), as expected from the symmetry breaking of
the PT -symmetric dipole. This tendency can also be observed
from Figs. 3(b)–3(f). While the scattering shape is close to
omnidirectional for Fig. 3(b), the directivity becomes grad-
ually higher to the left as αin increases and moves towards
Fig. 3(f). Note that this result is strongly frequency dependent
and that the map provided here is calculated at a frequency
close to the dipole exceptional point.

To characterize the scattering properties of the dipole and
to assess the PT symmetry-breaking effect, we integrate
the scattering function G̃ over all incidence angles αin. The
integrated directivity (ID), indicating the overall scattering
performance of the dipole, for a given frequency, is defined
as

ID(αout ) = 1

2π

∫ 2π

0
|Ḡ(αin, αout )|2dαin. (10)

In this case the ID diagram, shown in Figs. 4(b)–4(g), is
similar to that typically plotted in antenna theory. Finally,

FIG. 4. Integrated directivity depending on frequency. (a) In-
tensity deflection in decibels as a function of frequency. (b)–(g)
Integrated directivity in polar coordinates for several frequencies
corresponding to the vertical dashed lines in (a).

we may obtain an asymmetry figure of merit evaluating the
deflection ID with respect to the y axis DRL( f ), i.e., the right
to left directivity for a given frequency, as

DRL( f ) = 10 ln

(
IDR( f )

IDL( f )

)
, (11)

with

IDL = 1

π

∫ 3π/2

π/2
ID(αout )dαout, (12)

IDR = 1

π

∫ π/2

−π/2
ID(αout )dαout. (13)

This measure, illustrated in Fig. 4(a), reveals the intensity
deflection to either side: left (x < 0) or right (x > 0), arising
from the PT symmetry breaking, as a function of frequency.

In Fig. 4(a), it can be observed that the deflection to the
right gradually becomes stronger, as the system shows uni-
directional wave transport, and flips, for frequencies higher
than the one corresponding to the peak of the gain function
|G(ω)|, to a strong deflection to the left. At exactly this tran-
sition point, the phase of G(ω) shifts from 3π/2 to π/2 (see
Fig. 2). Then, as the frequency increases, after the maximum
deflection to the left, deflection becomes gradually weaker. In-
deed, far from the resonance, we observe a weak deflection to
right and left sides [see Figs. 4(b) and 4(g)], corresponding to
particular frequencies in Fig. 4(a). In contrast, Figs. 4(c)–4(f)
evidence a stronger deflection, either to the right [Figs. 4(c)
and 4(d)] or to the left side [Figs. 4(e) and 4(f)]. It is worth
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noticing that in Figs. 4(c)–4(f) the scattered intensity is almost
four times higher in either direction at the angles 0◦ and 180◦.
As observed in Fig. 4, asymmetric effects appear precisely
around the peak of the gain function |G(ω)| on both sides,
left and right, depending on the frequency. This deflection
tendency can be explained by the two-dimensional Fourier
transform of the theoretical gain functions G(x, y), as detailed
in Appendix B. A comprehensive comparison of the Ewald
limiting disk, in the wave vector domain, obtained both from
the theoretical model and by direct numerical integration finds
good agreement. In turn, such numerical calculations show the
validity of the analytical model used to obtain the results of the
multistatic matrix of the dipole (Fig. 3) and those of the ID in
Fig. 4.

III. EXPERIMENTAL EVALUATION

To confirm the theoretical analysis of the scattering prop-
erties of the non-Hermitian HR dipole, we conducted an
experiment using two HRs, both having the same geometric
features, but with one having loss and the other one being
neutral, with neither loss nor gain.

Figures 5(a) and 5(b) depict the full experimental setup and
schematic transverse cut showing the specific geometric pa-
rameters, respectively. Prior to the experiment, we conducted
a preexperiment using a one-dimensional (1D) waveguide,
which is detailed in Appendix C. Besides representing an
initial proof of the expected asymmetric left/right scattering
of the non-Hermitian HR dipole, the preexperiment allowed
experimentally determining some of the parameters of the
HRs, which we directly used for the theoretical analysis in this
2D experiment. The loudspeaker was set at different angular
positions αin every 30◦ on a half circle from αin = 0◦ to 180◦
with radius rs = 130 mm, while, in turn, the microphone was
also set every 30◦ on the other half circle, i.e., from αout = 0◦
to 180◦, on a circle with a radius of rm = 110 mm. For
every combination of microphone and speaker angles, first,
we measure an impulse response (IR) without HRs and get
a transfer function (TF), P0(αin, αout ). Then, we put a HR
with no loss (HR1) at (x, y) = (−D, 0) and the other HR with
loss (HR2) at (x, y) = (D, 0) and measured an IR to get the
TF P(αin, αout ). Next, the multistatic matrix Ḡ(αin, αout ) is
calculated as

Ḡ(αin, αout ) = P(αin, αout ) − P0(αin, αout )

H (2)
0 (krm)P̄0

, (14)

with

P̄0 = 1

7

6∑
n=0

P0
(

πn
6 , πn

6

)
H (2)

0 (krs)

H (2)
0 [k(rs + rm)]

. (15)

Finally, on the grounds of the raw reciprocity, we averaged
the matrix with itself flipped along the symmetric axis, αin +
αout = 180◦.

We show the results of the experiment in Figs. 5(c)–5(g),
also providing a comparison with the theoretical calculation.
Figure 5(c) illustrates the deflection DRL( f ), where the black
solid and red dashed lines represent the theoretical and ex-
perimental data, respectively. It is clearly observed that the

FIG. 5. Experimental setup and the result. (a) A picture of the
experimental setup. (b) Geometry configuration of the setup with
the viewpoint of the cross section. The parameters are set as a = 5
mm, d = 20 mm, D = 32.5 mm, f0 = 820 Hz, l ′ = 17.21 mm, rm =
110 mm, rs = 130 mm, γ1/γc1 = 0, and γ2/γc1 = 0.7. See Appendix
C. (c) Deflection analysis of the experimental result compared with
the theoretical calculation. (d) and (e) Multistatic matrices of the
experimental result for frequencies of 743 and 810 Hz, respectively.
(f) and (g) Multistatic matrices of the theoretical calculation for the
same frequencies as in (d) and (e).
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experimental result has good agreement with the theoretical
one. Both have a slight deflection to the right for the frequency
region below 775 Hz. Then, a larger deflection to the left is
observed as the frequency approaches 800 Hz, although the
theoretical data have a peak around −2.5 dB at around 790 Hz
and the experimental data have a peak around −2 dB at
800 Hz. We note that the theoretical results displayed for com-
parison are obtained with no fitting parameter expect those
determined in the 1D preexperiment. Figures 5(d)–5(g) illus-
trate the multistatic matrices; Figs. 5(d) and 5(e) correspond
to experimental results, and Figs. 5(f) and 5(g) correspond to
the theoretical analysis for two particular frequencies: 743 Hz
[Figs. 5(d) and 5(f)] and 810 Hz [Figs. 5(e) and 5(g)]. In
Figs. 5(d) and 5(f), we clearly observe that both maps have
the same tendency, having a large dip in the top left and a
small dip in the bottom right and a soft peak a bit below
the diagonal line of αin = αout. Also the maps in Figs. 5(e)
and 5(g) show an analogous tendency, a monotonous increase
in the scattering from the bottom right to the top left. The
expected directionality induced by the asymmetric scattering
of a non-Hermitian HR dipole is therefore evidenced in this
neutral/loss configuration and is hence expected to be even
higher for a gain/loss PT -symmetric case.

IV. ENSEMBLES OF DIPOLES

The HR dipoles, with the specific characteristics discussed
in the previous section, can be used as building blocks of
a more complex metastructure. As a particular example we
may demonstrate a sound field concentrator. We propose a HR
dipole ensemble using a distribution like the one schematized
in Fig. 1(b). Such a configuration is expected to concentrate
the sound arriving from outside into one spot. We assume 10
dipoles distributed in a circle of 0.7-m radius, as illustrated in
Figs. 6(a) and 6(b), where the HRs with gain are placed on the
inner side of the structure inside Fig. 6(a). For comparison,
we also consider the case where the HR dipoles are reversed,
as in Fig. 6(b). We calculated the generated sound field upon
incidence of a plain wave at a particular angle. The pressure
field is normalized to the incident wave pressure at the origin
without HRs and squared to obtain a normalized intensity, as
shown in Figs. 6(c) and 6(d), where the source frequency was
set to f = 430.5 Hz, which has the maximum deflection to
the left, as depicted in Fig. 4. The normalized intensity fields
are then calculated for every incident direction (every 5◦) and
averaged over all the incident angles. The results are shown
in Figs. 6(e) and 6(f). A significant concentration is clearly
shown in Fig. 6(e), in contrast to Fig. 6(f), when the dipoles
are reversed.

V. CONCLUSION

We proposed acoustic PT -symmetric dipoles in two-
dimensional sound pressure fields, formed by two geometri-
cally identical HRs with different loss factors (ideally, one
with loss and another one with gain properties), as building
blocks for the management of sound. The frequency response
G(ω) of one HR in the 2D field was derived, and the response
of the HR dipole was obtained using the analyses of the
multistatic matrix and integral directivity, showing the ex-
pected asymmetric scattering in two dimensions. In addition,

FIG. 6. Fields and field flows in an ensemble of HR dipoles.
(a) and (b) Distributions of HRs in a 2D field, where in (a) the gain of
the dipole is inside of the circle and in (b) the gain is outside. (c) and
(d) The normalized intensity field with the interactions with HRs
distributed as in (a) and (b), where the incident wave arrives from the
bottom in the direction of the arrows at a frequency of f = 430.5 Hz.
(e) and (f) Intensity fields averaged over the incident directions for
every 5◦. A comparison between (e) and (f) clearly shows the sound
concentration effect of (e) when the gain is inside of the circle.

we also introduced a design method for the PT -symmetric
dipole using the Ewald limiting disk and 2D Fourier transform
of analytically obtained G(x, y) which proves the validity of
the derived theoretical model by a comparison with numer-
ical integration. The asymmetric scattering from such HR
dipoles was demonstrated in a 2D experiment, where the
non-Hermitian HR dipole was formed by a neutral HR and
a HR with loss. We note that the experimental results and
the predictions directly show good agreement without any
fitting parameters. Finally, we showed how assemblies of such
dipoles may be used to design a metastructure for the control
of the sound flow. Indeed, a sound field concentration in the
2D field is predicted using a circular arrangement of PT -
symmetric HR dipoles. The study may provide a new platform
for several applications to create nontrivial sound field propa-
gation control on the basis of PT symmetry breaking.
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FIG. 7. HR in 2D space.
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APPENDIX A: DERIVATION OF THE GAIN FUNCTION
OF THE HELMHOLTZ RESONATOR IN 2D SPACE

We here analyze the response of a HR coupled to the
planar waveguiding mode of the 2D space by deriving its
gain function. The main geometrical features of the system
are displayed in Fig. 7.

We first derive the relationship between the incident wave
at the position of the HR (�r = �0) and the scattered wave in the
arbitrary position Pscat (�r). The decay of the two-dimensional
field can be expressed by the Hankel function:

Pscat (�r) = H (2)
0 (kr)Pout (�0). (A1)

Generally, the scattered wave can be expressed through the
incident wave Pin(�0), the zero-order Hankel function H (2)

0 (kr),
and the normalized gain G(ω) = Pout (�0)/Pin(�0):

Pscat (�r) = G(ω)H (2)
0 (kr)Pin(�0). (A2)

In terms of the particle velocity U0 of the scattered wave at
r = a (a is the radius of the HR) the pressure of the wave at
any arbitrary position can be expressed as follows [27]:

Pscat (�r) = iωρ0

k

H (2)
0 (kr)

H (2)
1 (ka)

U0eiωt . (A3)

In order to eliminate U0 from Eq. (A3), we use the equiva-
lence of the volume velocity at the cross section of the HR
neck and at the side of the cylinder-shaped section which is
illustrated by a dotted line with the same radius as the HR
neck and placed below the HR. Such equivalence resumes in
the following expression:

Shη̇ = −2πadU0eiωt , (A4)

where η denotes the displacement of the air inside the HR
neck. Then we use the relation between displacement and
pressure inside HR [28]:

P(�0) = ρ0l ′(ω2
0 − ω2 + iγω

)
η, (A5)

where we have added a term of friction proportional to the
particle velocity and P(�0) denotes the total pressure field

Pin(�0) + Pscat (�0). Substituting Eq. (A5) into Eq. (A4) leads to

U0eiωt = − Sh

2πad

iω

ρ0l ′
P(�0)

ω2
0 − ω2 + iγω

, (A6)

where we assume that Pscat (�r) and Pin(�r) are constant when
r � a:

Pscat (�r) = H (2)
0 (ka)Pout (�0), (A7)

Pin(�r) = Pin(�0). (A8)

The substitution of Eq. (A6) in Eq. (A3) gives

Pscat (�r) ≈ H (2)
0 (kr)G0(ω)[Pin(�0) + Pscat (�0)], (A9)

where we use the approximation of the first-order Hankel
function under the condition ka � 1:

H (2)
1 (ka) ≈ i

2

π

1

ka
. (A10)

Finally, taking Eq. (A7) and substituting �r = �a into Eq. (A9)
lead to

Pout (�0) = G0(ω)[Pin(�0) + H (2)
0 (ka)Pout (�0)], (A11)

and the gain function G(ω) = Pout (�0)/Pin(�0) is therefore de-
rived as

G(ω) = 1

G−1
0 (ω) − 1 − i 2

π
ln

(
2

εka

) , (A12)

where, again, we use the approximation of the zero-order
Hankel function under the condition ka � 1:

H (2)
0 (ka) ≈ 1 + i

2

π
ln

(
2

εka

)
. (A13)

APPENDIX B: EWALD LIMITING DISK

The multistatic matrix in Fig. 3 allows us to recover the
Ewald limiting disk (ELD) [29] of the dipole [see Figs. 8(a)
and 8(b)]. Knowing how the wave at angle αin scatters to αout

allows us to reconstruct the spatial component of the ELD
with �q = ( �kout − �kout ), where �kin and �kout have the modulus of
k and direction determined by αin and αout, respectively. Note
that the radius of the disk is 2k.

Figures 8(c) and 8(d) show the reconstructed ELD
from the multistatic matrix of the analytical calculation
for two different frequencies, 432 and 440Hz (insets show
the ELD obtained with COMSOL simulation data), while
Figs. 8(e) and 8(f) show the two-dimensional Fourier trans-
form of the gain function G(x, y) for the two frequencies
corresponding to Figs. 8(c) and 8(d) (insets show the
reconstructed ELD analyzed assuming the first Born approxi-
mation), where G(−D, 0) = G1, G(D, 0) = G2 and G(x, y) =
0 if (x, y) �= (±D, 0).

Figures 8(c) and 8(e) depict the result at a frequency of
432 Hz, while Figs. 8(d) and 8(f) are obtained at 440 Hz.
The comparisons between Figs. 8(c) and 8(d) and both re-
spective insets show good agreement. This proves the validity
of the analytic derivation of the formula shown in Sec. II A.
It may also be observed that, in turn, both Figs. 8(e) and
8(f) also match their insets completely, demonstrating that the
first Born approximation of the scattered field is calculated
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(b) Ewald limiting disk(a) Multistatic matrix

FIG. 8. (a) The scheme of a multistatic matrix and (b) that of the
Ewald limiting disk (ELD) reconstructed from (a) (Fig. 3). (c) The
ELD reconstructed from Fig. 3(a) with a frequency of 432 Hz and
(d) that for 440 Hz. (e) and (f) Spectrum distribution obtained directly
from Fourier transform of the gain function. The insets of (c) and
(d) show the ELD obtained by COMSOL simulation, while the insets
of (e) and (f) show the reconstruction from a multistatic matrix
analyzed with 1st Born approximation). (c) and (e) show the result
for a frequency 432 Hz, and (d) and (f) show the result for 440 Hz.

from the 2D Fourier transform of the gain function G(x, y).
Furthermore, Figs. 8(d) and 8(f) show good agreement, in-
cluding the insets, although the color at center of Fig. 8(d) is
not vertically straight as in Fig. 8(f). In contrast, Figs. 8(c)
and 8(e) are barely similar. The similarity come from the
weakness of the interaction between HRs as expressed by the
term (I − GH0)−1 in Eq. (6). This fact suggests that one can
design the PT -symmetric dipole directly from the 2D Fourier
transform of G(x, y), at least when (I − GH0)−1 is negligible.

Finally, Fig. 9 illustrates the relationship between the
multistatic matrix and ELD to clarify the region in the
ELD that needs to be differentiated in order to have a
PT symmetry-breaking effect. Figure 9(a) is a multistatic
matrix divided into four areas depending on whether the di-
rections of the incident and scattered wave are right or left.

(c) Ewald limiting disk
(Transmission region)

Symmetric

Symmetric

Symmetry
axis

Left

Right

Right Left

Integral
over 

(a) Multistatic matrix(b) Integral directivity

(d) Ewald limiting disk
(Reflection region)

FIG. 9. Relationship of ELD and transmission/reflection.
(a) Multistatic matrix separated in four areas, where green areas
are symmetric. The insets for each area show the directions of
incident and scattered waves for each area, where the long black and
short gray arrows denote incident and scattered waves, respectively.
(b) Integral directivity plot calculated from the multistatic matrix
by summing up the its values horizontally. It is obvious that the
difference in IDL and IDR come from only blue and red areas
in (a). (c) and (d) Two regions of ELD, where (c) illustrates
the transmission region corresponding to green areas in (a) and
(d) illustrates the reflection regions corresponding to blue and red
areas.

The insets for each area show the directions of incident and
scattered waves for each area. The long and short arrows
denote incident and scattered waves, respectively, and the half
circle determines the scattering angular range for each area.
As shown in Fig. 3, multistatic matrix has a diagonal symme-
try axis, and the green areas in Fig. 9(a), which we call the
transmission region, have the same components. In contrast,
the blue and red areas, which we call the reflection region,
may have different components. Figure 9(b) illustrates the ID
plot calculated from Fig. 9(a). It is clear that the difference
between IDL(αout ) and IDR(αout ) arises only from the blue and
red areas in Fig. 9(a). Finally, Figs. 9(c) and 9(d) represent
the two regions of the ELD, where Fig. 9(c) illustrates the
transmission region, which corresponds to the green areas in
Fig. 9(a), and Fig. 9(d) illustrates the reflection regions, which
correspond to blue and red areas in Fig. 9(a). This implies that
the asymmetric effects are accounted for by differences in the
blue and red regions in Fig. 9(d). In fact, as we compare these
regions in Figs. 8(c) and 8(d), it is obvious that the red region
is much stronger than the blue one, which corresponds to the
deflection shown in Fig. 4(a), where deflection to the left is
observed at frequencies of 432 and 440 Hz. This tendency
also holds for Figs. 8(e) and 8(f), suggesting that creating
a strong contrast between these regions may be a guideline
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when designing the PT -symmetric dipole by a 2D Fourier
transform of G(x, y).

APPENDIX C: NON-HERMITIAN HR DIPOLE
IN A 1D WAVEGUIDE

Here, we introduce the non-Hermitian HR dipole in a one-
dimensional waveguide. When the incident wave is emitted
from the left side (L) or from the right side (R), the reflection
RL and the transmission T can be described by the following
formulas:

RL =
∣∣∣∣G1e+2ikD + G2e−2ikD + 2G1G2e−4ikD

1 − G1G2e−4ikD

∣∣∣∣
2

, (C1)

T =
∣∣∣∣G1 + G2 + 2G1G2 cos 2kD

1 − G1G2e−4ikD

∣∣∣∣
2

, (C2)

with

Gn(ω) = 1

γ −1
c1

(ω2
0

ω
− ω

)
i − (

γn

γc1
+ 1

) (n = 1, 2), (C3)

γc1 = cSh

2l ′S
, (C4)

where n stands for each HR and γc1 is the coupling loss factor
in one dimension; RR is calculated using Eq. (C1) by exchang-
ing the positions of the HRs, that is to say, by exchanging
G1 and G2. The variables are commonly used in the 2D case
in the main text, except the cross section of the 1D wave
guide S. Note that, theoretically, there is no difference in the
transmittance across systems in the direction of incidence.

We conducted an experiment to confirm the asymmetric
response of the non-Hermitian dipole in a 1D case using
the setup shown in Fig. 10(a). The values of the geometric
parameters are the same as the ones used in the experiment
conducted in two dimensions, described in Fig. 5, except S =
1225 mm2. First, we measured the impulse responses (IRs)
from the speaker to the microphones (MicRef, MicTrans),
without attaching the HR dipole to the waveguide, to obtain
the transfer functions (TFs) P0,Ref (ω), P0,Trans(ω). Next, we
measured the IRs of each HR attached to the waveguide and
obtained the TFs PHR1

Ref (ω), PHR2
Ref (ω) as well as the IRs of the

dipole to get the TFs PL
Ref (ω), PL

Trans(ω). Finally, the gain func-
tions and the reflectance and transmittance were calculated as

Gn(ω) = PHRn
Ref (ω) − P0,Ref (ω)

P0,Ref (ω)
, (C5)

RL(ω) =
∣∣∣∣PL

Ref (ω) − P0,Ref (ω)

P0,Ref (ω)

∣∣∣∣
2

, (C6)

TL(ω) =
∣∣∣∣ PL

Trans(ω)

P0,Trans(ω)

∣∣∣∣
2

. (C7)

We provide comparisons of the experimental results and the
theoretical calculation in Figs. 10(b)–10(e). Figures 10(b) and
10(c) show the experimental versus theoretical gain functions
of both HRs, G1(ω) and G2(ω), while Figs. 10(d) and 10(e)
illustrate experimental/theoretical frequency responses of the
reflectances, RL and RR, and the transmittances, TL and TR.
According to Figs. 10(b) and 10(c), HR1, having no loss,
reaches 1 at the peak as expected, while HR2, with loss, has a
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FIG. 10. Experimental setup and result of the 1D HR dipole.
(a) Experimental setup for the HR dipole, composed of HR1 and
HR2, in a 1D waveguide. Solid and dashed arrows denote the cases
of initial sound incidence from the left and right, respectively. When
the wave is incident from the right, MicRef and MicTrans exchange
positions. (b) and (c) Frequency responses of gain functions for
HR1 and HR2. Dashed and solid lines represent the experimental
results and the theoretical calculations, where the parameters f0 =
820 Hz, γ1/γc1 = 0, and γ2/γc1 = 0.7 were manually adjusted to
fit the experimental results. (d) and (e) Frequency response of the
reflectance and transmission of dipole. Red and blue lines denote
the responses incident from the left and right, respectively. Dashed
and the solid lines denote the experimental and theoretical results,
respectively. Parameters adjusted in (b) and (c) were used for the
theoretical calculations. The solid line in (e) is only colored black
since the transmission is theoretically supposed to be the same for
both incident directions.

peak smaller than unity. Using these responses of G1 and G2,
we adjusted the parameters of the resonant frequency f0 and
the loss factor γn/γc1, as shown in Fig. 5. In Fig. 10(d), the
significant asymmetry found in the reflectance was observed
for both the theoretical calculation and the experimental mea-
surements, resulting in good agreement, where we used the
previously determined parameters f0 and γn/γc1 for the the-
oretical calculation. Furthermore, in Fig. 10(e), we can also
observe good agreement for transmittance between experi-
ment and the theory.
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