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First-principles self-consistent phonon approach to the study of the vibrational properties
and structural phase transition of BaTiO3
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We investigate the cubic-to-tetragonal ferroelectric phase transition temperature Tc of BaTiO3 through a first-
principles self-consistent phonon scheme. This method extends the harmonic approximation by incorporating
anharmonic effects due to thermalized displacements, which are simultaneous excitations of phonons with a
temperature-dependent random amplitude. The calculated forces are analyzed with an effective harmonic force
constant model, which serves as the basis for a new set of thermalized displacements until self-consistency has
been reached. The phonons with imaginary frequencies at T = 0 K are stabilized due to anharmonic effects in
the temperature range where the corresponding phase is stable and the dynamical instabilities disappear. Using
the calculated free energies at various temperatures, volumes, and c/a ratios, we obtain a thermal expansion in
good agreement with the experimental values. Comparing the free energies of the tetragonal and cubic phases at
different temperatures, we predict Tc ≈ 455 K. This is in reasonable agreement with the experimental value of
≈393 K in view of the strong influence of the particular density functional theory approximation on the unstable
phonon modes.
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I. INTRODUCTION

The family of perovskite oxides comprises a wide range of
compounds with the general ABO3 formula unit. These com-
pounds generally undergo multiple phase transitions, which
have been extensively studied and characterized along a wide
range of temperatures and pressures [1–4]. The study of phase
transitions in perovskite oxides is relevant for technological
applications, as different phases show a wide range of ferro-
electric and piezoelectric properties and electro-optical effects
which are widely exploited in technologically important de-
vices [5–8]. Moreover, as the Earth’s lower mantle is allegedly
mostly composed of the MgSiO3 perovskite [9], studying
the phase transitions of these materials is also relevant for
geophysics.

With the advent of increased computational power,
ab initio calculations based on density functional theory
(DFT) are widely performed to interpret experimental results
and to predict new materials with desired physical properties.
Lattice vibrations play a vital role in different thermodynam-
ical and transport properties, including the study of phase
transition at finite temperature and the prediction of lattice
thermal conductivity.

In the case of lattice vibrations, the harmonic approxi-
mation (HA) is commonly applied and is often adequate for
obtaining phonon spectra in agreement with experiments and
to examine phase stability. However, the approximation com-
pletely breaks down for most of the high-temperature phases
of perovskites [10–12] due to dynamical instabilities giving

rise to imaginary phonon frequencies. To overcome this limi-
tation of the HA, several studies have applied a self-consistent
phonon (SCP) approach [13–15] to take anharmonic effects in
perovskites into account [16–19].

As in other perovskites [11,20–24], BaTiO3 undergoes a
series of phase transitions described by the sequence cubic
→ tetragonal → orthorhombic → rhombohedral [25–29] as
the temperature is decreased. The SCP discussion of such
phase transitions mainly concerns the phonon band structure
at finite temperature [19]. In this work we show that the
high-temperature cubic and tetragonal phases of BaTiO3 are
two examples where the simple HA breaks down. By treating
the lattice dynamics using a SCP approach we obtain the
finite-temperature phonon spectra of the cubic and tetragonal
phases of BaTiO3 in their stable temperature range without
imaginary frequencies. We demonstrate how a very good pre-
diction of unit-cell volume can be obtained and describe how
different properties of the material, like lattice parameters,
bulk modulus, c/a ratio, and vibrational free energy, behave
as a function of temperature.

The phase transition is studied taking the effect of the
temperature dependence of the lattice constants by employing
the quasiharmonic approximation (QHA) into account [30].
We discuss our results in the context of earlier phase-transition
studies where a strong dependence on volume and DFT func-
tional were demonstrated. We show that a critical temperature
Tc of the cubic-to-tetragonal phase transition in good agree-
ment with the available experimental data is obtained. Finally,
we compare our results to effective Hamiltonian simulations
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of the phase transition in BaTiO3 and an SCP study of a
similar phase transition in SrTiO3 which included fourth-
order interatomic force constants (IFCs) but neglected thermal
expansion [18].

II. SELF-CONSISTENT PHONON THEORY

At equilibrium the crystal is considered to be in a stable
stationary state, in which the crystal potential V is at a mini-
mum with respect to the equilibrium positions of all atoms in
the system. Displacing an atom from its equilibrium position
induces forces on all atoms in the system. At any order, these
forces can be computed from a suitably truncated Taylor ex-
pansion of V . In particular, in the HA the force experienced by
atom i along the Cartesian direction α1 due to displacements
u j

α2 of the atoms is given by [31]

F i
α1

= −
∑
j,α2

∂2V

∂ui
α1

∂u j
α2

u j
α2

= −
∑
j,α2

φi j
α1α2

u j
α2

, (1)

where φ
i j
α1α2 are the second-order IFCs. Equation (1) shows

that it is possible to fit the second-order IFCs to a col-
lection of calculated forces for various configurations of
atomic displacements (finite-displacement approach). In gen-
eral, the use of crystal symmetry can noticeably reduce the
number of required displacement configurations, and multi-
ple codes are able to extract IFCs from a modest number
of symmetry-independent atomic configurations obtained by
slightly displacing a single atom from its equilibrium position
[32–34].

Once the second-order IFCs have been obtained, the IFC
matrix can be Fourier transformed and diagonalized. This
yields phonon frequencies ω(qs) for each mode s and wave
vector q, describing the phonon dispersion relation, from
which the vibrational free energy and other physical proper-
ties can be obtained. However, the analysis of a solid material
using the harmonic approximation breaks down if imaginary
frequencies are found, which requires taking anharmonic ef-
fects into account. To achieve this goal, multiple ab initio
methods have been proposed. The SCP approach [35] we used
in this study is analogous to the one proposed in Refs. [36,37].
It aims at obtaining temperature-dependent IFCs by sampling
the crystal potential through the use of the mean-square-
displacement (MSD) matrix which describes the mean-square
atomic displacements in the system at the desired temperature
[38]. The element of the MSD matrix corresponding to atom
i with respect to direction α1 and to atom j with respect to
direction α2 is given by

�i j
α1α2

≡ 〈
ui

α1
u j

α2

〉

= 1

N
√

mimj

∑
qs

〈E (qs)〉
ω2(qs)

ei
α1

(qs)e j∗
α2

(qs), (2)

where N is the number of q points in the first Brillouin zone,
mi is the mass of atom i, and ω(qs) and e(qs) are the frequency
and the polarization vector of mode s at point q in the Brillouin

zone, respectively. 〈E (qs)〉 is the average energy contribution,

〈E (qs)〉 = h̄ω(qs)
(〈n(qs)〉 + 1

2

)
,

of mode qs when the system is in thermal equilibrium at
temperature T , where

〈n(qs)〉 = 1

e(h̄ω(qs)/kBT ) − 1

represents the average occupation number of phonons in
the qs mode, as given by the Bose-Einstein distribution. In
thermal equilibrium, the MSD matrix acts as the covariance
matrix for a multivariate Gaussian distribution

p(u) = 1√
(2π )3n|�|

e− 1
2 uT �−1u, (3)

describing the probability density function for the atomic dis-
placements at temperature T , where n is the number of atoms
in the system and u is the 3n-dimensional vector collecting all
atomic displacements. In the rest of the study we denote as
“thermalized displacements” the atomic displacements sam-
pled using Eq. (3) and as “nonthermalized displacements”
the ones obtained from the usual sequential displacements of
single atoms.

In our approach, we first calculate volume-dependent IFCs
through the use of nonthermalized displacements at different
volumes. From these volume-dependent but nonthermalized
force constants we get phonons at T = 0 K, which may also
include phonons with imaginary frequencies. Then for each
volume, the MSD matrix � is calculated using a selected
temperature and Eq. (2). Afterwards, we draw random sam-
ples from the probability distribution p(u). from which we
obtain a new set of thermalized displacements. Then, new
thermalized IFCs, phonon eigenvectors, and eigenvalues are
obtained. The thermalized IFCs and derived quantities depend
on the thermalized displacements, which in turn depend on
the IFCs. Therefore, the procedure has to be repeated until
a self-consistent solution has been found. With these ther-
malized IFCs, phonon frequencies which are all stable in the
proper temperature range and free energies (see below) are
calculated.

III. SIMULATION DETAILS

A. Structures

At high temperatures, BaTiO3 crystallizes into a cubic
structure with the Pm3̄m space group. The unit cell contains
five atoms [39], Ba has the Wyckoff position 1a (0, 0, 0),
Ti has the position 1b (0.5, 0.5, 0.5), and O has the posi-
tion 3c (0, 0.5, 0.5). As the temperature decreases, BaTiO3

undergoes a series of three ferroelectric phase transitions
[40]. Around 393 K, it transforms into a tetragonal structure
with P4mm symmetry [27] which is stable until approx-
imately 278 K [41]. Below 278 K it transforms into an
orthorhombic phase with Pmm2 symmetry. The rhombohedral
low-temperature phase of BaTiO3 is stable below 183 K [42].

The aim of this paper is to study the cubic → tetragonal
transition, which occurs due to the spontaneous polarization
along the 〈001〉 direction. As a result the tetragonal (P4mm)
unit cell hosts the same number of atoms as in the cubic
structure with four nonequivalent sites: Ba sits at 1a (0, 0, 0),
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Ti sits at 1b (0.5, 0.5, 0.5 + δTi), one symmetry-inequivalent
oxygen, O1, is at 1b (0.5, 0.5, 0.0 + δO1), and the other oxy-
gen, O2, is at 2c (0.5, 0, 0.5 + δO2), where δatom is a free
parameter describing the distortion.

B. Computational details

The ab initio DFT calculations in this study were per-
formed using the WIEN2K code [43,44], which employs the
(linearized) augmented plane-wave and local orbitals method
to solve the Kohn-Sham equations [45]. Details of this method
are described in Ref. [44].

Since the energy gain due to the phase transition is small,
particular care in the choice of the parameters of the calcula-
tions was taken in order to converge the total energy and forces
properly. We found that a 10 × 10 × 10 reciprocal-space k
mesh is sufficient for both types of unit cells. Also of crucial
importance is the size of the basis set, which is controlled
by the product of the smallest atomic sphere radius Rmin

MT and
the plane-wave cutoff Kmax. The calculations of the present
work were done with Rmin

MTKmax = 8.5 and atomic sphere radii
of 2.25, 1.6, and 1.5 bohrs for Ba, Ti, and O, respectively.
The energy separation between core and valance states used
was −6.0 Ry. Inside the sphere, the maximum angular mo-
mentum used in the spherical expansions was 	max = 10,
while the charge density in the interstitial was Fourier ex-
panded up to a cutoff of Gmax = 14 (bohr)−1. We employed
the PBEsol exchange-correlation functional [46], which has
been devised for obtaining better equilibrium properties of
solids, while the local density approximation (LDA) or the
generalized gradient approximation of Perdew, Burke, and
Ernzerhof (PBE) [47] would lead to much smaller or larger
lattice parameters. PBEsol works very well for the prediction
of equilibrium volume and harmonic phonon spectra of per-
ovskites [11,23,48,49].

Second-order IFCs were obtained using a 3 × 3 × 3 su-
percell expansion containing 135 atoms with a 2 × 2 × 2
reciprocal k mesh. Convergence has been checked for a few
cases using 2 × 2 × 2 and 4 × 4 × 4 supercells and also a
denser k mesh. While some phonon frequencies change by
up to 10 cm−1 when going from 2 × 2 × 2 to 3 × 3 × 3,
these changes are less than 1 cm−1 between 3 × 3 × 3 and
4 × 4 × 4 supercells. A denser k mesh changes frequencies
by an even smaller amount. Nonthermalized displacements
were obtained by displacing atoms in the supercell from
their equilibrium positions by 0.01 Å. In order to calculate
temperature-dependent IFCs, we took for each iteration 30
samples of displacements u from the distribution defined by
Eq. (3). Self-consistency of the IFCs is typically obtained after
15–20 iterations.

IV. RESULTS AND DISCUSSION

A. Structural properties

To calculate equilibrium structural properties like lattice
constants a and c and bulk moduli B, we determined the
unit-cell dimensions at vanishing hydrostatic pressure. For
the cubic phase, this merely amounts to calculating the total
energy as a function of the cubic unit-cell volume and fitting

TABLE I. Structural properties of the cubic and tetragonal
phases of BaTiO3 calculated with the PBEsol functional.

Present work Other works

Theory Expt.

Cubic 0 K 475 K 0 K 413 K 473 K

a (Å) 3.972 3.993 3.977 [51] 4.011 [52] 4.013 [52]
V (Å3) 62.67 63.67 62.90 [51] 64.53 [52] 64.63 [52]
B (GPa) 179 166 179 [51] 162 [53]

Present work Other works

Theory Expt.
Tetragonal 0 K 400 K 0 K 398 K 293 K
a (Å) 3.958 3.976 3.962 [51] 4.002 [52]
c (Å) 4.045 4.052 4.059 [51] 4.028 [52]
V (Å3) 63.37 64.06 63.72 [51] 64.51 [52]
c/a 1.022 1.019 (1.033a) 1.025 [51] 1.007 [52]
B (GPa) 128 124 148 [51] 134b [54]

ac/a obtained at the 400 K volume without taking vibrational contri-
butions to the free energy into account.
bExtrapolated at 0 GPa from values in Ref. [54].

the energy values with a Birch-Murnaghan equation of state
[50].

The top part of Table I shows the results of our calculations
for the cubic phase and reports the equilibrium lattice constant
a and the bulk modulus B. For comparison, experimental
values as well as previous DFT results are also shown. As
expected, PBEsol (at 0 K) predicts a value a for the cubic
lattice constant in good agreement with experiments with a
discrepancy of around 1% with respect to the experimental
result at 413 K. This difference is further reduced to merely
0.5% at 473 K if thermal expansion is taken into account.
Similarly, the bulk modulus B reduces its value from 179 GPa
at 0 K to 166 GPa at 475 K, which agrees well with the
experimental value of 162 GPa.

Figure 1 shows how the calculated lattice parameter of the
cubic phase evolves with temperature and also its comparison

FIG. 1. Temperature dependency of the experimental [52] (aexp)
and calculated (acalc(T =423 K)) lattice constant values in the cubic
phase of BaTiO3. Here k = aexp

acalc
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with experimental values, where the theoretical values have
been shifted to match experiment results at 423 K. In both
cases, the lattice parameter increases linearly with tempera-
ture, but with different slopes. For the calculated case, the
slope is slightly lower than the experimental one, indicating
that PBEsol predicts a slightly smaller thermal expansion
coefficient α = 9.85 × 10−6 K−1.

The calculations in the tetragonal phase are somewhat
more involved since for each unit cell volume, the ratio c/a
between the unit-cell parameters and the free parameters δ

have to be optimized. We start with the optimization of c/a at
0 K. We find that the value of c/a increases with an increase
in volume, which agrees with a previous DFT study [48].
This behavior is opposite what is found in other perovskites
like SrTiO3 and RbCaF3 [11], where c/a decreases with an
increase in volume. Furthermore, it is in disagreement with
the experimentally observed decrease of c/a with increasing
temperature. This discrepancy is due to thermal effects beyond
expansion and is further discussed in Sec. IV D.

The results for the tetragonal structure are shown in the
bottom part of Table I and are compared with the experimental
results. As expected, while the theoretical unit-cell volume
obtained from our calculations at 0 K is lower than the experi-
mental values, after addition of the vibrational free energy Fvib

and the inclusion of thermal expansion, the resulting equilib-
rium unit-cell volume is in good agreement with experiment.

B. Born effective charge and dielectric tensor

To quantitatively understand the splitting between trans-
verse and longitudinal optical phonon modes, we calculated
the Born effective charge tensor Z∗ [55] and the dielectric
tensor ε∞. Knowledge of these quantities is also important to
study ferroelectric materials, in which a phase transition takes
place due to the interplay between long-range Coulomb in-
teractions and short-range forces [56]. The calculated ε∞ and
the diagonal elements of Z∗ are reported in Table II for both
phases, where they are compared to the available experimental
data. The calculated values of Z∗ are observed to be in good
agreement with previous DFT calculations [59–61].

We observe that the values of some elements of Z∗ (Ti
and O) deviate significantly from their nominal ionic charges.
This behavior is in line with that exhibited by other perovskite
oxides [60–62] but opposite to that of fluoroperovskites [11].
These strongly anomalous Z∗ play an important role in ex-
plaining the emergence of ferroelectricity in perovskite oxides
[63].

When comparing Z∗ for both phases at 0 K, we find
that Z∗(Ba) remains almost unchanged, and there is a slight
change of about 3% in Z∗(Ti) along the x and y directions,
but a significant change of about 21% is observed along the z
axis. In the tetragonal phase there are two inequivalent oxygen
atoms: Z∗(O2) remains almost the same as in the cubic struc-
ture, but for Z∗(O1) a decrease by 20% for the z direction
compared to the cubic values can be seen. In addition, the x
and y directions become slightly different due to the rotation
of the O octahedra. We also observe that at the thermalized
volume (as a result Z∗ indirectly depends on temperature)
the value of Z∗ decreases, but the effect is relatively small,
changing mostly in the second digit after the decimal.

TABLE II. Born effective charge tensor Z∗ of Ba, Ti, and O
and the dielectric tensor ε∞ calculated with the PBEsol functional
for both cubic and tetragonal phases. Only the diagonal elements
of Z∗ (in the order Z∗

xx, Z∗
yy, Z∗

zz) are shown. For the elements of the
dielectric tensor, values in parentheses represent experimental data.

Nominal Cubic Tetragonal

Z∗(Ba) +2 2.77 2.76
+2 2.77 2.76
+2 2.77 2.85

Z∗(Ti) +4 7.26 6.98
+4 7.26 6.98
+4 7.26 5.98

Z∗(O1) −2 −2.14 −2.04
−2 −2.14 −2.04
−2 −5.76 −4.59

Z∗(O2) −2 −1.97
−2 −2.14
−2 −5.59

ε∞
xx 6.00 (5.40) [57] 5.74 (5.93) [58]

ε∞
zz 5.38 (5.60) [58]

Due to the symmetry of the ferroelectric tetragonal phase,
the dielectric tensor ε∞ is diagonal but has different values
for parallel and perpendicular directions to the z axis. Our
calculated ε∞ components are comparable in magnitude to
experiment, but the experimental values of ε∞ increase from
the cubic to the tetragonal structure, while our calculated
values show the opposite behavior. Like for Z∗, there is a
negligible effect of volume on ε∞.

C. Phonon spectrum

The calculated phonon spectra and density of states (DOS)
of cubic and tetragonal BaTiO3 are shown in Figs. 2 and
3, respectively. With five atoms in the unit cell, the cubic
perovskites have 15 phonon modes in total. Neglecting the
transverse and longitudinal optical (LO−TO) splitting, there
are five triply degenerate modes at the � point, out of which,
four have the irreducible representation T1u and one has T2u.

The left panel of Fig. 2 shows the phonon dispersion rela-
tions for cubic BaTiO3 where the splitting of LO−TO phonon
modes at the � point is included using the Born effective
charges Z∗ and the method proposed by Gonze et al. [70]
as implemented in the PHONOPY code [32]. Gray lines show
the phonon spectra calculated using nonthermalized displace-
ments. It is clear that the cubic phase is unstable and that
unstable phonons are present in large parts of the Brillouin
zone with a maximum instability at the � point. The phonon
at the mode � point is the ferroelectric soft mode responsible
for the cubic-to-tetragonal phase transition. Using the SCP ap-
proach, all of these imaginary modes are stabilized at elevated
temperatures, as shown by the blue lines. For comparisons,
phonon frequencies from different experimental studies are
also shown. Phonon spectra calculated using both thermalized
displacements and volume at 500 K reproduce the experimen-
tal frequencies very well. There are some exceptions along
�-X where the experimental frequencies (shown by triangles
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FIG. 2. Phonon band structure along a high-symmetry path and
partial and total phonon DOSs in the cubic phase. Gray lines are
obtained with nonthermalized displacements at 0 K equilibrium vol-
ume, and blue lines are obtained with thermalized displacements at
volume corresponding to 500 K. The partial Ba DOS is scaled down
by a factor of 4. Experimental data: •, Ref. [64]; ×, Ref. [65]; ∇,
Ref. [66]; �, Ref. [67]; �, Ref. [68]; ◦, Ref. [69].

around 500 cm−1) are underestimated by our calculations.
Obviously, the unstable phonon modes are most susceptible
to temperature effects, and the T1u frequency at � jumps from
166i to 170 cm−1.

Figure 3 shows the phonon spectra for both the HA (gray
lines) and the SCP approach at 400 K (blue lines) for the
tetragonal phase. In terms of the irreducible representations
of point group 4mm (C4v) the phonon modes at the � point
in the ferroelectric tetragonal phase can be decomposed into
4A1 ⊕ B1 ⊕ 5E . The macroscopic electric field is responsible
for the LO−TO splitting in the infrared-active modes. Due
to symmetry, this splitting occurs in different q directions in

FIG. 3. Phonon band structure along a high-symmetry path and
partial and total phonon DOSs of BaTiO3 in the tetragonal phase as
obtained from nonthermalized and thermalized displacements at 0 K
(gray) and 400 K (blue), respectively. Note that the partial Ba DOS
is scaled down by a factor of 4.

TABLE III. Calculated and experimental frequencies (in cm−1)
of the TO and LO phonon modes of the tetragonal phase of BaTiO3

at the � point. V0 K and V400 K represent the volume calculated at 0
and 400 K, respectively.

Calculated Experiment

0 K (V0 K) 400 K (V0 K) 400 K (V400 K) 400 K [71]

A1 TO1 164 178 176 178
LO1 183 180 180 189
TO2 309 333 245 276
LO2 456 447 456 471
TO3 516 461 469 515
LO3 724 706 655 725

E TO1 120ı̇ 141 130 38
LO1 171 175 176 180
TO2 171 176 176 180
LO2 286 294 292 308
TO3 287 295 294 308
LO3 446 454 442 466
TO4 466 488 470 498
LO4 698 732 722 722

B 283 290 286 304

reciprocal space for different modes. Two of the A1 modes
acquire different frequencies according to whether the wave
vector q is orthogonal or parallel to the c axis (TO and LO
modes, respectively). The E modes are split into E (TO) and
E (LO) for q vectors orthogonal to the c axis, whereas they do
not show any LO−TO splitting for q vectors parallel to the c
axis.

Table III illustrates the effect of nonanalytical corrections
to the phonon frequencies for tetragonal BaTiO3, and experi-
mental results are also given for comparison [71]. Frequencies
calculated at 400 K with the volume obtained at 0 and 400 K
are written in the third and fourth columns, respectively, while
the fifth column presents experimental frequencies at 400 K.
We observe that changing temperature and changing volume
have opposite effects on most phonon modes at constant vol-
ume and temperature, respectively. In most cases, an increase
in temperature hardens the phonon frequencies except for
some A1 optical modes. Thermal expansion also has a siz-
able effect on the phonon spectra, and in most of the cases
phonon frequencies soften with increasing volume. The SCP
approach correctly stabilizes the tetragonal structure, giving
phonon frequencies in good agreement with experiments. The
soft E (TO1) mode, which exhibits a pronounced tempera-
ture dependence as anticipated, acquires a much larger value
(130 cm−1) than that found in experiment (38 cm−1). The
strong temperature dependence of this frequency means that
the computed result is highly dependent on small changes in
unit-cell volume (DFT approximation) and the chosen proba-
bility distribution function.

The middle and right panels of Figs. 2 and 3 show the
calculated partial and total phonon DOSs at 0 K and finite
temperature with thermalized displacements and volume of
the cubic and tetragonal phases, respectively. In the cubic
phase at 0 K the DOS corresponding to imaginary frequencies
is predominantly due to the Ti atom. The acoustic modes
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produce a dominating peak in the frequency range from 80
to 120 cm−1, and the partial DOS indicates that these modes
can be mainly attributed to vibrations of Ba atoms, which is
expected due to the heavy mass of Ba. The Ti and O atoms
contribute evenly in the frequency range of 150 to 500 cm−1.
Finally, a single mode originating mainly from the vibrations
of the O atoms contributes to the DOS at the highest frequency
values (660 cm−1 and above). Overall, the shapes of the DOS
at 0 and 500 K are quite similar except that the Ti partial
DOS at imaginary frequencies is shifted to 145–185 cm−1,
the narrow Ba peak has a slight shift to higher frequencies
due to the larger volume at 500 K, and the O partial DOS peak
around 450 cm−1 is further increased.

The total and partial phonon DOSs of the tetragonal phase
are qualitatively quite similar to the cubic one. Also the tem-
perature effects are pretty much the same and do not need to
be repeated here explicitly.

D. Thermodynamics of the phase transition

We have studied the critical temperature for the tetragonal-
to-cubic phase transition by means of ab initio thermodynam-
ics calculations.

At the thermodynamic equilibrium, for fixed pressure P
and temperature T , the Gibbs free energy, G(P,V ) = U −
T S + PV , is at a minimum, where U and S represent the inter-
nal energy and entropy of the system, respectively. For solids
at ambient conditions, the Gibbs free energy is generally well
approximated by the Helmholtz free energy F = U − T S.
For insulators, using the adiabatic approximation, F can be
decomposed into electronic and vibrational parts as

F (T,V ) = Eelec(V ) + Fvib(T,V )

= Eelec(V ) + Uvib(T,V ) − T Svib(T,V ), (4)

where Eelec represents the electronic (static) energy, calcu-
lated by first-principles, and Fvib is the vibrational free energy
calculated with the SCP approach. The vibrational internal
energy and entropy are given by

Uvib =
∑

qs

(
〈n(qs)〉 + 1

2

)
h̄ω(qs), (5)

Svib =
∑

qs

[ 〈n(qs)〉
T

h̄ω(qs) − kBT ln(1 − eh̄ω(qs)/kBT )

]
. (6)

As our model includes anharmonic effects into an effective
harmonic Hamiltonian by sampling from the Gaussian dis-
tribution of Eq. (3), the formulas derived by considering
independent phonons are still valid within our approach. In
calculating Fvib, we also took into account the nonanalytic
correction to the dynamical matrix. The comparison between
Uvib and Svib times the temperature T for both phases is shown
in Fig. 4. It is clear that both terms cross around ≈420 K
for both phases. Below 420 K, the vibrational internal energy
Uvib dominates, while above 420 K, the vibrational entropy
contribution T Svib takes over. As a result, the vibrational free
energy Fvib changes sign around 420 K, which means that
the value of Fvib is positive below 420 K and negative above
420 K. Figure 4 also shows that as the temperature increases,
the vibrational entropy of the cubic phase becomes larger
than for the tetragonal phase while the vibrational internal

FIG. 4. The vibrational internal energy U (dashed lines) is shown
in comparison to the vibrational entropy S times temperature T
(dotted lines) for cubic (red) and tetragonal (blue) structures. The
vertical black lines represent the crossing point between U and T S.

energies remain quite similar. Therefore, the cubic structure
is stabilized at high temperature by the vibrational entropy.

We can assess the ferroelectric phase transition by evalu-
ating the difference in the Helmholtz free energy between the
two phases,

�F (T ) = F Tetra (T ) − F Cubic(T ). (7)

This quantity is shown in Fig. 5. For both phases, we took
into account the change in the volume due to thermal expan-
sion. We found that inclusion of thermal expansion plays an
important part in the prediction of the Tc. Ignoring thermal
expansion, the value of the predicted Tc would be some 40 K
higher.

FIG. 5. Calculated free energies of both cubic and tetragonal
BaTiO3 as a function of temperature. The free energy of the two
structures at the phase transition sets the zero in the energy scale. The
vertical black line represents the temperature where the (predicted)
phase transition occurs, whereas • show the exact data points. The
inset illustrates the volume dependence of the c/a ratio in the tetrag-
onal phase at 0 K (black) and the change in c/a at 64.06 Å3 with the
change in temperature from 0 to 400 K (blue).
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Along with the thermal expansion, the change in sign of
Fvib around 420 K is also significant. Due to the opposite
sign, the effect of Fvib is not minimized but, in fact, further
enhanced during the evaluation of Helmholtz free energy.
By calculating the electronic energy difference (�Eelec =
14.28 meV) of both phases, we observe that �Eelec has a
smaller effect in predicting Tc compared to the vibrational free
energy. Nevertheless, �Eelec is important because it makes a
difference of around 10 K in Tc. As a result, the predicted
phase temperature Tc ≈ 455 K is not far off from the ex-
perimental value of 393 K. The residual difference in value
between calculated and experimental transition temperatures
may be due to the specific choice of the exchange-correlation
energy functional and the approximate nature of our
approach.

The inset in Fig. 5 shows the dependence of c/a on volume
at 0 K (black) and 400 K (blue). Optimization of c/a at 400 K
was done with the help of the SCP method. We start with
a two-dimensional grid of c/a and volume and calculate the
vibrational free energy with the SCP approach. Adding these
values to the corresponding electronic energy gives the desired
free energy. A parabolic fit of c/a versus free energy gives the
minimum value of the free energy vs c/a at 400 K. We found
that temperature plays an important role in determining c/a. If
we include only the volume expansion (63.57 → 64.06 Å3),
then c/a increases from 1.022 to 1.0284 at 0 K. However,
after the inclusion of both temperature and volume effects,
the value of c/a decreases from 1.0284 to 1.0190, which is
in the right direction. The c/a value is still overestimated,
which is due to the fact that the starting c/a at 0 K is too
large and the effects of temperature are not big enough to
neutralize the effect of the large c/a increase with volume
at 0 K.

V. DISCUSSIONS AND SUMMARY

It is worthwhile to compare our results on BaTiO3 with
those of Monte Carlo simulations based on the effective
Hamiltonian as presented in Refs. [61,72] and discussed,
e.g., in Ref. [63]. Combining the symmetry analysis of the
underlying Landau theory with the induced representations
of site symmetry groups [73], one constructs a microscopic
Hamiltonian from a localized [74] soft phonon mode driving
the transition coupled to strain, with all coupling parameters
calculated from DFT. The resulting effective Hamiltonian is
then “heated up” by feeding it to Metropolis Monte Carlo sim-
ulations. Yet the numerical predictions of the corresponding
Tc were off by almost 100 K from experiment [61,72]. The
main source of the discrepancy was identified as the inherent
neglect of couplings to “noncritical” modes in setting up the
effective Hamiltonian, which results in a poor description of
thermal expansion [75]. Tweaking the simulations “by hand”
in order to force the effective Hamiltonian to follow a rea-
sonable thermal expansion behavior, the resulting error in Tc

could be reduced to 5%.
Based on our present method, we observe that ignoring

thermal expansion in our SCP approach shifts Tc in the op-

posite direction and a further increase (and thus a worsening)
of our prediction for Tc. In a certain way, the QHA-SCP ap-
proach, in which the noncritical effects of thermal expansion
are taken well into account while the critical anharmonicity
related to the soft mode is treated in a SCP approximation,
may be seen as complementary to the effective Hamiltonian
method, in which emphasis was put on a precise treatment of
the soft mode while noncritical phonon effects are largely ig-
nored. An important lesson to be learned from this comparison
is that a proper description of thermal expansion seems to be
mandatory for a concise prediction of Tc.

The importance of thermal expansion can also be seen
by comparing our results to earlier studies. The SCP study
of phase transitions in perovskites has mainly been aimed
at the phonon band structure at finite temperature [19], but
this may not be a good proxy for Tc. The studies of SnSe,
which exhibits a phase transition from primitive to centered
orthorhombic at approximately 800 K, are interesting in this
context. Imaginary frequencies in the phonon driving the
phase transition have been found to disappear at temperatures
between 180 K (LDA) and 300 K (PBE) far below the phase
transition [76]. In contrast, a Tc of approximately 1200 K for
the transition was found using free energies in an approach
similar to the present one [77]. This overestimation can be
mainly attributed to an overestimated equilibrium volume in-
herent in the PBE functional, and applying a pressure of 4 GPa
resulted in a calculated Tc of 800 K [77]. These examples
emphasize the importance of a proper description of volume
expansion and the influence of a particular DFT approxima-
tion. We also mention the work of Tadano and Tsuneyuki
[18] on SrTiO3. Using effective IFCs from ab initio molec-
ular dynamics and random displacements, the study included
fourth-order force constants but neglected unit-cell changes
and obtained a Tc of 80 K compared to the experimental
Tc = 105 K.

Obviously, any effective harmonic model must be an ap-
proximation, but the present results demonstrate the power
of this approach. In particular, when soft phonons depend
so critically on volume and the c/a ratio, the underlying
DFT approximation may produce the largest error in the
theoretical modeling. This is best illustrated in BaTiO3 by
the large changes in the T = 0 equilibrium volume and c/a
ratio using various DFT approximations [48]. Also, the �

point phonon instability nearly doubles from 140i to 240i
cm−1 when changing from LDA to PBE. We also consider
the limited accuracy of our predicted volume, and the c/a
ratio changes as a function of temperature mainly as a DFT
problem.

In summary we have calculated structural and vibrational
properties of BaTiO3 in its cubic and tetragonal phases at
0 K and finite temperatures. By following the SCP ap-
proach, we have obtained phonon spectra of the cubic and
tetragonal phases at finite temperatures, obtaining phonon
frequencies which are stable within the whole Brillouin zone.
The calculated frequencies are also in very good agreement
with available experimental data at given temperatures. Last,
by calculating free energies we have predicted Tc ≈ 455 K,
which is in reasonable agreement with the experimental value
of 393 K.
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