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Shock-compressed silicon: Hugoniot and sound speed up to 2100 GPa
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High-pressure equation of state and isentropic sound speed data for fluid silicon to pressures of 2100 GPa (21
Mbar) are reported. Principal Hugoniot measurements were performed using impedance matching techniques
with α-quartz as the reference. Sound speeds were determined by time correlating imposed shock-velocity
perturbations in both the sample (Si) and reference material (α-quartz). A change in shock velocity versus particle
velocity (us–up) slope on the fluid silicon principal Hugoniot is observed at 200 GPa. Density functional theory
based quantum molecular dynamics simulations suggest that both an increase in ionic coordination and a 50%
increase in average ionization are coincident with this experimentally observed change in slope.
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I. INTRODUCTION

The behavior of silicon (Si) above millions of atmospheres
(>100 GPa) is important for understanding the structure and
evolution of terrestrial planets [1–4], as well as the perfor-
mance of inertial confinement fusion (ICF) capsule designs
[5–9]. In rocky planets, Si is thought to be intrinsically paired
to oxygen and, to a lesser extent, metals since they are preva-
lent on Earth’s surface. However, it is likely that atomic
bonding and compound formation are quite different at the ex-
treme pressures expected in super-Earth-like planets [10]. In
direct-drive ICF target design, materials are selected based on
a variety of properties at pressures exceeding several TPa [5].
Si has been proposed as a dopant for plastic shells [8] to mit-
igate laser imprint and Rayleigh–Taylor instabilities. While
there has been significant work understanding the behavior
of carbon [11–14] at TPa pressures, very little is understood
about its group-14 analog, Si, at these extreme conditions.

Silicon has a rich and complex response to dynamic
compression—in part due to strong variations in elastic
properties along different crystal axes [15], which causes
significant wave splitting. Elastic coefficients for silicon’s
cubic-diamond structure (ρ0 = 2.329 g/cm3) determine the
ambient longitudinal sound speed (cL) along 〈100〉 to be 8.8
km/s and the bulk sound speed (cB) to be 6.5 km/s. Previous
experiments using explosive [16,17], flyer plate [18–20], and
laser [21] drivers have been performed to investigate silicon’s
response to dynamic loading to 200 GPa. These works pre-
dominately used shock waves traveling at velocities below
cL (and sometimes below cB), which form elastic and in-
elastic precursors, where the final shock state is a product
of multiwave compression. Shocks propagating faster than
cL(P = 80 GPa), the region considered for this study, do not
form precursors; the silicon samples are compressed by a

single wave. This present work examines the liquid regime
of silicon’s principal Hugoniot, extending the experimentally
determined equation of state (EOS) to TPa pressures. These
experiments used impedance matching [22] to an α-quartz
standard, high-precision velocimetry [23], and an unsteady-
waves correction [24] to deduce the kinematic properties and
sound speed of shocked silicon.

Principal Hugoniot and sound-speed data are presented
for silicon at shock pressures between 320 and 2100 GPa.
These Hugoniot data exhibit a significantly different (us–up)
slope (S = 1.26 ± 0.06) from the measurements of Ref. [16]
(S = 1.80 ± 0.10) at lower pressures (80–200 GPa). A change
in Hugoniot slope can point to a significant structural change
in the material, e.g., solid-solid phase transitions or melting
[25,26], dissociation [27], or ionization [28,29]. To explain
the change in Hugoniot slope, quantum molecular dynamics
(QMD) simulations were performed at various points along
silicon’s principal Hugoniot. These simulations predict an
increase in ionic coordination and average ionization (aver-
age number of free electrons per atom), which is concurrent
with the experimentally observed change in slope. Finally, the
isentropic sound speeds cs were determined to increase from
15 to 23 km/s at densities from 5.7 to 7.6 g/cm3, by time
correlating the arrival of imposed acoustic perturbations at the
shock front.

The experimental results are compared to modern theo-
retical calculations and tabular equations of state (SESAME
3810 [30], density functional theory-based first-principles
EOS (DFT-based FPEOS) [31], Livermore EOS (LEOS) 141
[32,33], and XEOS 140 [34,35]). To date, the DFT-based
FPEOS approach produces the best overall representation
of silicon’s principal Hugoniot and sound-speed data above
80 GPa.
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TABLE I. Laser pulse parameters for all shots included in this dataset. Parameters include pulse duration and type [shown in Fig. 1(c)],
laser spot diameter [location on target shown in Fig. 1(d)], energy delivered on the target, and the laser intensity at maximum. Data are ordered
by increasing shot number. Spot diameters with an asterisk used one defocused beam with a diameter of 1.6 mm.

Shot number Pulse type Spot diameter (mm) Energy on target (kJ) Intensity at maximum (W/cm2)

24254 5-ns square 1.1* 9.95 1.8 × 1014

24255 5-ns square 1.1* 5.74 8.8 × 1013

24264 5-ns square 1.1* 12.9 2.4 × 1014

25374 5-ns square 1.1* 9.76 1.8 × 1014

25376 5-ns square 1.1* 6.10 9.4 × 1013

25378 5-ns square 1.1* 4.56 7.1 × 1013

25379 5-ns square 1.1 6.91 1.5 × 1014

25381 5-ns square 1.1* 3.11 4.9 × 1013

25382 5-ns square 1.1 3.55 7.5 × 1013

25384 5-ns square 1.1* 1.45 2.3 × 1013

25385 4-ns square 1.1 6.10 1.6 × 1014

25387 4-ns square 1.1* 11.6 2.7 × 1014

26632 5-ns ramp top 1.8 12.0 2.5 × 1014

26634 5-ns ramp top 1.8 5.59 1.2 × 1014

26638 5-ns ramp top 1.8 3.85 8.1 × 1013

26640 4-ns ramp top 1.8 7.52 2.0 × 1014

26641 4-ns ramp top 1.8 10.5 2.8 × 1014

II. EXPERIMENTAL TECHNIQUE

Experiments were conducted on the OMEGA EP Laser
System at the University of Rochester’s [36] Laboratory for
Laser Energetics. Targets were irradiated by one to four
351-nm laser beams directly onto a parylene-n (CH) abla-
tor, producing strong shock waves that compress the planar
samples [37–41]. These experiments used laser intensities of
30–305 TW/cm2 produced by 4- and 5-ns temporally square
and ramp-top laser pulses with spot sizes of approximately
1100 or 1800 μm. Laser parameters for each shot are in
Table I, and the laser pulse profiles are shown in Fig. 1(c). A
portion of these experiments imposed acoustic perturbations
on adjacent sides of the target stack, enabling a sound-speed
determination.

The target design, shown in Fig. 1(a), comprises a 40-
μm-thick CH ablator, 90-μm-thick α-quartz pusher (ρ0,Qz =
2.65 g/cm3, n0 = 1.547 at 532 nm), 78-μm-thick silicon sam-
ple (ρ0,Si = 2.329 g/cm3, single crystal 〈100〉), 150-μm-thick
α-quartz witness, and 85-μm-thick α-quartz anvil. Silicon
samples were laser cut into 1.5 × 3-mm rectangles and ori-
ented so the shock propagated along the 〈100〉 crystal axis.
Crystalline silicon has a maximum oxide layer thickness of
14 Å at room temperature [42]. In these experiments the
oxide layer equilibrates in under 200 fs, and therefore has a
negligible effect on the measurement. Low-viscosity epoxy
was used to bond the individual target components. Prior
to bonding, sample thicknesses were measured with a dual
confocal microscope to an accuracy of 2%; glue layers were
characterized by measuring target thickness after assembly,
with an average thickness and uncertainty of 3.6 and 0.4 μm,
respectively.

The shock velocity in the quartz pusher, witness, and anvil
were measured using a line-imaging velocity interferometer
system for any reflector (VISAR) [23]. A VISAR-side image
of the target is shown in Fig. 1(d) and an example of a
VISAR record is shown in Fig. 1(b). The vertical position

of the fringes is proportional to shock velocity. Silicon is
opaque to the 532-nm VISAR probe so the shock velocity
cannot be measured within the sample. Instead, an average
shock velocity is determined by a transit-time measurement
using shock-breakout signatures at the bare ∼100-μm-wide
pusher/vacuum (Si entrance) and silicon/vacuum (Si exit)
interfaces. The resolution of the VISAR streak cameras
enables transit-time measurements with ∼1–2% accuracy.
Transit times in the epoxy layer preceding the Si sample are
calculated from the measured thickness and inferred shock
velocity, which is estimated by impedance matching [22] us-
ing SESAME 7603 for epoxy. This epoxy shock transit time
is subtracted from the VISAR-measured transit time through
the combined epoxy/silicon layer to determine the transit
time through the silicon sample. A linear extrapolation of
the silicon velocity profile was performed across the epoxy
layer [14,43] at the pusher/silicon interface, extending the
inferred silicon velocity profile backward across the epoxy,
and modeling an event where the quartz and silicon are in
perfect contact. The quartz witness, adjacent to the silicon
sample, acts as a reference to determine the time-dependent
shock velocity in the Si using the unsteady-waves correction.
A quartz anvil is attached to the rear side of the silicon sample
to observe acoustic perturbations after the shock exits the Si
samples.

III. ANALYSIS AND RESULTS

A. Hugoniot

The principal Hugoniot data were determined by inferring
shock and particle velocity using an unsteady-waves correc-
tion and impedance matching, respectively; α-quartz was used
as a reference material for both techniques.

Impedance matching [22] was performed at the quartz
pusher/silicon interface, where the conservation of mass, mo-
mentum, and energy was used to calculate pressure, density,
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FIG. 1. (a) The target design for silicon Hugoniot measurements. Components include a CH ablator, a quartz pusher and witness, a silicon
sample, and a quartz anvil. (b) VISAR record from shot 25 378 using the target depicted in (a). The in situ shock velocity in quartz is determined
from the shifts in the fringe pattern. Silicon is opaque to the 532-nm VISAR probe laser, resulting in no fringe motion on the bottom half of the
image until the shock enters the quartz anvil at 6 ns. (c) Laser intensity profiles for the four pulse shapes used in these experiments. (d) VISAR
side image of the target design, showing lateral dimensions of the target components, diameters/locations of the laser spots (black dashed
lines), and the VISAR field of view (green dashed lines). (e) Extracted shock velocity profiles from the VISAR record in (b). The velocity
profile in silicon (black curve) was inferred from the average shock velocity (horizontal black) and the observed velocity profile in the quartz
witness (orange curve) using the unsteady-waves correction. The shock-velocity history in the quartz anvil (blue curve) is observed after the
shock exits the silicon sample.

and particle velocity (P, ρ, and up) in the shocked silicon. P,
ρ, and up in the shocked α-quartz were calculated using an
analytic fit to experimental Hugoniot data in the 0.1–1.6-TPa
range [44], which was extended to 3 TPa (well above this
study’s highest pressures) using first-principles MD simula-
tions [45]. A Mie–Grüneisen linear reference (MGLR) [45]
model was used for the quartz release when the shock transits
from higher-impedance quartz into slightly lower-impedance
silicon. Since quartz and silicon have similar impedances,
the resulting release produced only slightly lower pressures.
Uncertainty in the impedance matching calculations were
determined using a Monte Carlo routine (106 trials), which
incorporates systematic uncertainties in the EOS, MGLR
model, and random uncertainties in the measurements, yield-
ing 1σ confidence intervals in the reported Hugoniot values.

For impedance matching with opaque materials, systematic
uncertainties can arise from unsteadiness in the shock velocity
within the sample. To address this, adjacent components in
the target (see Fig. 1), which experience a common drive
pressure profile with the sample [24], were used to infer the
time-dependent velocity profile within the silicon samples and
more accurately determine the shock velocity at the interface
where impedance matching is performed. For these quasis-
teady shock waves with small acoustic perturbations (�P/P <

10%), linear scaling factors (F, G) are used to determine the
relative arrival times and amplitudes of perturbations at the

silicon shock front with respect to a reference medium (the
α-quartz witness). Calculations of the linear scaling factors
require estimates of the EOS, Grüneisen parameter, and sound
speed for both quartz and silicon. The Grüneisen parameter
for α-quartz is fixed at 0.66, which has been shown to be
valid for shock pressures above 0.3 TPa in liquid silica [46].
The α-quartz sound speed was obtained from an empirical
wide-range EOS, which was validated by experimental data
in the 0.25–1.5-TPa range [47]. Estimates of the required
parameters for silicon were taken from the DFT-based FPEOS
from Ref. [31]. This analysis enables one to accurately infer
the shock velocity profile within the sample and to determine
the instantaneous shock velocity at the impedance-matching
interface. Details of this technique are discussed at length in
Refs. [14,46,48]. The scaling factors used for each shot are
listed in Table II.

An example of the applied unsteady-waves correction can
be seen in Fig. 1(e). The orange curve is the measured us in
the quartz pusher (1.5–4 ns) and quartz witness (4–10 ns).
The shock transits the silicon from about 4 to 6 ns. After
6 ns, the shock is observed in both the quartz witness and the
quartz anvil (6–9 ns) on the rear of the silicon. The average
us (horizontal black line) in the silicon is determined from the
sample thickness and shock transit time (vertical black dashed
lines). The measured us(t ) in the adjacent quartz witness is
used to infer the velocity history in the silicon (black curve). In
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TABLE II. Impedance match parameters [shock velocity in quartz (uQz
s ) and silicon (uSi

s )], linear scaling factors (F and G) used with the
average shock velocity in silicon (uSi

s ) to infer uSi
s , and Hugoniot results for silicon including particle velocity (up), pressure (P), and density

(ρ) for all shots included in this work.

Shot number uQz
s (km/s) uSi

s (km/s) F G uSi
s (km/s) up (km/s) P (GPa) ρ (g/cm3)

26638 15.5 (0.2) 16.3 (0.2) 0.95 1.08 15.5 (0.3) 8.9 (0.2) 321 (7) 5.42 (–0.18,+0.25)
25384 16.6 (0.2) 16.8 (0.5) 0.97 1.11 17.5 (0.6) 9.5 (0.2) 389 (12) 5.12 (–0.20, +0.41)
26634 17.8 (0.2) 18.5 (0.4) 0.97 1.06 18.0 (0.5) 10.6 (0.2) 443 (11) 5.66 (–0.16, +0.48)
26640 21.5 (0.2) 23.1 (1.3) 0.95 1.03 22.0 (1.4) 13.5 (0.2) 692 (13) 6.00 (–0.13, +0.37)
25381 22.3 (0.2) 21.4 (0.6) 1.00 1.08 23.5 (0.6) 14.0 (0.2) 766 (17) 5.73 (–0.14, +0.47)
26632 23.0 (0.2) 22.7 (1.3) 1.00 1.05 22.8 (1.4) 14.8 (0.2) 788 (14) 6.63 (–0.25, +0.41)
25382 23.2 (0.2) 22.9 (0.5) 1.03 1.07 22.9 (0.6) 15.0 (0.2) 799 (18) 6.69 (–0.32, +0.60)
26641 24.0 (0.2) 25.1 (0.6) 1.00 1.01 24.2 (0.6) 15.6 (0.2) 877 (19) 6.57 (–0.37, +0.49)
25378 24.0 (0.2) 23.6 (0.9) 1.02 1.07 25.8 (0.9) 15.2 (0.3) 914 (23) 5.70 (–0.19, +0.54)
24255 23.8 (0.2) 25.6 (1.0) 0.99 1.05 26.5 (1.1) 14.9 (0.2) 921 (30) 5.32 (–0.09, +0.64)
25376 27.2 (0.2) 25.5 (0.7) 1.07 1.07 28.2 (0.7) 18.0 (0.3) 1184 (25) 6.45 (–0.33, +0.49)
25379 28.9 (0.2) 29.0 (0.7) 1.08 1.02 30.0 (0.8) 19.4 (0.3) 1353 (28) 6.60 (–0.19, +0.66)
24254 30.3 (0.2) 31.3 (0.8) 1.04 1.01 32.1 (0.9) 20.4 (0.3) 1527 (32) 6.41 (–0.23, +0.60)
25374 31.2 (0.2) 30.3 (1.1) 1.09 1.02 32.3 (1.2) 21.3 (0.3) 1604 (41) 6.87 (–0.51, +0.77)
25385 31.7 (0.2) 30.1 (0.7) 1.09 1.04 32.7 (0.8) 21.8 (0.3) 1659 (32) 7.01 (–0.22, +0.73)
24264 34.2 (0.2) 33.1 (1.2) 1.07 1.00 34.5 (1.3) 24.0 (0.3) 1918 (50) 7.65 (–0.56, +1.12)
25387 35.6 (0.2) 34.0 (1.2) 1.09 1.00 36.1 (1.3) 25.1 (0.3) 2112 (56) 7.64 (–0.48, +1.23)

this example, there is a difference of �us = 2.2 km/s (about
9% of average us) between the average us and inferred initial
us when the shock enters the silicon, with an average velocity
uncertainty of 0.2 km/s. Perturbations originating from fluc-
tuations in drive intensity (�IL) are observed on the quartz
witness later than in the silicon sample. To study systematic
uncertainties in the inferred us associated with a choice of
EOS in the unsteady-waves correction, two cases were tested:
(1) Hugoniot parameters from SESAME 7387 (α-quartz) [49]
and 3810 (silicon) [30], and (2) Hugoniot parameters from
Ref. [45] (α-quartz) and the DFT-based FPEOS [31] (silicon).
Results differed by less than their uncertainty; therefore, the
empirically determined [45] and modern computational EOS
[31] were used for the correction.

The Hugoniot results are listed in Table II and plotted in
Fig. 2. Shock and particle velocity data from this work and
four data points from Ref. [16] are fit separately using a
weighted linear regression (method described in Ref. [50]).
This study is restricted to the high-pressure single-wave
regime, where shocked silicon does not form elastic and in-
elastic precursors; only Hugoniot data with pressure greater
than 80 GPa are included in the fit. Linear, quadratic, and
bilinear functions were compared through a general linear
F-test criterion, evaluated at the 1σ probability cutoff. An
additional Bayesian statistical inference method [51] was used
for model selection, comparing a bilinear model against global
linear and quadratic models through the Bayes factor, and
testing systematic uncertainties between our work and re-
sults in Ref. [16]. According to the F-test and Bayes test,
the bilinear model best represents silicon’s response to shock
compression for shock pressures greater than 80 GPa. Using
a χ2 minimization, the break point between the two linear
regions was found at up,break = 6.5 km/s. Parameters of the
model and their 1σ confidence intervals are in Table III; an
orthogonal basis imposed on the functional form removes

correlation between the slope and intercept. For fluid veloc-
ities of 4 � up � 6.5 km/s along the Hugoniot, a linear fit
to Ref. [16] exhibits slope a1 = �us/up = 1.80 ± 0.10, with
functional form:

us = 10.3(±0.1) + 1.80(±0.10)(up − 4.95). (1)

Uncertainty in the velocity data of Ref. [16] is assumed
to be 0.1 km/s, based on their reported significant figures.
Above up � 6.5 km/s, silicon’s Hugoniot “softens,” and a fit
to the data exhibits a shallower slope of a1 = 1.26 ± 0.06 with
similar functional form:

us = 22.5(±0.2) + 1.26(±0.06)(up − 14.0). (2)

Residuals with respect to the bilinear fit are inset in
Fig. 2(a), showing that the DFT-based FPEOS [31] best rep-
resents the experimental results for liquid silicon’s Hugoniot.
Figure 2(b) shows the same experimental data, fit, and models
in P–ρ space. Further discussion of the Hugoniot models and
discussion of the change in compressibility are included in
Secs. III C and III D, respectively.

B. Isentropic sound speed

Minor perturbations imposed on the laser drive (�IL � 5%)
generate acoustic waves that propagate at the local isentropic
sound speed cs and are observed as perturbations in shock
velocity on both sides of the target (i.e., both the witness
and sample sides). Cross correlation of perturbation patterns
in the α-quartz witness and anvil allows one to determine cs

along silicon’s principal Hugoniot [48]. The one-dimensional
hydrocode LILAC [52] was used to confirm (on a shot-by-shot
basis) that observed modulations in the shock velocity were
correlated with the laser drive, and not, for example, wave
reflections interior to the target.
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FIG. 2. Silicon principal Hugoniot in (a) shock velocity us versus
particle velocity up space and (b) pressure P versus density ρ space.
Only dynamic compression data above 80 GPa, the single-wave
compression regime in shocked silicon, are shown. Experimental
data from this work (blue squares) and Ref. [16] (black circles) are fit
with a bilinear functional form (dashed blue line) with a break point
at up = 6.5 km/s (solid blue line). A 1σ functional prediction band
is shown as the shaded region surrounding the fit. Data are compared
with Hugoniots from SESAME 3810 (red dotted curve), DFT-based
FPEOS (pink curve), LEOS 141 (dot dash green curve), and XEOS
140 (dot dash yellow curve). Inset in (a): Percent difference in shock
velocity with respect to this work’s us–up fit. FPEOS shows the
best agreement with the experimental Hugoniot fit and is the only
model to predict the change in compressibility. The legend in (b)
also corresponds to (a).

A schematic of the technique [24] used to measure sound
speed is shown in Fig. 3. Using a Doppler scaling factor, Fcs ,
perturbations observed in the quartz witness are time shifted
until the arrival times match between the witness (tQW) and
anvil (tSi). The isentropic Eulerian sound speed in silicon is
then calculated from

cs = PS

up,SρS

(
1 − (1 − MQW)(1 + MQP)

Fcs (1 − MQPR)

)−1

, (3)

TABLE III. Parameters of the bilinear us–up Hugoniot fit of the
form us = a0 + a1(up–β ) with 1σ confidence intervals. This fit is
valid for shocks in silicon achieving pressures >200 GPa. Break
point of the fit is up,break = 6.5 km/s.

Fitting range (km/s) a0

(
σa0

)
(km/s) a1

(
σa1

)
β (km/s)

4.0 � up � 6.5 km/s 10.3 (0.09) 1.80 (0.10) 4.95
6.5 � up � 25 km/s 22.5 (0.23) 1.26 (0.06) 14.0

where P, ρ, and up are the pressure, density, and particle
velocity, M is a local Mach number, Fcs is the Doppler scal-
ing factor (Fcs = tSi/tQW), and subscripts Si, QP, QPR, and
QW denote parameters of the silicon sample, quartz pusher
before release, quartz pusher after release, and quartz witness,
respectively [48]. Uncertainty in the sound-speed values is
determined through standard error propagation using Eq. (3).

The sound-speed results are listed in Table IV and shown in
Fig. 4 for all shots with observable perturbations in the quartz
anvil. Results are consistent with a linear trend with increasing
density. Several function forms were tested; however, due to
the uncertainty in the measurements, a preferred functional
form could not be determined through the general F-test crite-
rion. Consequently, we selected a linear representation since
it has the lowest number of free parameters. Experimental
results from this work are fit with a simple linear model;
functional form, fit parameters, and 1σ confidence intervals
are listed in Table V.

C. EOS models

This work was motivated in part by a significant disagree-
ment between models for the EOS of high-pressure silicon
shocked to the fluid phase. Specifically, recent path-integral
Monte Carlo (PIMC) [53] and DFT-based calculations [31,54]
(FPEOS) predicted significantly higher compressibility than
SESAME 3810 [30] and LEOS 141 [32,33]. The experiments
confirmed the higher compressions predicted by FPEOS and
similarly by XEOS 140 [34,35].

Below the break point, up = 6.5 km/s, corresponding to
200 GPa along the bilinear Hugoniot model, FPEOS and
LEOS 141 are the most accurate representations of the sili-
con Hugoniot measured by Ref. [16]. Above the break point,
FPEOS and XEOS 140 show the best agreement with exper-
imental results for both the Hugoniot and sound speed in the
limit of high pressures.

In fluid silicon for pressures greater than 80 GPa, the
difference between the Thomas-Fermi and FPEOS models
is a result of the models’ treatment of atomic interaction
beyond the melt (P ≈ 35 GPa [20,21,26]). SESAME 3810 is
a preliminary table that uses different models for solid and
liquid phases, and the thermodynamic properties are smoothly
interpolated (along isochores) to the ideal gas limit. Ulti-
mately, the specific heat at constant volume is matched to the
ideal gas value of 3R/2 at high temperatures. Under such a
treatment, which is implicitly monoatomic and noninteracting
beyond the melt curve, clustering and/or bonding in liquids
is ignored. These effects, if included, would lead to higher
compressibility in physical systems. FPEOS (derived from
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FIG. 3. A schematic of the technique used to determine sound
speed of silicon. (a) The shock velocity is tracked in the pusher
(green line), witness (orange line), and anvil (blue line). Velocity
in the opaque silicon (black line) is not measured. In the witness
and anvil, time and amplitude scaling factors allow us to correlate
changes in velocity. Arrival times of perturbations are determined
through a bilinear fit to the velocity profile near the suspected arrival.
The leading shock and acoustic perturbations (dashed purple lines)
are tracked in position and time on the (b) pusher/witness side and
(c) pusher/silicon/anvil side. The perturbations originate from fluctu-
ations in laser intensity at the drive surface.

DFT calculations) models these effects by using Kohn-Sham
equations to solve for the mean-field approximated electron
density, which, together with ion-ion interaction, drives the
nuclear motion within the Born-Oppenheimer approximation.
Similarly, the LEOS and XEOS tables, a quotidian EOS, rely
on the Cowan model for the ionic free-energy part, an average-
atom model for the electronic free energy, and are built using

TABLE IV. Sound speed (cs) and nonsteady waves parameter Fcs

included in this work.

Shot number Fcs cs (km/s) ρ (g/cm3)

25378 1.02 17.3 (1.9) 5.70 (–0.19,+0.54)
25376 1.07 18.3 (2.5) 6.45 (–0.33,+0.49)
26641 1.00 18.0 (1.7) 6.57 (–0.37,+0.49)
25379 0.95 22.3 (1.8) 6.60 (–0.19,+0.66)
25382 1.05 16.5 (2.2) 6.69 (–0.32,+0.60)
25374 1.02 22.0 (2.6) 6.87 (–0.51,+0.77)
25385 1.13 19.5 (3.7) 7.01 (–0.22,+0.73)
25387 1.05 23.2 (4.0) 7.64 (–0.48,+1.23)

a different interpolation scheme between the Debye model
below melt and the ideal gas limit.

D. QMD simulations

Theoretical calculations have played an important role
in explaining observed changes in physical properties of
high-energy-density materials [48,55–65]. Changes in the
Hugoniot slope are typically associated with ionic or elec-
tronic rearrangement. To better understand the physical
mechanisms driving the change in Hugoniot slope for liq-
uid silicon, DFT-based QMD simulations were performed
to examine changes in ionic coordination under shock com-
pression. All simulations were performed with ground state
Kohn-Sham DFT [66,67] using the plane-wave implemen-
tation of DFT in the Vienna ab initio simulation package
(VASP) [68–71], with Perdew-Burke-Ernzerhof (PBE) [72]

FIG. 4. Isentropic sound speed along the silicon Hugoniot. Re-
sults from this work (blue squares) and a single measurement from
Ref. [16] (black circle) are compared against SESAME 3810, DFT-
based FPEOS, LEOS 141 and XEOS 140. The ambient bulk (cB)
and longitudinal (cL along 〈100〉) sound speeds are indicated by the
horizontal black lines. A linear model (blue line) is fit to the data and
extrapolated (blue dashed line) to the left- and right-most error bar.
The shaded region around the fit is the 1σ confidence interval.
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TABLE V. Parameters of the linear cs-ρ fit with 1-σ confidence
intervals and correlation matrix elements. This fit is valid for shocks
in silicon achieving pressures >80 GPa.

Covariance
Function form Fit parameter results matrix

α = 5.56(0.98) km/s 0.96
cs = βρ + α

β = −18.5(6.65) km cc
g s –6.5 44.2

generalized gradient approximation [73] exchange-correlation
functionals. Quantum molecular dynamics simulations were
performed with VASP using 256-atom supercells with periodic
boundary conditions. The reciprocal space was sampled using
2 × 2 × 2 Monkhorst-Pack [74] k meshes. The ionic time-step
size was 0.5 fs over 10 000 steps, yielding a total atomistic
simulation time of 5 ps. Projector-augmented wave pseudopo-
tentials [75,76] with a 1.10-Å cutoff of core radius was used
with the semicore 2s22p63s23p2 electrons being treated as
valence electrons, corresponding to a kinetic energy cutoff
of 1100 eV for the plane-wave basis set. Previous studies
[77,78] have tested the applicability of the pseudopotential
for shock Hugoniot conditions. At 1 TPa, the Si-Si distance
is >1.5 Å, so we do not expect a density bias due to the se-
lected pseudopotential. Electrons were populated according to

FIG. 5. Results of DFT-based MD simulations along silicon’s
principal Hugoniot. (a) Experimental Hugoniot results, bilinear
us–up fit, and the DFT-based FPEOS. The break point in the fit
(vertical blue line) is located at ρ = 4.64 g/cm3, or P = 200 GPa
along the Hugoniot fit. (b) Coordination number n and (c) average
free electrons per atom Z̄ calculated at several densities along the
principal Hugoniot. Inset: Image of the liquid silicon structure from
MD with coordination number 13 at ∼1 TPa. The observed change
in slope along the Hugoniot occurs at the center of a predicted
rise in coordination number and the beginning of a rise in average
ionization.

Fermi-Dirac statistics and all-electronic, self-consistent field
calculations were converged to a precision of 10−5 eV/atom
for the free energies.

Results of the DFT-based QMD simulations of fluid silicon
are shown in Fig. 5. The coordination number increases from
n ≈ 11 to n ≈ 13 between 50 and 300 GPa [Fig. 5(b)], with
the sharpest rise located near 200 GPa. Since silicon is a liquid
at these pressures, the coordination numbers are calculated
by approximating an isotropic crystal structure and are not
constrained to a maximum coordination number of 12. The
observed change in Hugoniot slope at P = 200 GPa, indicated
by the vertical blue line at ρ = 4.64 g/cm3 in Fig. 5(a), is
near the center of this rise. Previous work on structural evo-
lution in compressed liquids has shown that silicon and tin
form highly coordinated liquid structures. Static experiments
on liquid silicon revealed a gradual increase in coordination
with increasing pressure, measuring coordination numbers as
high as 9.2 at 23 GPa [79]. In tin, another group-14 element,
a coordination number of n = 11 was measured just above
the melt on the Hugoniot (40–70 GPa), increasing to n > 12
around 90 GPa [80]. In silicon, n = 11 at 50 GPa would
indicate that silicon has an isotropic fluid structure [81] just
after shocking through the melt (P = 35 GPa). An increase to
n ≈ 13, and subsequent plateau, suggests that silicon forms a
more highly coordinated isotropic fluid by 300 GPa with no
further changes in ionic arrangement to 2100 GPa.

The change in Hugoniot slope is also coincident with a pre-
dicted 50% increase in the average number of free electrons
per atom, due to an ionization event. Dynamic compression
experiments on helium [28] and various metals [29] have
made it possible to observe changes in Hugoniot slope at
pressures above several hundred GPa, attributed to ioniza-
tion. Figure 5(c) shows an increase in the average number
of free electrons per atom, from Z̄ ≈ 2 to Z̄ ≈ 3, starting at
200 GPa along the fluid silicon Hugoniot. These simulations
suggest that above 500 GPa, and up to 1200 GPa, Z̄ is nearly
constant.

IV. CONCLUSIONS

The behavior of nature’s fundamental building blocks at
millions of atmospheres is important in studies of astrophys-
ical bodies [1–4] and ICF capsule designs [5–9]. In situ
observation of these materials deep in the interior of planets
and stars is technologically infeasible, necessitating the gener-
ation of extreme pressures and temperatures in the laboratory.
With little intuition for the bonding or compounds that might
form at such extreme conditions, these macroscopic thermo-
dynamic studies provide rigorous benchmarks for theory and
first principles simulations, through which we can gain insight
into the microscopic behavior.

Reported here are shock-compressed measurements of sil-
icon, along the principal Hugoniot, to a high-pressure liquid
phase in the range of 320–2100 GPa, and achieving a max-
imum of 3.3-fold compression. Combined with existing data
from Ref. [16], the experimental results are well represented
by a bilinear fit determined by a weighted least-squares fitting
over an orthogonal basis. A change in Hugoniot slope is de-
tected near P = 200 GPa, and simulations were performed to
examine the underlying physical processes. DFT-based QMD
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simulations suggest that the experimentally observed change
in Hugoniot slope is coincident with an increase in ionic
coordination and average ionization. By correlating acoustic
perturbations on both sides of the target, the sound speed was
determined to be 15 < cE (km/s) < 23 at 800 < P(GPa) <

2100 and 5.7 < ρ(g/cm3) < 7.6 along the Hugoniot. Of the
best available theoretical calculations, A DFT-based FPEOS
[31] table shows the most overall agreement with experimen-
tal results.
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