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Impact of point defects on the electrical properties of selenium: A density functional theory
investigation with discussion of the entropic term
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Selenium in ambient conditions exhibits two crystalline allotropic forms. The thermodynamically stable
phase is the pseudo-1D trigonal form with 1/∞[Se] chains. A metastable phase composed of [Se8] rings also
coexists. Both are studied herein by means of density functional theory. The recent SCAN functional offers a
fair description of both phases. The Birch-Murnaghan equation of states is fitted onto ab initio results to obtain
the energy-volume and pressure-energy relationships. Phonon properties (bands and DOS) are computed and
a pressure-temperature phase diagram is derived. Intrinsic and extrinsic defect formation enthalpies are also
computed using SCAN functional and HSE06-GD3 for the band shifts. The low p-type conductivity of the
trigonal phase can be attributed to Se self-interstitials while the very low conductivity of the metastable phase is
related to very deep native defects. Antimony, and bromine extrinsic defects are tested as potential dopants. Of
those three, only antimony in the trigonal phase seems to possibly have a positive impact on the conductivity.
Finally, the configurational entropy linked to defect creation is computed. Our calculations clearly show that the
usual assumption that defect entropy is negligible compared to the enthalpy seems relevant.
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I. INTRODUCTION

Elemental selenium has recently regained attention for its
optoelectronic properties [1]. In particular, selenium is of his-
torical interest as photoconductivity was first noticed in this
material in 1873 [2], leading to the first PV solar cells with an
efficiency lower than 1% [3]. It was improved to culminate in
1985 at the record efficiency of 5.0% [4]. Its high band gap
and the parallel development and success of the silicon indus-
try resulted in it being set aside for PV application. However, it
was very recently pointed out that the material could provide
a convenient absorber for the top cell of a tandem solar cell
[1]. Indeed, synthesizing a unary material is much easier than
ternary or quaternary materials now used in thin-film tech-
nologies such as copper-indium-gallium-selenide (CIGS) and
copper-zinc-tin-selenide (CZTS). In this vein, Todorov et al.
recently optimized a selenium-based single-junction device
and broke the previous record, reaching 6.5% efficiency [1].
In this cell, crystallized p-type selenium acts as an absorber
layer. Todorov et al. note that the open-circuit voltage (VOC)
is almost 1 V under the theoretical Shockley-Queisser limit,
leaving much room for improvement, especially through the
limitation of charge carriers recombinations. This issue is
typically linked to point defects, both in the bulk and/or at
the heterojunction [5]. This brand new record translates the
recent research activity around the application of selenium for
solar devices, be it as an absorber for photoelectrochemical
solar cells [6] and PV cells in thin films [7], as nanoparticles
[8], or as a hole conducting layer [9,10]. More generally, the
nanoscale forms have also attracted a fair deal of interest,
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partly due to its potential application in the fields of medicine
and optical devices [11,12].

Looking at the material itself in more detail, the phase
diagram is quite complex, with the coexistence of several
allotropic forms due to the competition between short range
covalent bonds and long range van der Waals interactions
[13,14]. Parthasarathy and Holzapfel experimentally reported
a structural study up to 50 GPa [15], later completed by
Akahama et al. up to 140 GPa [16]. The first pressure-induced
transition occurs at ca. 14 GPa. Intermediate structures are
unclear, but the material adopts a monoclinic lattice between
ca. 23 and ca. 28 GPa. At higher pressures, a rhombohedral
phase isostructural to β-polonium appears, and at 140 GPa
an additional structural transition towards a body-centered
cubic (BCC) phase occurs. The highest pressure phases have
been more thoroughly studied, most notably for supracon-
ducting properties [16–19]. Ambient conditions are of most
interest for the optoelectronic applications on which this work
focuses. In such conditions, the material can adopt three dif-
ferent forms, namely an amorphous form and two crystalline
ones. The first crystal phase, hereafter referred to as γ -Se,
crystallizes in a trigonal lattice, exhibiting a band gap of
1.83 eV [20] or 2 eV [21] according to the authors. This is
without a doubt the most stable phase of selenium at ambient
pressure [14,22], and it is often incorrectly referred to as
“hexagonal” selenium in the literature. The crystallographic
structure is described in more details hereafter. The second
crystal form obtained in ambient conditions adopts a mono-
clinic lattice and is labelled herein β-Se [23,24]. Its band gap
is reported as direct and is equal to 2.53 eV [25].

The purpose of this work is to determine the intrinsic
defects present in the two main crystal forms of sele-
nium in order to identify the origin of the observed p-type
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TABLE I. Computational details of the study of ideal cells.

β-Se (rings) γ -Se (chains)
General

Ecut (eV) 265
Force conv. (eV Å−1) 10−2

SCF conv. (optim.) (eV) 10−5

SCF conv. (DOS) (eV) 10−6

PBE/PBE-GD3(BJ)/SCAN(-GD3)
K-pts grid (optim.) MP 5×5×4 MP 10×10×8
K-pts grid (DOS) � 5×5×4 � 15×15×12

HSE06(-GD3)
K-pts grid (optim.) � 2×2×2 MP 5 × 5 × 4
K-pts grid (DOS) � 3×3×3 � 5×5×4

conductivity. Extrinsic doping strategies are also investigated.
Finally, advantage is taken from the relative simplicity of
the system to discuss the entropic contribution to the Gibbs’
free energy and validate the common hypothesis that it is
negligible.

II. COMPUTATIONAL DETAILS

A. Ground state of the ideal systems

Computations were performed using the plane-augmented
waves (PAW) scheme implemented in VASP [26–29]. Several
approximations were tested, namely “pure” GGA functional
PBE [30], including dispersion corrections GD3 [31,32] and
GD3-BJ [31–33] to account for long range interactions, meta-
GGA functional SCAN [34] both without and with GD3
energy correction [31,32], and screened hybrid functional
HSE06 [35,36] and HSE06-GD3. The calculation settings (K-
mesh, energy cutoff, convergence criteria) for the geometrical
optimization and DOS for the two phases studied are summa-
rized in Table I.

B. Pressure and temperature effects

To take into account the effect of pressure, a series of
six additional cells with different V

V0
ratios were built from

the relaxed structure of volume V0 at P = 0 (PBE-GD3-BJ
for β-Se and PBE-GD3 for γ -Se). They were optimized at
constant volume. The values (cell parameters and interatomic
distances) show that these functionals can be satisfactorily

used for such purpose [37]. The E (V ) data was fitted using the
Birch-Murnaghan equation of state as implemented in PyDEF
[37–39].

Density functional perturbation theory (DFPT) [40] could
not be used to calculate the phonon properties because the
dispersion corrections are not included in the Hessian ma-
trix in VASP 5.4.4. Thus, the finite-displacement method was
used with 2×2×2 supercells. This numerical method might
induce minor discrepancies. The related post-treatment was
performed using the PHONOPY code [41] used as a library in
PyDEF.

C. Defect study

Based on the results presented hereafter, faulted supercells
were built on the SCAN geometry. The cutoff energy was
increased to 500 eV due to the study of extrinsic defects.
The computational details are summarized in Table II. Defect
formation enthalpies �H at T = 0 and P = 0 with respect to
Fermi level μEF were computed following equation (1).

�HD,q
form(μEF ) = ED,q

total − Ehost
total +

∑
Xi

nXi

(
μ0

Xi
+ �μXi

)

+ q
(
Ehost

VBM + μEF

) + corr(D, q), (1)

where
(i) ED,q

total is the total energy of the faulted supercell (the
supercell containing the defect) after relaxation of the atomic
positions at fixed cell parameters without symmetry con-
strains.

(ii) Ehost
total is the total energy of the ideal supercell (also

referred to as the host cell).
(iii) μ0

Xi
is the chemical potential of element Xi in its stan-

dard phase (ambient conditions).
(iv) �μXi is the variation of the chemical potential of

element Xi from its chemical potential in the thermodynamic
standard phase (�μXi < 0), induced by the crystal growth
conditions.

(v) nXi is the number of atoms of species Xi added to the
ideal host lattice.

(vi) Ehost
VBM is the energy corresponding to the valence band

maximum (VBM). It is the reference energy for μEF .
(vii) μEF is the chemical potential of the electrons, the so-

called Fermi level.
(viii) corr(D, q) corresponds to various corrections to take

into account and detailed in the Supplemental Material.

TABLE II. Computational details for the defect study.

β-Se (rings) γ -Se (chains)
General

Ecut (eV) 500
Force conv. (eV Å−1) 10−2

SCF conv. (optim.) (eV) 10−5

SCF conv. (DOS) (eV) 10−6

Electronic density functional SCAN
Supercell 2×2×1 (128 atoms) 3×3×3 (81 atoms)
K-points grid (optim.) MP 2×2×2 MP 3×3×3
K-points grid (DOS) �-centered 2×2×2 �-centered 5×5×4
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Band shift, as well as potential alignment, electrostatic
Makov-Payne-like, Moss-Burstein band filling and perturbed
host states (PHS) total energy corrections were taken into
account as in our previous works [42,43]. The band-edge
references were taken from HSE06-GD3 calculations. The
post-treatments were performed using our in-house software
PyDEF [38,39].

III. RESULTS AND DISCUSSION

A. Ground state properties of the two allotropic
ambient crystal phases

As mentioned beforehand, selenium in solid state can adopt
several allotropic forms. The crystallographic structures of
the two main crystal phases β-Se and γ -Se are drawn in
Figs. 1 and 2 [37]. The first crystallizes in a monoclinic lattice
following space group symmetry P21/c (no. 14), forming Se8

crownlike rings. It is isostructural to α-S8. The rings roughly

FIG. 1. Crystallographic structure of β-Se, exhibiting a mon-
oclinic lattice within P21/c (no. 14) space group symmetry. It
is isostructural to α-S8. Green spheres represent selenium atoms.
(a) Conventional cell. Cell boundaries are represented in black.
(b) One isolated crown-shaped Se8 ring moiety. Plain green lines
represent chemical bonds and dotted gray ones draw the two squares
of four Se atoms composing the crown. a = 8.894 Å, b = 9.000 Å,
c = 11.383 Å, α = γ = 90◦, β = 90.68◦ [24].

FIG. 2. Crystallographic structure of γ -Se (conventional cell).
The structure is often inaccurately referred to as “hexagonal” Se but it
crystallizes in a trigonal lattice, within P3121 (no. 152) space group
symmetry. It consists of 1/∞ [Se] helical chains along the c axis.
a = b = 4.368 Å, c = 4.958 Å [48].

consist of two (almost) parallel squares of four Se atoms
shifted by 45◦ [22]. The conventional cell contains four Se8

rings for a total of 32 atoms. As of γ -Se, the conventional cell
is highly anisotropic with infinite helical chains of bicoordi-
nated Se along the c axis of a trigonal lattice (P3121 space
group, no. 152). Subsequently, the conventional cell contains
three (crystallographically equivalent) atoms. The amorphous
form, noted a-Se, might be apprehended as a mixture of the
two moieties, chains and Se8 rings, or a glass of either one.
However, no structural model could be determined with cer-
tainty for a-Se and the amorphous structure may well vary
with the synthesis process [44–46], although a recent nuclear
magnetic resonance (NMR) spectroscopy study by Marple
et al. suggests that their samples of a-Se contained only 1/∞
[Se] chains [47]. Hereafter, only the two β- and γ -Se forms
are discussed.

The two structures present voids (van der Waals gaps)
between the chemical entities (Se8 rings or infinite chains),
a clue of the importance of weak interactions to maintain the
cohesion of the microscopic organization of matter. Computed
geometric parameters are reported in Supplemental Material
[37]. Let us start the analysis of the ability of the different
functionals to reproduce a correct geometry with β-Se. The
large overestimation of the b and c lattice parameters using
PBE and HSE06, and also corrected by the use of dispersion
schemes GD3 and GD3-BJ, demonstrates the importance of
weak interactions in the structure. Within the GGA approx-
imation, PBE-GD3-BJ outperforms PBE and PBE-GD3 in
terms of structural description. The overall good prediction
of nearest-neighbor distances with poor cell parameters and
van der Waals distance predictions for the uncorrected func-
tionals means that each moiety (chain or ring) is correctly
reproduced. However the different entities are too far apart
from one another, i.e., the size of the van der Waals gap is
overestimated. This can be explained by the fact that DFT
functionals account well for short-range interactions but not
long-range ones.

The computational effort required for a hybrid functional
calculation being very heavy, it is important to consider re-
liable and efficient protocols. The SCAN functional, which
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gains in popularity among computationally-oriented mate-
rial scientists [49], was tested here. Interestingly, uncorrected
SCAN leads straight away to a relatively satisfying optimized
geometry for β-Se, with a maximum relative deviation to-
wards experimental cell parameters of 3.50%. The agreement
with experiment is still improved with the addition of the GD3
scheme. To summarize, when considering the minimization
of cell parameters deviation between simulation and exper-
iment for β-Se, PBE-GD3-BJ, SCAN, and HS06-GD3 give
similarly satisfying results with a �3% maximum deviation
in absolute value and SCAN-GD3 an even closer description.

Before discussing the band-gap values, let us investi-
gate the γ -Se 1D structure. Once more, HSE06 severely
overestimates the a = b parameter due to weak interactions.
Surprisingly, PBE does not have such a problem. The cell
parameters decrease when adding dispersion schemes GD3
and GD3-BJ as expected. The GD3-BJ correction to PBE is
inappropriate in the case of γ -Se, shrinking a = b too much
leading to a 7% underestimation with respect to experiment.
The long range interactions seem less strong than in the β-
Se case. The trend is the same at the meta-GGA level with
SCAN-GD3 underestimating a = b by 3.4% against a slight
overestimation of 1.7% by SCAN. Overall the c parameter,
i.e., the spatial period along the chain direction, is satisfyingly
described with all methods. The closest geometry to experi-
ment is the one calculated with HSE06-GD3 with less than
one percent deviation in absolute value.

The electronic band structure of both β- and γ -Se forms
computed with the SCAN functional are reported in Supple-
mental Material [37]. Both compounds are semiconductors.
The gap values are discussed more in details hereafter, how-
ever it should be mentioned here that the existence of an
electronic gap is preserved with all the functionals tested, even
uncorrected GGA-PBE. β-Se (rings) exhibits a direct band
gap of 1.74 eV on the � − Y segment while γ -Se shows an
indirect L − H band gap of 1.29 eV. The electronic bands of
β-Se are quite flat, which translates as high charge carrier ef-
fective masses and low mobility. This can be understood as the
electronic states are localized onto a Se8 ring and the inter-ring
interaction is weak and of van der Waals nature. The flatness
of the bands is correlated to the pseudo-0D character of the
structure which exhibits separate moieties. On the contrary,
the dispersion of the electronic bands of γ -Se is much more
important due to its pseudo-1D structure.

The most substantial modification of the band diagram
when changing the approximation for the electronic exchange
correlation is the increase in the gap when climbing Jacob’s
ladder of ab initio simulations. Now the quality of the gap
simulation is discussed with respect to the choice of func-
tional. The experimental and computed DOS gap values are
reported in Table III.

The well-known band-gap problem at the GGA level is
visible with a band-gap underestimation of �40% for β-Se
and 50% for γ -Se. In the case of the GGA description of β-Se,
it means that the closer to experiment the cell parameters are,
the more underestimated the band gap is. At the meta-GGA
level, pure SCAN is in both cases closer to the experimental
value than SCAN-GD3 but the gap remains underestimated
by �30%. Going from GGA to meta-GGA is not sufficient
to get a band gap very close to the experimental value but

TABLE III. β- and γ -Se electronic DOS band gap (eV) cal-
culated using different methodologies compared with experimental
data.

β-Se (rings) γ -Se (chains)

Exp. 2.53 [25] 1.83–2.00 (1.91) [20,21,50]
PBE 1.55 (–39%) 0.96 (–50%)
PBE-GD3 1.29 (–49%) 0.57 (–70%)
PBE-GD3-BJ 1.07 (–58%) 0.45 (–76%)
SCAN 1.75 (–31%) 1.32 (–31%)
SCAN-GD3 1.62 (–36%) 1.00 (–48%)
HSE06 2.75 (9%) 2.58 (35%)
HSE06-GD3 2.33 (–8%) 2.02 (6%)

provides a fair improvement at negligible computational cost.
The HSE06 geometries being very distorted compared to the
experimental ones, they will not provide suitable models for
these materials, even if the band gap can be (perhaps by
coincidence) quite close to the experimental one, as is the
case for β-Se. The HSE06-GD3 gap simulation is quite good
with an 8% underestimation in the case of β-Se and 6%
overestimation in that of the γ -phase. The introduction of
25% of Hartree-Fock exchange allows us to recover the gap,
along with a structure closer to experiment thanks to the GD3
scheme.

HSE06-GD3 provides the most reliable structural and elec-
tronic description combined for both compounds and is thus
retained as the reference calculation to position the band
edges in the latter defect study. However, relaxing the faulted
supercells at this level of approximation would be too cum-
bersome and a less demanding functional is required for the
defect study. SCAN provides a convenient way to describe
reliably both compounds using state-of-the-art functional of
affordable computational cost, thus is retained for the defect
study.

B. Defect formation enthalpies

Then, point defects are investigated in both β and γ phase
in order to understand the origin of the p-type conductivity of
the materials and explore potential dopants which may prove
useful for their application in optical devices. The SCAN
functional is used throughout the defect study as mentioned
previously. Note that in addition to the SCAN lattice param-
eters being in good agreement with the experimental ones,
the interatomic distances are also very well reproduced, with
a deviation with respect to experiment inferior to 3%. As
summarized in Table II, a 2×2×1, 3×3×3 supercell is used
for β-, γ -Se, respectively.

Computational studies allow us to screen the periodic table
for dopants in an affordable and efficient way, prior to exper-
iment in order to give valuable insights to guide synthesis. In
that spirit, the following extrinsic defects were also consid-
ered. Following the same line of thoughts as aliovalent doping
in Si, any V (VII) element substitution to Se should induce
p-type (n-type) doping. Due to prior investigation of Sb2Se3,
Sb was selected over P and As. Bromine was considered for
electron doping.
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TABLE IV. Chemical potential values in electronvolts, as com-
puted with the SCAN functional. �μ, i.e., the variation from
standard chemical potential, is indicated in brackets. μ0

Br was not
computed as bromine is liquid in standard conditions. The competing
binary phase limiting the stability domain of the selenium phase
(β-Se ringlike and γ -Se chainlike structures) is indicated with a slash
in the left column.

β-Se γ -Se

μSe (�μSe) −20.076 (+0.009) −20.085(0.000)
μSb (�μSb) /Sb2Se3 −37.873 (−0.610) −37.860(−0.597)
μBr (�μBr) /SeBr4 −19.548 (–) −19.546(–)

β- and γ -Se are unary compounds, so the chemical po-
tential of selenium is taken as the energy per atom, and only
one synthesis condition is represented in the intrinsic defect
model. The difference in selenium chemical potential between
the two phases is small (9.0 meV), highlighting the fact that
the two coexist at ambient temperature and pressure. The
chemical potential values are available in Table IV.

Only the total energy of one binary needs to be computed
for each dopant considered in order to obtain the maximum
possible dopant chemical potential value. The obtained value
corresponds to the total chemical potential μX which can be
expressed as μX = μ0

X + �μX as employed in equation (1).
The binary compound with the lowest dopant content will set
this limit. Thus, Sb2Se3 (Pnma, no. 62) and SeBr4 (P31c, no.
159) were considered for antimony and bromine, respectively.

In this unary compound, only two types of intrinsic defects
can be considered, namely vacancies and interstitials. β-Se
exhibits eight distinct crystallographic sites, all of them being
very similar in terms of environment (bicoordinated). As our
previous work has shown that the environment is the driving
force for important vacancy DFE difference, only one vacancy
was considered in β-Se. The structure of γ -Se offers only
one crystallographic position, so there is no ambiguity on the
vacancy position. A Frenkel defect (Sei + VSe) was build for
the γ phase but could not be stabilized. This relaxation leads
the displaced atom back to its initial position within the ideal
arrangement.

Let us examine the DFE of the intrinsic defects, as reported
in Fig. 3. In both cases, VSe is lower in enthalpy than Sei

in the p-type regions, and both defects exhibit quite a low
enthalpy of formations, inferior to 2 eV. However, the negative
U behavior of the chalcogen vacancy is found only in the γ

phase. The formation enthalpies of the nonzero charge states
are too high for the transition levels +2/+1 in β- and +1/0 in
γ -Se to be above the VBM with ε

β

+2/+1 � ε
γ

+1/0 = −0.12 eV.

The ε
β

+1/0 transition level is located 0.035 eV below the VBM,
i.e., 2.28 eV under the CBM. Consequently, VSe is totally
unable to give any electron to the CB. Both positive and
negative defect charges were computed in order to account
for all possible effects in these unary compounds. The less
expected ones, i.e., negative for the vacancy and positive for
the interstitial, were found to play no role in the defect physics
of these compounds.

The energetic cost associated with the creation of a sele-
nium vacancy in the two phases is quite different. For the

(a)

(b)

FIG. 3. DFE of intrinsic defects plotted against Fermi level μEF

(a) in β-Se (Eg = 2.33 eV) and (b) in γ -Se (Eg = 2.02 eV). The
vertical black and blue dotted lines stand for the VBM and CBM,
respectively. The calculated gap is the HSE06-GD3 band gap.

neutral state of charge, it is of 0.46 eV in β-Se against 1.39 eV
in γ -Se. Counterintuitively, it cannot be directly related to
the bond lengths. Indeed, the Se-Se interatomic distance is
2.345 Å (2.335–2.358 Å) in β-Se, 1.4% shorter than 2.378 Å
in γ -Se. The strength of the chemical bond is expected to
increase when the interatomic distance decreases. The com-
parison between perfect and faulted geometries represented
in the Supplemental Material provides an interesting insight
into the reason for the DFE difference for VSe between the
two allotropic forms [37]. The relaxation of the structures
after the vacancy formation occurred leads to two very distinct
situations. In β-Se, once the two chemical bonds are broken
by the formation of the vacancy, the structure is able to recover
a ring shape after relaxation. On the other hand, in γ -Se the in-
finite chain is broken. One covalent bond is replaced by a long
range interaction. Thus, Se1 in γ -Se in the final configuration
exhibits a radical change in environment. This explains why,
in spite of a priori stronger Se-Se bonds in β-Se, it is easier to
create a vacancy in β- than in γ -Se. As the γ -Se phase is very
anisotropic and periodic boundary conditions are applied, the
DFE of VSe was validated against another supercell (2×2×7)
to ensure the quality of the result.

The behavior of Sei however is very different between the
two phases. In β-Se, the 0/−2 transition level stands far above
the VBM at 1.48 eV, whereas in γ -Se ε0/−1 exists and is
located only 0.31 eV above it. ε−1/−2 sits 0.77 eV above the
VBM. Thus, the self-interstitial is expected not to contribute
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TABLE V. Fermi level (eV) at growth temperature (K) and after
quenching at room temperature (300 K), calculated free hole and
electron concentrations at room temperature, and intrinsic defect
concentrations (cm−3) in γ -Se with respect to growth temperature.

Tgrowth Egr
F E room

F nh ne [VSe] [Sei]

500 0.66 0.37 1.0.109 1.6.10−12 3.6.108 1.0.109

800 0.49 0.15 7.3.1012 2.3.10−16 6.3.1013 7.3.1012

1000 0.38 0.07 1.5.1014 1.1.10−17 3.5.1015 1.5.1014

to free carriers concentrations in the ring form while being a
fair acceptor defect in the linear allotropic form. The DFE also
varies significantly from one structure to the other. While the
DFE of Sei in the neutral state of charge is 1.1 eV in β-Se, it
is 1.64 eV in γ -Se, roughly 0.5 eV higher. It is very clear that
the ring structure is far more prone to intrinsic defects than
the linear one. However, the concentrated defects of β-Se are
very deep defects and do not give rise to free charge carriers,
while Sei in γ -Se is a fair acceptor.

Although the Fermi level μEF is often taken as a variable,
it is important to keep in mind that for an isolated material,
the charge neutrality imposes one single possible value for
the Fermi level at a considered growth temperature. The ef-
fective masses of the charge carriers are obtained by fitting a
parabolic model onto the band extrema. For β-Se, a difficulty
emerges. The N sites prefactor in the expression of the defect
concentration, as written in equation (2), is the number of
available sites for the defect.

nD = N sites
D

(
e

−�H
D,q(Egr

F )
form (Egr

F )

kBTgr

)
(2)

Although its value is obvious in the case of vacancies, it is
much more ambiguous in the case of an interstitial in β-Se
for two reasons discussed hereafter. In many materials, unoc-
cupied crystallographic sites provide potential host sites for
interstitials which are both obvious to the physico-chemist’s
eye and prove significantly lower (several tenth of electron-
volts) in energy than other potential interstitial sites in DFT
calculations. In β-Se, due to the flexibility of the structure
which results in a very soft/flat potential energy surface, the
energy difference between different interstitial sites is much
lower, making it harder to discriminate between sites.

For interstitial selenium atoms in γ -Se, N sites
D was con-

sidered equal to one per conventional cell (N = 27 for the
3×3×3 supercell), a value which seems realistic. This allows
the determination of the Fermi level at growth temperature
and after quenching at room temperature, as well as the de-
fect concentrations. The simulation results are summarized
in Table V. The Fermi level during crystal growth is one
third of the band gap above the VBM, near the crossing
point of the formation enthalpy curves of the two intrinsic
defects (0.66 eV for Tgrowth = 500 K, which corresponds to
the synthesis temperature of Todorov et al.) [1]. Then, once
the defect concentrations are frozen to model a quenching
of the material, the Fermi level is dragged down towards the
VBM. This is due to the following mechanism. The charge
neutrality condition during synthesis imposes the 0.66 eV
value for Egrowth

F . Then the point defect concentrations are

kept constant. Here, the p-type behavior of the material due
to the selenium interstitial is reproduced for the Fermi level as
well. It highlights the fact that increasing the synthesis tem-
perature will increase the concentration of charge carriers and
by extension the conductivity, as the concentration of charged
point defects increases with temperature. Note that the maxi-
mum hole concentration is quite low (1014 cm−3 for Tgrowth =
1000 K). This calculated value is in perfect agreement with
experimental data [51]. Interestingly, whereas at low synthesis
temperature interstitials are more concentrated than vacancies,
for growth temperatures above �570 K, vacancies become the
major defect in pure γ -Se. Defect concentrations are calcu-
lated to be inferior to 1015 cm−3, comparably to In2S3 [52].

Now that intrinsic defects properties have been thoroughly
investigated, the potential dopants mentioned previously are
discussed (Sb, Br). The extrinsic DFE curves are reported
in Fig. 4. Once more, β-Se proves quite defect tolerant with
low (1–2 eV) DFE for all considered defects, except for anti-
mony interstitial. Antimony (4d105s25p3) can both exhibit the
cationic form Sb3+ emptying the 5p orbitals as in Sb2Se3 and
the anionic form Sb3− saturating the same orbitals, as in AlSb.
Thus, six different non-neutral states of charge were consid-
ered for Sbi. The transition levels unfortunately are buried
deep inside the gap. Bromine can lead to Bri acceptor and
BrSe donor defects. In β-Se, both are deep defects. In γ -Se,
the +1/0 charge transition level (CTL) of BrSe is located at
0.37 eV, i.e., 1.62 eV below the CBM and is thus very deep.
The 0/−1 CTL of Bri makes it a good acceptor, however it
is more than 0.9 eV higher in formation enthalpy than deep
donor BrSe. BrSe is expected to act as a “hole killer” defect
as it is much more concentrated than Bri. To summarize, no
efficient dopant for β-Se was found in the list of chemical
species we selected. Bromine doping of γ -Se is ineffective
with respect to the improvement of the conductivity. SbSe in
γ -Se is the lowest enthalpy defect in a γ -Se material contain-
ing antimony. Its DFE of 1.14 eV in the neutral state of charge,
and its 0/−1 transition level 0.10 eV above the VBM, makes
it a far better acceptor defect than the intrinsic Sei.

From those calculations, it can be concluded that the
formation of the metastable phase β-Se should be avoided
because of its extremely poor conductivity. It appears that
Sb doping of γ -Se may be an efficient way to improve the
conductivity of selenium layers in optoelectronic devices. The
other species tried out, namely bromine, seem irrelevant for
such a purpose.

The relative simplicity of the two selenium phases studied
(only one chemical species involved) offers the opportunity
to try to go beyond the static model at zero temperature.
This would allow us to link the simulated variables to exper-
imentally relevant macroscopic quantities, here pressure and
temperature. The state function to simulate is no more the
enthalpy but the free energy, as discussed hereafter.

IV. FREE ENERGIES

Including the entropy allows us to calculate the free energy
F = E − T ×S and considering both pressure/volume effects
and temperature to go up to the Gibbs’ energy G = F + PV of
the system, the thermodynamic quantity which should ideally
be evaluated. The relative simplicity of the systems considered
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(a) (b)

(c) (d)

FIG. 4. DFE plotted against Fermi level μEF for intrinsic defects and (a) Sb defects in β-Se, (b) Sb defects in γ -Se, (c) Br defects in β-Se,
(d) Br defects in γ -Se. (Eβ

g = 2.33 eV and E γ
g = 2.02 eV.) The calculated gap is the HSE06-GD3 band gap.

provides the opportunity to check the amplitude of the en-
tropic and volumic terms ignored in the supercell model. The
Gibbs’ energy for the two ideal structures is calculated first,
followed by the free energy of formation of intrinsic defects
in γ -Se.

A. Pressure and temperature effects

In order to calculate the Gibbs’ energy G for the determina-
tion of pressure and temperature dependent phase diagram of
crystalline selenium, both pressure and temperature contribu-
tions to G, namely P×V (P) and T ×S(T ), must be calculated.
It is assumed that at low pressure and temperature, the two
variables P and T can be decorrelated so that the two de-
pendencies can be studied separately. The results are then
linearly extrapolated to complete the ab initio data determined
at P(T = 0) and T (P = 0).

To take into account pressure effects, the Birch-Murnaghan
equation of states was fitted on a series of energy vs pres-
sure ab initio data points [53]. They were obtained by
relaxing at constant volume and calculating the energy of
compressed/dilated models with PBE-GD3. It was chosen to
use the same dispersion scheme for both allotropic forms to
enable comparison of the obtained energies. The fit is shown
in Fig. 5. The Birch-Murnaghan equation of state has been
previously used for high-pressure phases of Se [19]. Young
modulus B0 and its derivative with respect to pressure B′

0 are
extracted from the fit. B0 is found to be three times bigger for
the β than for the γ phase. As only the total energy from the
ab initio simulation is extracted to fit the equation of state,
PBE-GD3 ought to provide reliable data.

Then, in order to reflect possible temperature effects,
phonon properties are investigated within the harmonic
approximation. In the ideally ordered structures, the con-
figurational entropy is zero as there is only one possible
configuration for the atoms within each structure. The only
configuration is the crystallographic arrangement, where all
atoms sit at their equilibrium position. Thus, the entropy in
the ideal systems only consists of the vibrational entropy.
Of course, the situation is fairly different when considering
possible crystallographic point defects as will be discussed in
the next section. Thus, computing phonon properties of the
ideal cells is enough to obtain the entropy of such ordered
system. Due to overdelocalization, GGA phonon frequencies
are usually underestimated [54].

Phonon band structure and DOS are presented in Fig. 6.
The difference in the number of atoms per cell (32 for β-
Se and 3 for γ -Se) explains the difference in aspect of the
two band structures due to a higher number of bands for β.
Vibrational frequencies of the acoustic modes are lower for
the β phase (<25 cm−1) than for the γ phase (<80 cm−1).
It means that the chemical bond in the chainlike structure is
more “rigid” than in the ringlike one. This is coherent with
the previous interpretation of β-Se being the most flexible
structure of the two. The forbidden frequency gap in the
infinite wavelength limit (� point) is computed to be 21 cm−1

in β-Se and 113 cm−1 in γ -Se. The DOS gap between the
medium- and high-frequency optical phonons is three times
more important for the β than for the γ phase (�60 cm−1

vs �20 cm−1). Finally, β-Se exhibits phonon modes of fre-
quencies higher than 250 cm−1 while γ -Se does not. All these
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(a)

(b)

FIG. 5. The Birch-Murnaghan equation of state fitted onto PBE-
GD3 calculation series. (a) E (V ) curve for β-Se yields B0 =
0.16 GPa and B′

0 = 5.51. E (V ) curve for γ -Se yields B0 = 0.05 GPa
and B′

0 = 8.08. Data points correspond to ab initio results while solid
lines correspond to the fitted Birch-Murnaghan equation of state.
The square corresponds to the (V0, E0) minimum obtained without
pressure. (b) P(V ) curves for β- and γ -Se.

distinctive features can help identify the allotropic form of Se
using Raman spectroscopy.

This allows us to obtain free energy dependency with
respect to temperature, as depicted in Fig. 7. The entropic
contribution is more important for β-Se. This may be due to
the fact that more degrees of freedom are available for the
vibrations of the ions as the rings are roughly free to vibrate
independently from one another, whereas the chain structure
of γ -Se constrains the vibrations in the c crystallographic axis.

The dependency in temperature and pressure of the ideal
structures Gibbs’ energies can be extrapolated from the ob-
tained data, following equation (3). The thermal dependency
is modeled via the simulation of phonons. Expressions of
E (T ), S(T ), and free energy at P = 0 F (T ) = E (T ) − T ×
S(T ) can be found in Ref. [41] [equations (8), (10), and (11)].
Of course, this is appropriate far below the melting point;
near melting point studies would require molecular dynamic
simulations.

G(P, T ) � E (T ) − T × S(T )︸ ︷︷ ︸
F (T )(phonons)

+ P
∂E

∂P

∣∣∣∣
T =0

(P) + P × V (P)
︸ ︷︷ ︸

Birch-Murnaghan

(3)

(a)

(b)

FIG. 6. Phonon band structure and DOS for (a) β-Se [� (0,0,0),
Y( 1

2 ,0,0), Z(0, 1
2 ,0), D(0, 1

2 , 1
2 )] computed with PBE-GD3-BJ and

(b) γ -Se [� (0,0,0), A(0,0, 1
2 ), L( 1

2 , 0, 1
2 ), H( 1

3 , 1
3 , 1

2 )] computed with
PBE-GD3.

The Gibbs’ energy difference gives the calculated pressure-
temperature phase diagram presented in Fig. 8. The 1D phase
γ -Se is the low-temperature phase, as observed experimen-
tally [55]. This is consistent with the fact that thin film
synthesis, during which temperature is typically of a few
hundreds of degrees, always leads to the formation of γ -Se
[6,7]. It should be noted that due to the strong assumptions
made to come to such a result, the absolute values of pressure
and temperature should be considered with care. Only the
studied phases are represented in Fig. 8 (a strong mismatch is

FIG. 7. Free energy of each phase, in kJ/mol, plotted against
temperature.
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FIG. 8. Calculated phase diagram of crystal selenium against
pressure and temperature. �Gβ−γ (T, P) = Gβ (T, P) − Gγ (T, P).

observed between theory and experiment in terms of critical
P and T at the phase transition but the trend is respected). As
mentioned previously, a phase transition towards a monoclinic
system is expected at a few dozen GPa, as reported in the
experimental literature. However, the exact structure as well
as the pressure at which the transition occurs remains a matter
of debate.

Note that the entropic contribution to the Gibbs’ energy is
more important than the volumic term here. It might explain
why, counterintuitively, the low-pressure phase γ -Se has a
slightly higher density of 4.80 than that of 4.61 of β-Se.

B. Free formation energies of intrinsic interstitial
defect of γ-Se, the standard phase of Se

The relative simplicity of the structures offers the opportu-
nity to test the model further and to get closer to the Gibbs’
free energy of formation which is rigorously the thermody-
namic quantity to aim for. This will allow us to check the
validity of the approximation made in the supercell point
defect model which consists of ignoring the entropic contri-
bution. In the dilute defect limit, volume change due to the
defect is supposed to be zero. Hence, so is the change in

the volumic term of the Gibbs’ energy P × V . The free for-
mation energy of formation �F D,q

f (μEF , T ) is computed, in
order to quantify the error made by ignoring the entropic part.
In the following discussion, the notation is simplified to
lighten the expressions and T always refers to the crystal
growth temperature noted Tgrowth previously. As noted by
Freysoldt et al. [56], it is rigorously the thermodynamic quan-
tity to calculate. In metals, free energy of defect creation
has been calculated for systems such as Al and Cu, taking
into account both configurational and vibrational entropies
[57,58]. Similar studies in semiconductors remain scarce and
limited to well-known materials such as Si, diamond, Ge, and
GaN [59,60].

The computation of the configuration entropy requires no
additional DFT calculation compared to a standard DFE study
but only a refinement of the post-treatment step, while ac-
counting for the most important part of the entropy. Thus, first
only the configurational entropy will be taken into account,
not the vibrational one. Only the configurational entropy as
expressed in equation (4) was taken into account in a first
approximation.

Sconf = kB([Dq] − [Dq] ln[Dq] + [Dq] ln(Nsites )) (4)

As expressed in the system of equation (5), the free energy
depends on the entropy among other things. In turn, the
configurational entropy is a function of the defect concen-
tration, which is a function of the free energy among other
things. We chose to describe the defect concentration through
a Fermi-Dirac distribution to improve the precision, as the
Boltzmann statistic is the limit behavior of the Fermi-Dirac
one. This triangular dependency causes a practical difficulty.
It can be overcome by solving the first equation of (5) of
unknown quantity �F using a standard root-finding algo-
rithm. It implies that the fundamental quantity in the model
is no more determined in a single step from μEF but using a
self-consistent loop.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�F D,q
f (μEF , T ) = �ED,q

f (μEF ) − T Sconf
(
�F D,q

f

)
Sconf([Dq]) = kB

(
[Dq] − [Dq] ln[Dq] + [Dq] ln

(
N sites

D

))
[Dq]

(
�F D,q

f

) = N sites
D

(
1 + e

�F
D,q
f

kBT

)−1

(5)

Equation (4) is applied to Sei in γ -Se and plotted against
volumic defect concentration in Fig. 9(a). Of course, the same
line of thoughts can be applied to any defect. Let us keep in
mind that the expression of Sconf([Dq]) used in equation (5)
is obtained by considering the possible configurations of a
system containing n defects and N atoms, then by simplify-
ing the obtained expression using the Stirling approximation
ln N! � N ln N − N and exploiting n

N � 1. Furthermore, for
high defect concentrations, the dilute defect model becomes
irrelevant as the system tends to become a solid solution.
This is a different problem which should be addressed us-
ing an appropriate methodology which differs from the one
used in this work. Thus, the model employed here becomes
gradually irrelevant as the defect concentration in the system
reaches the solid-solution domain. The reasoning here is of

mathematical order. Most of the domains envisioned hereafter
are far from reality and considered only to test the limits of the
model. Of course, above a defect ratio of 100% represented
by the dotted vertical blue line in Fig. 9(a), the model loses
any physical meaning. For realistic defect concentrations, the
T ×S product is inferior to 0.10 eV for temperatures up to
1250 K. The range of growth temperatures considered (500–
1250 K) corresponds to typical temperatures encountered in
different growth/deposition processes for elemental selenium.
Low temperatures would be employed in vacuum processes
such as PVD and high temperatures in ceramic routes. So far,
merely by looking at the expression of the configurational
entropy used in the model, one can see that in the most
extreme limit of 100% defect ratio the T ×S product would
weigh no more than 0.10 eV. One would like to go further and
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(a)

(b)

µ

µ

µ

µ

FIG. 9. Sei in γ -Se q = −2. (a) Product of the configurational
entropy and crystal growth temperature with respect to defect con-
centration T S([D]) as obtained from the second equation in (5). The
blue dotted line stands for Nsites

V0
, the maximum possible limit for

the defect ratio (100% faulted). (b) Product of the configurational
entropy and crystal growth temperature with respect to the Fermi
level T S(μEF ) obtained by self-consistently solving the system of
equations (5). The encapsulated figure zooms on the vicinity of the
CBM to show the scale-up in the high variation region.

estimate the actual dependency of T ×S in Fermi level μEF and
see whether this value of �0.10 eV is actually met. Note that
the very low maximum values for the configurational entropy
validate the assumption that the vibrational entropy associated
with the defect creation can be safely ignored as Sconf � Svib.

Then, the system of equations (5) is solved self-
consistently to obtain the variations of entropy with respect to
the position of the Fermi level μEF . The weight of the product
of the temperature by the configurational entropy T ×S is
inferior to 5 meV throughout the band gap, far below the max-
imum 0.10 eV noticed during the previous analysis of S([D]).
As the formation enthalpy of Sei in β-Se, which is the main
term of the free energy, decreases with increasing Fermi level,
the calculated defect concentration increases with the Fermi
level. It leads to an increase in the entropic term. Although it
is experimentally known that the real γ -Se material is a p-type
one, it is still interesting to look at the range of Fermi level
values for which the entropic term would weigh the most. For
values of the Fermi level within the band gap, the entropic
term is of the order of magnitude of the millielectronvolt or
less. The approximation of the free energy by the enthalpy
of formation appears thus entirely justified for this defect. It is

only for very high values of μEF (unrealistic for a p-type semi-
conductor) that the DFE of Sei would become low enough for
the entropic term to increase significantly. As a reminder, the
crossing point between the VBM and the formation enthalpy
of Se2−

i is around 3 eV.

V. CONCLUSION

Ab initio simulations on two allotropic forms of selenium
encountered at ambient pressure and temperature were per-
formed. The Birch-Murnaghan equation of state fitted onto a
series of ideal models and phonon calculations allowed us to
get the contribution to the Gibbs’ free energy of pressure and
temperature, respectively, for the ideal structures. It shows that
the infinite chains of γ -Se are favored over the metastable ring
structure β-Se at low pressure and temperature.

Then, intrinsic point defects of both phases were inves-
tigated, revealing that β-Se has practically no conductivity
while the fair hole conductivity of γ -Se originates from
selenium interstitials. Geometric modifications induced by
selenium vacancies were studied in detail. It was shown that
the ability of the rings to relax to a structure relatively close
in terms of environment after the introduction of the vacancy
compensates the energy required to break two Se-Se chemical
bonds. Comparatively, breaking two such bonds in the chains
is easier but results in a very different structure, replacing a co-
valent bond by a long range interaction, which is not favored
energetically. These considerations provide an explanation for
the lower VSe DFE in β-Se than in γ -Se despite stronger Se-Se
bonds (shorter Se-Se distances).

The problem of counting potential interstitial sites in β-Se
was discussed and it was preferred not to calculate the Fermi
level in this phase. In γ -Se, such an issue does not appear and
the simulations were performed, exhibiting a typical p-type
behavior.

Then, antimony and bromine doping were investigated. All
proved ineffective in β-Se, whereas antimony was found to
improve significantly the hole conductivity in γ -Se via the
creation of SbSe substitutional defects. Given these results,
one can advise for selenium used in optoelectronic devices to
be grown rather at high temperature as long as the γ phase
can be maintained and conductivity improved by antimony
doping.

Pressure and temperature effects were taken into account
for the phase diagram based on the ideal structures. Sei pro-
vided a test case to investigate the impact of configurational
entropy. The calculation prove that for selenium, it can be
safely neglected. An abacus of configurational entropy values
is calculated to provide the quantitative data needed for the
decision on the need for the configurational entropy in a defect
study.
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