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Anisotropy of the spin-orbit coupling driven by a magnetic field in InAs nanowires
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We use the k · p theory and the envelope function approach to evaluate the Rashba spin-orbit coupling
induced in a semiconductor nanowire by a magnetic field at different orientations, taking explicitly into account
the prismatic symmetry of typical nanocrystals. We make the case for the strongly spin-orbit-coupled InAs
semiconductor nanowires and investigate the anisotropy of the spin-orbit constant with respect to the field
direction. At sufficiently high magnetic fields perpendicular to the nanowire, a sixfold anisotropy results from the
interplay between the orbital effect of field and the prismatic symmetry of the nanowire. A backgate potential,
breaking the native symmetry of the nanocrystal, couples to the magnetic field inducing a twofold anisotropy,
with the spin-orbit coupling being maximized or minimized depending on the relative orientation of the two
fields. We also investigate in-wire field configurations, which shows a trivial twofold symmetry when the field
is rotated off the axis. However, isotropic spin-orbit coupling is restored if a sufficiently high gate potential is
applied. Our calculations are shown to agree with recent experimental analysis of the vectorial character of the
spin-orbit coupling for the same nanomaterial, providing a microscopic interpretation of the latter.
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I. INTRODUCTION

The spin-orbit (SO) interaction, which couples the spin of
electrons with their momentum, is the functioning principle of
many spintronic applications, including spin transistor [1,2],
spin filters [3–5], or spin-orbit qubits [6,7]. Recent investi-
gations focus towards semiconductor nanowires (NWs) with
strong SO interaction [8–16] as host materials for topological
quantum computing based on Majorana zero energy modes
[17–21]. These exotic quasiparticles form at the ends of a
NW as a result of the interplay between the SO coupling,
Zeeman spin splitting, and s-wave superconductivity induced
in the NW by the proximity effect from a superconducting
shell [22–24].

In general, a finite SO constant originates from the lack of
the inversion symmetry. In semiconductors, this could either
be an intrinsic feature of the crystallographic structure (Dres-
selhaus SO coupling [25]) or induced by the confinement
potential (Rashba SO coupling [26,27]). In zincblende NWs
grown along the [111] direction, the crystal inversion symme-
try is preserved and the Dresselhaus term vanishes [10]. On
the other hand, for spintronic applications the Rashba term
has the essential advantage of being tunable by external fields,
e.g., using external gates attached to the NW [28]. In general,
external fields interplay with the overall NW geometry, which
is typically prismatic, and the value of the SO constant de-
pends on the position with respect to the underlying substrate,
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the details of the dielectric configuration, as well as on the
compositional details of the NW which determine the elec-
tronic states [13,29]. For example, we have recently discussed
the additional possibilities to engineer the SO constant in
core-shell NWs with respect to homogeneous samples [12].
Since the SO constant depends, in general, on the symmetry
and localization of the electronic states, a magnetic field may
also induce a finite SO constant due to orbital effects.

Despite the number of experiments with measurements of
the Rashba SO constant in semiconductor NWs [8–10], the
study of its anisotropy with respect to the magnetic field
orientation is limited. Recently, such a vectorial control was
reported for InAs NWs which were suspended in order to
eliminate the SO contribution originating from the substrate
[30]. In Ref. [30] the authors tracked the nontrivial evolution
of the weak antilocalization (WAL) signal and determined
the SO length as a function of the magnetic field intensity
and direction. Interestingly, they observed that the average
SO coupling is isotropic with respect to the magnetic field
orientation and does not reveal any hallmark of the prismatic
symmetry. When applying a transverse electric field by a gate,
however, a twofold anisotropy appears, with the maximal SO
length when B is perpendicular to the electric field.

Motivated by the availability of such experiments, we use
the 8 × 8 k · p method to analyze the dependence of the
Rashba SO constant on the magnetic field intensity and ori-
entation. The full vectorial character of the SO constant is
taken into account by evaluating the SO coupling constants
separately in different directions. While the magnetic field
perpendicular to the NW axis is able to generate a finite
SO constant which turns out to be isotropic at low intensity
(below ∼1 T), for larger fields the SO constant shows a slight
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sixfold symmetry with respect to the field orientation, due to
the interplay between the orbital effects of the field and the
prismatic symmetry of the NW. A backgate potential couples
to the magnetic field, which maximizes or minimizes the SO
coupling depending on the relative orientation, leading to a
twofold symmetry. We also investigate in-wire field configura-
tions. The trivial twofold symmetry when the field is rotated in
a plane which contains the axis is almost completely removed
by a gate potential. Our results are discussed in light of recent
experiments reported in Ref. [30].

The paper is organized as follows. In Sec. II the Rashba SO
coefficients are derived from the 8 × 8 k · p model within the
envelope function approximation, including the orbital effects
which originate from the magnetic field. The effective Hamil-
tonian for the conduction electrons is derived in Sec. II A with
details on the numerical method given in Sec. II B. Results of
our calculations for homogeneous InAs NWs are reported in
Sec. III, with a discussion of recent experiments. Section IV
summaries our results.

II. THEORETICAL MODEL

We consider a homogeneous InAs NW with hexagonal
cross section, grown along the [111] direction for which the
Dresselhaus contribution to the SO interaction can be ne-
glected [31]. The NW is subjected to the external magnetic
field B = B (cos θ sin φ, sin θ sin φ, cos φ), with intensity B
and the direction being defined by the angle φ formed with the
NW axis along z and the angle θ formed with the x axis, which
connects two corners of the NW in the x-y plane, see Fig. 1(a).
We employ the gauge A(r) = B (−y cos φ, 0, y cos θ sin φ −
x sin θ sin φ). A backgate is directly attached to the bottom of
the NW, along a facet, generating an electric field parallel to
the NW section, in the x-y plane [10,13].

Below we use the 8 × 8 Kane model to derive the Rashba
SO constants in terms of a realistic description of the quantum
states in a magnetic field. This allows for quantitative predic-
tions of SO coefficients as a function of the magnetic field and
the gate voltage for different electron concentrations [12,13].

A. Effective SO Hamiltonian for conduction electrons

Our theoretical model is based on the 8 × 8 k · p Kane
Hamiltonian within the envelope function approximation. We
neglect here the spin Zeeman splitting, to focus on the dom-
inating orbital effects, that is the distortion of the envelope
function due to the field. It is straightforward to add the
Zeeman splitting to the electron spin levels. The 8 × 8 Kane
Hamiltonian reads [32]

H8×8 =
(

Hc Hcv

H†
cv Hv

)
, (1)

where Hc is the Hamiltonian of conduction electrons corre-
sponding to the �6c band, while Hv is the Hamiltonian of the
valence bands, �8v , �7v

Hc = H�6 12×2, (2)

Hv = H�8 14×4 ⊕ H�7 12×2. (3)

FIG. 1. (a) Schematics of a NW with a bottom gate. In our
simulations, anisotropy is evaluated with a magnetic field B either
perpendicular to the NW axis (φ = π/2) and rotated with an az-
imuthal angle θ , or with θ = π/2 and rotated in the y-z plane.
(b) Occupation of the lowest subband as a function of the wave
vector kz at each chemical potential μ at B = 4 T. As μ increases,
the occupation saturates to one at any kz below the Fermi energy. Of
course, in general several subbands are occupied. The nonparabolic
dispersion is clearly appreciated, with the field inducing a seemingly
Landau level dispersion. Two vertical dashed lines mark values of μ

selected for the further analysis.

In the above expressions

H�6 = − P2

2m0
+ Ec + V (r), (4)

H�8 = Ec + V (r) − E0, (5)

H�7 = Ec + V (r) − E0 − �0, (6)

where P = p − eA(r), m0 is the free electron mass, Ec is the
conduction band edge, E0 is the energy gap, �0 is the split-off
gap, and V (r) is the potential energy. In our target systems, the
potential V (r) is the sum of the Hartree potential energy gen-
erated by the electron gas and the electrical potential induced
by the bottom gate attached to NW, V (r) = VH (r) + Vg(r).

The off-diagonal matrix Hcv in (1) reads

Hcv = P0

h̄

⎛
⎝−P+√

2

√
2
3 Pz

P−√
6

0 −Pz√
3

−P−√
3

0 −P+√
6

√
2
3 Pz

P−√
2

−P+√
3

Pz√
3

⎞
⎠, (7)

where P± = Px ± iPy and P0 = −ih̄〈S| p̂x|X 〉/m0 is the
conduction-to-valence band coupling with |S〉, |X 〉 being the
Bloch functions at the � point of Brillouin zone. Finally, the
folding-down transformation [32]

H(E ) = Hc + Hcv (Hv − E )−1H†
cv (8)
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reduces the 8 × 8 Hamiltonian (1) into the 2 × 2 effective
Hamiltonian for the conduction band electrons.

The in-plane vector potential is introduced into the numer-
ical model through the Peierls substitution [33]. Note that the
field does not break translational invariance along the wire
axis (the z direction). Therefore, assuming �n,kz (x, y, z) =
[�↑

n,kz
(x, y), �↓

n,kz
(x, y)]T eikzz and expanding the on- and off-

diagonal elements of the Hamiltonian (8) to second order, we
obtain

H =
[

P2
2D

2m∗ + 1

2
m∗ω2

c

[
(y cos θ − x sin θ ) sin φ − kzl

2
B

]2

+ Ec + V (x, y)

]
12×2 + (αxσx + αyσy)

Pz

h̄
, (9)

where P2
2D = P2

x + P2
y = (px + By cos φ)2 + p2

y, ωc =
eB/m∗, lB = √

h̄/eB is the magnetic length, σi are the
Pauli matrices, m∗ is the effective mass

1

m∗ = 1

m0
+ 2P2

0

3h̄2

(
2

Eg
+ 1

Eg + �0

)
, (10)

and αx, αy are the SO coefficients given by

αx(x, y) ≈ P2
0

3

(
1

(E0 + �0)2
− 1

E2
0

)
∂V (x, y)

∂y
, (11)

αy(x, y) ≈ P2
0

3

(
1

(E0 + �0)2
− 1

E2
0

)
∂V (x, y)

∂x
. (12)

B. SO coupling constants calculations

Representing the Hamiltonian (9) in the basis of the in-
plane envelope functions ψn,kz (x, y), calculated without SO
coupling, i.e., the diagonal part of (9), the matrix elements
of the SO term are given by

αnm
i (kz ) =

∫∫
ψn,kz (x, y)αi(x, y)ψm,kz (x, y)dxdy. (13)

These coefficients define intra- (n = m) and intersubband
(n �= m) SO constants whose magnetic field dependence is
studied in Sec. III. Note that the α’s coefficients depend both
on the envelope functions and the gradient of the potential.

Calculations of the ψn,kz (x, y)’s is performed by the
standard self-consistent Schrödinger-Poisson approach which
includes electron-electron interaction at the mean-field level.
First, the in-plane envelope functions ψn,kz (x, y) are deter-
mined from the diagonal term of (9)

[
P2

2D

2m∗ + 1

2
m∗ω2

c

[
(y cos θ − x sin θ ) sin φ − kzl

2
B

]2

+ Ec + V (x, y)

]
ψn,kz (x, y) = En,kzψn,kz (x, y). (14)

In the presence of a magnetic field, the subbands are not
parabolic and ψn,kz (x, y) is explicitly kz dependent. An ex-
ample of the nonparabolic dispersion is shown in Fig. 1(b).
Therefore, Eq. (14) is solved at selected kz on a uniform grid
in [−kmax

z , kmax
z ], with kmax

z fairly above the Fermi wave vector.

Then, the electron density is obtained by

ne(x, y) = 2
∑

n

∫ kmax
z

−kmax
z

1

2π
|ψn,kz (x, y)|2 f (En,k − μ, T )dkz,

(15)
where the factor 2 accounts for spin degeneracy, T is the
temperature, μ is the chemical potential, and f (En,k − μ, T )
is the Fermi-Dirac distribution given by

f (En,k − μ, T ) = 1

1 + exp
(En,kz −μ

kBT

) . (16)

Finally, for a given ne(x, y) we solve the Poisson equation

∇2
2DV (x, y) = −ne(x, y)

ε0ε
, (17)

where ε is the dielectric constant.
Equations (14) and (17) are solved numerically on a tri-

angular grid assuming Dirichlet boundary conditions. The
symmetry of the discretization grid matching the symmetry of
the hexagonal integration domain avoids numerical artifacts
at the boundaries using smaller grid densities. The proce-
dure of alternately solving Eqs. (14) and (17) is repeated
until self-consistency is reached, which we consider to occur
when the relative variation of the charge density between two
consecutive iterations is lower than 0.001 at every point of
the discretization domain. Then, the self-consistent potential
energy profile V (x, y) and the corresponding envelope func-
tions ψn,kz (x, y) are used to determine the SO constants αnm

i
from Eq. (13). Further details concerning the self-consistent
method for hexagonal NWs can be found in our previous
papers [34,35].

Calculations have been carried out for the material
parameters corresponding to InAs [36]: E0 = 0.42 eV,
�0 = 0.38 eV, m∗ = 0.0265, EP = 2m0P2/h̄2 = 21.5 eV,
ε = 15.15, T = 4.2 K, and for the NW width W = 100 nm
(facet-to-facet). In our calculations we fix the chemical po-
tential. Results will be reported in the following section for
μ = 0.3 eV and μ = 0.35 eV, which are marked by vertical
dashed lines in Fig. 1(b). For B = 0, these values correspond
to the electron concentration ne = 4.8 × 1016 cm−3 and ne =
1.36 × 1017 cm−3, respectively. Note, however, that an in-
creasing perpendicular magnetic field progressively depletes
the NW [37]. Therefore, in a transport experiment the chemi-
cal potential must be set to a sufficiently large value. In our
calculations, the above two values of μ have been chosen
sufficiently large as to provide an occupied ground state at the
largest magnetic field intensity used here, B = 4 T [Fig. 1(b)].
For a given magnetic field, different values of μ correspond
to different occupations, hence a different self-consistent po-
tential and charge distribution within the section of the NW,
which in turn affects the SO coupling.

III. RESULTS

We shall now discuss predictions of the SO constant as a
function of the magnetic field intensity and direction. We shall
put particular emphasis on the role of the field-induced orbital
effects and the interplay with the gate potential, which also
influences electronic states localization and symmetry. We
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FIG. 2. (a)–(c) Intra- (αnn
i , n = 1, 2, 3) and (d), (e) intersubband (α1m

i ) selected Rashba SO coupling constants as a function of the magnetic
field B and the wave vector kz. (f) αnn

i (B, kz ) at B = 4 T for the three lowest states. Results are shown for μ = 0.3 eV and a magnetic field
perpendicular to the NW axis and along the corner-corner direction (φ = π/2, θ = 0).

conclude this section by a discussion of the recent experiment
[30].

A. Perpendicular magnetic field with no backgate potential

We first show that a magnetic field perpendicular to the
NW axis induces finite Rashba SO coefficients even in the
absence of any transverse electric field (Vg = 0). In this case
only the Hartree term VH contributes to the self-consistent
potential.

For B = 0 the self-consistent potential, having the same
hexagonal symmetry of the confining potential of the NW,
is symmetric with respect to the x and y directions. Hence,
envelope functions have even or odd parity, leading to αnn

x =
αnn

y = 0 for all electronic states, as implied by Eqs. (11)–(13).
Let us now consider a finite magnetic field, directed along,

e.g, the x axis (φ = π/2, θ = 0). The field generates an ef-
fective parabolic potential along y, see Eq. (9), removing
the symmetry of the Hamiltonian in this direction. This, in
turn, induces a finite potential gradient and a kz-dependent
displacement of the envelope function, hence, finite diagonal
SO couplings αnn

x [see Eq. (11)], as shown in Figs. 2(a)–2(c)
for selected subbands. For a constant Fermi energy, as as-
sumed in our calculations, the number of occupied subbands
changes with magnetic field. At B = 1 T, N = 8 subbands are
occupied, while only N = 3 of them are populated at B = 4 T.
The behavior of αnn

i (kz ) (i = x, y) for all three subbands is
both qualitatively and quantitatively similar, especially for the
high magnetic field, as presented in Fig. 2(f).

The maps of αnm
i (B, kz ) in Figs. 2(d) and 2(e) report se-

lected SO off-diagonal couplings between the ground state

and the two lowest excited states. Other coefficients α1m
i are

four orders of magnitude lower than α11
x and are not re-

ported here. Note that the suppression of these off-diagonal
matrix elements occurs only for a magnetic field along the
corner-corner direction, θ = 0. For an arbitrary direction of
the magnetic field, no symmetry applies with respect to the
specific x-y reference frame, and all off-diagonal SO constants
have comparable values at kz = 0.

The magnetic field dependence of αnm
i can be traced to the

envelope functions localization and ensuing self-consistent
potential, as shown in Fig. 3. For B = 0 (not shown) the
symmetry of the envelope functions naturally leads to αnn

i =
0 [13]. However, the field strongly changes the envelope
function symmetry. The magnetic states of a NW have been
thoroughly investigated in Ref. [37]. In short, at kz = 0 these
are localized by the field in the two corners along the field
direction, where the vertical component of the field is the
strongest, in seemingly dispersionless Landau levels [see also
Fig. 1(b)]. Therefore, such states have the inversion symmetry
and do not contribute to the SO coupling. At finite kz the elec-
tron states are localized at one of the facets in dispersive states,
which are the analog of the traveling edge states in a Hall bar.
Accordingly, the SO constant αnn

x is finite, it depends on kz,
and changes sign at kz = 0, as shown in Figs. 2(a)–2(c). Note
that ±kz states have opposite localization along y. Therefore,
regardless of the magnetic field intensity, the self-consistent
potential, which is obtained by summing states up to the Fermi
wave vector, has the inversion symmetry induced by the NW
confinement, as shown in the right panels of Fig. 3.

For similar reasons, but with the opposite behavior due to
symmetry, the intersubband SO couplings α1n

i are largest at
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FIG. 3. Squared envelope functions of the three lowest magnetic
subbands, at kz = 0 and 0.2 nm−1, with a transverse magnetic field
(red arrow) at intensities (a) B = 1 T and (b) B = 4 T. Right panels
show the electron density ne and the self-consistent potential profile
V at the corresponding field intensities.

kz = 0. Its exact value strongly depends on the field intensity.
Note that for the analyzed magnetic field direction the sym-
metry around the y axis is preserved, hence αnn

y = 0.
While a finite SO can be induced by a constant magnetic

field due to the removal of the inversion symmetry, its magni-
tude also depends on the electric field in the NW, see Eqs. (11)
and (12), which in turn depends on the electron concentration
via the chemical potential μ. At sufficiently high electron
density, the free charge moves to the corners of the NW to
reduce the repulsive Coulomb energy [34]. The large gradient
of the self-consistent potential where the envelope function is
large generates SO constants αnn

i which increase with μ. As an
example, in Fig. 4(a) we show the calculated α11

i as a function
of the wave vector for μ = 0.30 eV and μ = 0.35 eV. Note
that α11

i increases rapidly with kz but then saturates as the cor-
responding envelope functions are squeezed more and more
to the NW edges.

In a transport experiment, electrons are injected in one
of the subbands of the NW with a well defined Fermi wave
vector, kF

n,z, which is a function of the magnetic field intensity
due to the field induced charge depletion. In Fig. 4(b) we show
αnn

i (Vg) at the Fermi wave vector kF
n,z. The strong localization

of the electron charge at opposite NW edges gives rise to a
strong susceptibility of αnn

i (Vg) around B = 0, analogously to
what happens when a gate potential is switched on, as we
discussed in Ref. [13]. On the other hand, αnn

i saturates for
high magnetic fields due to the orbital effect which squeezes
the envelope functions to NW edges. Slight oscillations of
αnn

x (B) correspond to changes in the self-consistent potential
due to depopulation of subsequent subbands when increasing
field [see the black line in Fig. 4(b)].

We next analyze the anisotropy of the SO constant with
respect to the transverse field direction. Indeed, as a finite αnn

i
originates from the confinement induced by the field, it is ex-

FIG. 4. (a) The intrasubband SO constant α11
x as a function of

kz at B = 1 T and B = 4 T and at chemical potentials μ = 0.30 eV
and μ = 0.35 eV. (b) The intrasubband SO constant αnn

x (kF
n,z ), n =

1, 2, 3 (left axis) calculated at kF
n,z and number of occupied subbands

(black line, right axis) as a function of the magnetic field intensity B.

pected that the latter intertwines with the natural confinement
of the electron charge at the NW edges, as discussed above.
Therefore, we expect a sixfold anisotropy with respect to θ .

The angular dependence of the intrasubband SO couplings
is shown in Fig. 5 for the three lowest subbands and different
magnetic field intensities. Note these subbands exhaust the
occupied states at B = 4 T, but they are only a subset of the
N = 8 occupied subbands at B = 1 T [see also Fig. 4(b)].
Subbands with N > 3 are not shown here, however, as they
do not add information.

In Fig. 6 we show αnn =
√

(αnn
x )2 + (αnn

y )2 calculated for

the ground state n = 1. The SO coupling α11 appears isotropic
and unaffected by the magnetic field orientation. However,
a very weak dependence on θ can be observed in the bot-
tom subpanels which zoom in the kz range marked by the
dashed rectangular at the main graph. A similar weak sixfold
anisotropy is shown by all the occupied states and corresponds
to the hexagonal geometry of NW. It is due to the slight
reshaping of the envelope functions which localize alternately
on facets and corners as the magnetic field is rotated around
the NW (see Fig. 7).

Interestingly, at B = 4 T the SO coupling shows a flower-
like pattern around kz = 0 for n = 1, 2, see Fig. 5(b), at low kz.
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FIG. 5. Maps of αnn
x and αnn

y as a function of θ and wave vector kz. Results are shown for μ = 0.30 eV and magnetic fields (a) B = 1 T
and (b) B = 4 T.

Indeed, when kz is large, the parabolic well generated by the
field strongly confines the charge near to the surface, similarly
to edge states in a Hall bar. When squeezing is strong, the
field orientation changes the localization of the wave function
as presented in Fig. 7(b). Regardless of the field direction the
envelope function remains localized near to the surface which
results in a weak anisotropy of SOC.

FIG. 6. Maps of α11 as a function of θ and wave vector kz.
Results are shown for μ = 0.30 eV and magnetic fields (a) B = 1 T
and (b) B = 4 T. Insets under the main panels zoom in the kz range
marked by dashed black rectangle of the corresponding panel.

At small kz, instead, states are confined in the middle of the
structure (similarly to Landau levels). There, the localization
of the envelope function is only slightly affected by the field
direction: At θ = 28◦ (that is, along the shorter diagonal,
large tunneling energy) a symmetric localization is stabilized,
while at θ = 57◦ (that is, near to the longer diagonals, small
tunneling energy), a configuration of two strongly asymmetric
lobes appears.

FIG. 7. Squared envelope function of the ground state at selected
angles θ at B = 4 T. (a) kz = 0.04 nm−1, (b) kz = 0.4 nm−1.
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FIG. 8. (a)–(c) Angular dependence of the x (blue) and y (red)
components of intrasubband SO coupling constant (in units of

meV nm) at kF
n,z together with the modulus αnn =

√
(αnn

x )2 + (αnn
y )2

(black) for the three occupied states. Panel (d) presents the total SO
coupling constant αtot averaged over all occupied states. Results for
B = 4 T, μ = 0.3 eV.

In Figs. 8(a)–8(c) we report polar diagrams of the intra-
subband SO constant calculated at the Fermi wave vector
kF

n,z for all occupied states (N = 3) at B = 4 T. The x and y
components and the modulus αnn are shown separately. The
value of SOC is the largest for the ground state, panel (a),
which is almost isotropic. On the contrary, other electronic
bands have a smaller value but a stronger anisotropy. The total
SOC, αtot = (1/N )

∑
n αnn(kF

n,z ), averaged over all occupied
subbands, panel (d), to be compared with the observed value
in the magnetotransport experiment, shows a slight sixfold
anisotropy, with the smaller value along the corner-corner
direction and the larger value along the facet-facet direction.

The total SOC for different B and μ is shown in Fig. 9.
At the lowest magnetic field B = 0.1 T, panel (a), we do not
observe any anisotropy. A slight sixfold anisotropy can be
appreciated at B = 1 T, in panel (b). In this case a different
behavior of the SOC as compared to that obtained at B = 4 T
is due to the averaging over a larger number of subbands
(N = 8), including higher excited states whose angular de-
pendence is a combined effect of the orbital effects and the
envelope function symmetry. Although the orbital effects for
these higher excited states are suppressed due to low kn,F , and
therefore the contribution of them to the SOC is reduced, they
cause visible ripples of SOC but still with the lowest SOC
along the corner-corner line.

The observed sixfold anisotropy of SOC is actually ex-
pected. Due to external confinement and the self-consistent
field arising from Coulomb interaction, the electron gas
is strongly localized near the edges of NW for low B.
A weak magnetic field cannot perturbate the symmetry of

FIG. 9. The angular dependence of the total SO coupling con-
stant (in units of meV nm) αtot, averaged over all N occupied
subbands at kF

n,z. (a) B = 0.1 T, μ = 0.3 eV (N = 8) and (b) B =
1 T, μ = 0.3 eV (N = 8). (c) α11 at μ = 0.3 eV (dashed line) and
μ = 0.35 eV (solid line).

such strongly localized states. For higher magnetic field the
Coulomb interaction weakens due to the magnetically in-
duced charge depletion [see Fig. 4(b)]. Therefore a sufficiently
strong magnetic field may squeeze the envelope functions to
the surface in a way which depends on the relative orientation
of the surface and the field. Note that the localization of the
wave function at the surface is enhanced by the Coulomb re-
pulsion at the high concentration regime. Indeed, as presented
in Fig. 9(c), the sixfold anisotropy of α11 (for the ground state)
is somewhat larger for higher μ.

Our results qualitatively agree with experimental evidence
in Ref. [30] where the SO coupling was measured to be
isotropic in a suspended hexagonal InAs NW. This negative
result is expected in the low magnetic field used in the ex-
periments (B < 0.1 T). Evaluating the field intensity at which
anisotropy is exposed is a nontrivial issue. The reason is that
increasing the field enhances the orbital effects on the charge
density, which at zero field tends to be localized near to the
surface, but it also depletes the NW from free charge, which
makes the charge to delocalize, due to the small Coulomb
repulsion, and less sensitive to the anisotropy of the NW.

B. Perpendicular magnetic field with a finite backgate potential

Next we consider the effect of a bottom gate attached to
the NW (see Fig. 1). As in the previous section, the magnetic
field is perpendicular to the NW axis. We first consider the
θ = 0 (corner-to-corner) direction, hence the two fields are
orthogonal to each other.
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FIG. 10. The total intrasubband SO αtot, as a function of Vg at
selected magnetic fields B = 0, 1, 4 T directed in the θ = 0 (corner-
to-corner) direction. Results are shown for μ = 0.30 eV.

The total intrasubband SO coupling αtot averaged over all
occupied states at the Fermi wave vector kF

n,z is shown in
Fig. 10 as a function of the backgate potential Vg at selected
field intensities. For the present fields configuration the sym-
metry around the y axis is not broken, hence αnn

y (Vg) = 0.
Figure 10 shows that αtot(Vg), which is finite due to the broken
symmetry along x, increases with B for Vg > 0. αtot takes off
at a threshold Vg which moves toward negative gate voltages
with increasing magnetic field.

The strong asymmetry shown in Fig. 10 between positive
and negative voltages is easily understood. For positive volt-
ages the electron charge is pulled toward the gates, where
the self-consistent field has the largest gradient. For negative
voltages, instead, electrons are pulled far from the gate, where
the potential is almost flat [13]. Note, however, the opposite
effect of the magnetic field. Here, the electric and magnetic
fields are orthogonal, θ = 0. Therefore, for positive voltages
both the gate potential and the magnetic field push electrons
toward the bottom edge, hence the magnetic field reinforces
the back gate effect, increasing the SO coupling. The opposite
is true for Vg < 0; in this case, electric and magnetic field
push the electrons on opposite sides, and the magnetic field
weakens the SO coupling. Of course, the opposite situation
takes place when the magnetic field is directed at θ = 180◦.
Therefore, for a fixed Vg, we expect a strong anisotropy with
respect to the magnetic field orientation, as shown below.

Figure 11 shows the polar plot of αtot averaged over kF
n,z for

Vg = 0.1 V together with α11
i . In the absence of a magnetic

field, the electronic charge is strongly localized by the electric
field at the edge of the NW, near to the backgate. At a small
magnetic field [B = 0.1 T in panel (a)], the orbital effects are
negligible, and the SO coupling is isotropic. If we increase the
magnetic field [panel (b)], however, αtot (as well as α11

x ) shows
a twofold anisotropy, as expected from the interplay between
the two fields. Note that at θ = 180◦, the SO coupling of the
ground state is nearly zero as the orbital effects localize the
electron wave function near the upper facet (see the inset),
overcoming the gate effect. There, the electric field is weak

FIG. 11. The angular dependence of the x (blue) and y compo-
nent (red) of the intrasubband SO constant (in units of meV nm)
α11

i calculated at the Fermi wave vector kF
1,z for the lowest subband

and the total SO constant averaged over all occupied states at kF
n,z

(green line). Insets in panel (b) show the squared envelope functions
of the lowest subband at kF

1,z for the magnetic field with θ = 0
and θ = 180◦. Calculations are performed with μ = 0.30 eV and
Vg = 0.1 eV.

due to the distance from the gate, and the gradient is almost
vanishing [13]. The nonzero value of αtot in this case results
from the other states which contribute to the total SOC. Fur-
ther increasing the field intensity B enhances the orbital effect
enhancing the anisotropy due to suppressing αnn

x in a wide
angular range, as shown in panel (c) for the ground state.

A similar twofold anisotropy has been reported in Ref. [30]
with a different gate configuration but with the same symme-
try. We postpone the detailed analysis of this experiment to
Sec. III D.

C. Axial magnetic field

We now consider the SO coupling constants under a mag-
netic field with a component along the NW axis. This is the
relevant configuration in the context of Majorana states engi-
neering, which requires the axially magnetic field and the SO
interaction to create Majorana zero energy modes at the ends
of a NW. The question concerning the relative relationship
between the SO coupling and the magnetic field is still an open
issue [29,33,38].

Figure 12 shows the calculated αtot(Vg) vs field intensity B
with an axial field (φ = 0). Clearly, the axial magnetic field
affects the SO coupling to a slight extent up to B = 16 T.
This is in agreement with previous calculations within the
spin density functional formalism [39]. Indeed, in the axial
field configuration, the inversion symmetry is not removed
[see Eq. (9)], although the orbital effect is still visible in the
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FIG. 12. The total intrasubband SO constant αtot as a function of
the gate voltage Vg for different axial magnetic fields. Inset: squared
envelope functions of the lowest subband for different magnetic
fields at Vg = 0.

inset of Fig. 12, where the envelope function is shown to
localize further at the edges with the field. There is almost no
field-induced depletion effect here, which is only due to the
part of the orbital effect related to the field-induced quadratic
terms in Eq. (9). Note the strong asymmetry with respect to
the gate potential, which has the same explanation as the one
in Fig. 10.

Next, we consider a magnetic field rotating in the y-z plane,
see Fig. 13, which shows a twofold anisotropy. However, the
anisotropy is almost removed by the gate potential, with the
SO constant being only slightly larger for the axially magnetic
field.

The behavior shown in Fig. 13 is easily traced to the wave
function localization. At Vg = 0, SOC is trivially zero if the
magnetic field is in the axial direction (inversion symmetry
holds), while it is at maximum with the field in the orthogonal
direction, φ = π/2, as discussed in the previous paragraphs.
If Vg = 0.1 V, instead, the wave function is localized near to
the bottom edge, where the electric field is the largest, and the
SO coupling is large as well. At B = 1 T the magnetic field

FIG. 13. Angular dependence of the x (blue) and y (red) compo-
nent of the intrasubband SO (in units of meV nm) of the ground state
α11

i calculated at kF
1,z together with the total SOC αtot (green). The

magnetic field is rotated in the y-z plane. Results for μ = 0.30 V,
B = 1 T and (a) Vg = 0 and (b) Vg = 0.1 V.

changes the localization to a small extent, constantly keeping
the wave function near the bottom gate. If the magnetic field
is perpendicular to NW the orbital effects slightly squeeze the
wave function to the side edges (either to the right or to the left
corners) where the electric field is lower, slightly lowering the
SO coupling. Hence, a small gate potential restores the y-z
isotropy.

D. Comparison with experiment

In Ref. [30] the authors used magnetotransport experiments
to determine the SO coupling in suspended InAs NWs. Using
a vectorial magnet, the nontrivial evolution of weak antilo-
calization is tracked and the SO length is determined as a
function of the magnetic field intensity and direction. This
study shows no anisotropy related to the geometrical con-
finement in a low field regime. The isotropy of SO coupling
is, however, removed in the presence of an external electric
field induced by side gates. In this case, the SO coupling
demonstrates a twofold periodic angular modulation when the
magnetic field is rotated in both the y-z and x-y plane.

To simulate the experimental conditions, we consider a
InAs NW attached to two side electrodes located 200 nm from
the NW, see Fig. 14(a). Potentials applied to the gates generate
an electric field which is assumed to change linearly in the
region between the electrodes. All parameters are taken from
the experiment. We assume W = 100 nm (facet-facet) and
ne = 2 × 1018 cm−3, which for the considered NW geometry,
gives EF = 0.935 eV. In order to keep the electron density
constant, the field is induced by applying an asymmetric po-
tential VSG1 = αgVSG2, where αg is determined separately for
each Vg, as to keep the density constant. We consider only the
case with the magnetic field directed perpendicular to the NW
and rotating in the x-y plane, with B = 0.1 T as used in the
experiment.

The x and y components of the intrasubband SO coupling
for the ground state α11

i calculated at Vg = 0 is presented
in Figs. 14(b) and 14(c). The rapid switch between the two
components results from the Coulomb interaction. At the
considered high electron concentrations the electron-electron
repulsion localizes the charge in quasi-1D channels at the cor-
ners [34]. When the magnetic field rotates the localization of
the ground state suddenly moves between the corners resulting
in a steplike change between the x and y components which
swap their intensities.

The total SO coupling constant averaged over all occupied
states at kz

n,F is presented in panels (d) and (e) for two dif-
ferent gate voltages. The total SO coupling at Vg = 0, panel
(d), is nearly isotropic exhibiting slight oscillations with the
sixfold symmetry due to the prismatic symmetry of the NW
which, in the considered high electron density regime, is more
pronounced due to the strong localization of electrons at the
six corners. Note that in Ref. [30] the authors reported full
isotropic behavior of SOC at Vg = 0 without the oscillations.
This inconsistency remains to be clarified. It may be the result
of the specific extraction of the SO length used in Ref. [30]
which includes the correction from the effective NW width.
Alternatively, a low resolution of the magnetotransport mea-
surement might not be able to capture small changes of SOC.
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FIG. 14. (a) Schematic illustration of the experimental setup. (b), (c) The x and y component of the intrasubband SO coupling α11
i as a

function of the angle θ and the wave vector kz. The magnetic field is rotated in the x-y plane. (d), (e) The angular dependence of the total SO
constant αtot. Results for B = 0.1 T and φ = π/2.

Finally, we apply a potential Vg = 2 V, as in the exper-
iments, to the side electrodes (αg = 0.96). In this configu-
ration, the y component of SO coupling becomes dominant
and is barely affected by the magnetic field orientation. For
such a high gate potential the wave function of the ground
state is strongly localized in the right corner [see the inset
of Fig. 14(e)], and it is only slightly disturbed by the orbital
effects originating from the weak magnetic field used in the
experiment (B = 0.1 T). This results in the slight twofold
anisotropy of SOC, shown in panel (e), similarly as reported in
the experiment [30]. Note however that the experimental evi-
dence shows a twofold anisotropy with respect to the magnetic
field orientation in the y-z plane (although authors suggested
its existence also in the x-y magnetic field rotation) and its
intensity is much stronger.

Although we did not perform explicit calculations in this
configuration for such a high electron density, which implies
a very large number of subbands (∼100) and a correspond-
ingly large numerical effort, results presented in Fig. 13 for
a lower electron density and higher magnetic field agree with
the experimental result and support the interpretation. Note
however that at Vg = 0 and the axially directed magnetic field,
the inversion symmetry around either the x and y axis is not
broken, which results in αtot = 0 as presented in Fig. 13(a).
This scenario is, however, not supported by the experimental
data which exhibit nonzero SOC even for the axially magnetic
field. This strongly suggests the presence in the samples of an
intrinsic electric field of an unknown origin, which is a source
of SO coupling whose distortion by the weak magnetic field
used in the experiment (B = 0.1 T) is not possible, resulting
in the isotropic SOC. An intrinsic electric field would also
explain the absence of the SO coupling angular oscillations
[as in Fig. 14(a)] and the slightly lower value of SOC from

the calculations, αtot ≈ 10 meV nm, as compared with the
corresponding experimental value α

exp
tot ≈ 15 meV nm. Inter-

estingly, it might also explain the observed unexplained phase
shift in the magnetoconductance measurement (see Figs. 3(c)
and 3(d) in Ref. [30]) in terms of the relative alignment be-
tween the magnetic field and the resultant electric field (sum
of the noncollinear intrinsic and extrinsic electric field) which
changes depending on the applied voltage.

IV. SUMMARY

Based on the k · p theory within the envelope function
approximation, we have analyzed the orbital effects of a mag-
netic field on the Rashba SO coupling in InAs homogeneous
semiconductor NWs. The full vectorial character of the SO
constant has been studied under the magnetic field magnitude
and orientation.

The Rashba SO interaction of conduction electrons in a
NW is determined by the position and symmetry of the elec-
tron’s wave function, which can be tuned by gate-induced
electric fields as well as by the the orbital effects induced by a
magnetic field. Specifically, when we apply the magnetic field
perpendicular to NW, the inversion symmetry of the envelope
functions is broken and the wave function is squeezed to
the NW surface by a kz-dependent effective potential. This
effect results in a finite SO coupling, which is also sensitive
to the geometrical confinement. As we have shown, at low
magnetic field (< 1T for the considered NW), when orbital
effects are weak, the SO coupling is isotropic with respect to
the magnetic field in the NW section. Interestingly, the slight
sixfold anisotropy appears at higher magnetic fields (or high
electron concentration), when the wave function is squeezed
to the NW edges to a larger extent.
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When a gate potential is applied in the direction orthogonal
to the magnetic field, the two fields intertwine in a way which
may enhance or suppress the SO coupling, depending on
the relative direction, leading to a twofold anisotropy with
respect to the magnetic field rotation in the x-y plane. Our
study for the axially magnetic field, relevant to Majorana zero
state engineering, shows no significant modification of the
SO constant in the magnetic field range used in the Majorana
experiments.

Note that the electron-electron interaction, here introduced
at the mean-field level, is essential in estimating SO coupling
constants, via charge localization. At the high concentra-
tion regime total energy is minimized by reducing repulsive
Coulomb energy, moving electrons outwards, near to the
facets where the electric field becomes the largest. Due to the
prismatic symmetry of the NW, charge localizes in six quasi-
1D channels at the edges. As we discussed, this localization
determines the sensitivity of the electronic system to the gate
potential and the magnetic field direction.

Finally, in light of our simulations, we have analyzed
qualitatively recent experiments with suspended InAs NWs
[30], and good agreement with the experimental data has been
found. However, we suggest that an unintended electric field

is present in the sample, which would reconcile observations
with our predictions.

As a final remark, we note that in real devices a dielectric
spacer often separates the gate from the NW, which reduces
the SO constant. However, a spacer layer could change the
cancellation effect, as it only lowers the internal electric field.
Moreover, our calculations are performed for a translationally
invariant NW. In principle, in experiments finite size effects
or tunneling from the leads and/or interchannel scattering
may take place and influence the lead-to-lead transmission,
particularly in the coherent transport regime of sufficiently
short NWs [40]. Note, however, that such effects are unlikely
to depend on the external field direction. On the other hand,
when estimating magnetotransport conductance, SOC is a
crucial material-related ingredient. Our paper shows how SOC
intrinsically depend on the direction of the external field.
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