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First-principles study of ultrafast and nonlinear optical properties of graphite thin films
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We theoretically investigate ultrafast and nonlinear optical properties of graphite thin films based on first-
principles time-dependent density functional theory. We first calculate electron dynamics in a unit cell of graphite
under a strong pulsed electric field and explore the transient optical properties of graphite. The optical response
of graphite shows a sudden change from the conducting to the insulating phase at a certain intensity range of the
applied electric field. It also appears to be a saturable absorption (SA) in the energy transfer from the electric field
to electrons. We next investigate a light propagation in graphite thin films by solving the coupled dynamics of the
electrons and the electromagnetic fields simultaneously. It is observed that the SA manifests in the propagation
with small attenuation in the spatial region where the electric field amplitude is about 4 × 10−2 to 7 × 10−2 V/Å.
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I. INTRODUCTION

Owing to rapid progress of laser technologies, we can use a
pulsed light, freely selecting its intensity and duration [1]. As
for the duration of laser pulses, we can produce light pulses
as short as a few tens of attoseconds [2]. Using intense and
ultrashort laser pulses, a number of intriguing phenomena
have been observed in solids. For example, high harmonic
generation from solids has been extensively explored in the
last decade [3]. An induced electric current in glass by
the ultrashort pulsed light has been observed, indicating that
the insulator can be changed into a conducting material in a
very short timescale [4]. Using further intense laser pulses,
nonthermal laser processing is expected as an efficient means
of microfabrication of materials [5].

This paper aims to report a theoretical and computational
analysis on the ultrafast and nonlinear optical responses of
graphite thin films. Graphite is a semimetallic layered material
of carbon atoms arranged in a honeycomb lattice. Mono-
layered carbon structures such as graphene and single-wall
carbon nanotubes have been attracting enormous attention
for their unusual optical properties [6,7]. For example, large
optical nonlinearities, such as harmonic generation [8] and
Kerr effects [9,10], have been reported. In particular, ultrafast
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saturable absorption (SA) has been extensively investigated
and used in a mode-locked fiber laser [11–20]. Using fur-
ther intense laser pulses, laser processing of carbon materials
has also attracted attention [21,22]. Since it is known that
microfabrication of some carbon materials is difficult by ordi-
nary methods [23], efficient processing using ultrashort pulsed
light is highly anticipated.

To obtain a reliable understanding of the ultrafast and non-
linear optical properties, it is essential to describe microscopic
electron motion under an optical field. Optical properties of
graphenes are characterized by the presence of a Dirac cone in
the energy band. Although the valence and conduction bands
slightly overlap in graphite, making it semimetal, its optical
properties are also characterized mostly by a Dirac conelike
structure. A number of theoretical analyses treating motion
of electrons in a Dirac cone has been reported. They include
analytical modeling and analysis [24–26], quasiclassical ki-
netic theory [27], and time-dependent solutions for the optical
Bloch [28,29] and the density matrix [9,30,31] equations.
First-principles calculations have been carried out, including
all valence electrons for nonlinear optical properties in the
frequency domain [32,33]. Descriptions of nonlinear light
propagation are also important issues to understand the optical
responses of multilayer graphenes and graphite thin films, as
well as laser processing of carbon materials. A transfer matrix
method has been used [34]. A nonlinear propagation method
was also developed [35].
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In this paper, we will employ a first-principles computa-
tional approach based on time-dependent density functional
theory (TDDFT) [36,37]. The TDDFT has been known as a
useful method to investigate optical properties of molecules
and solids with a reasonable accuracy for a moderate com-
putational cost. By solving the time-dependent Kohn-Sham
(TDKS) equation in the time domain [38,39], we can describe
ultrafast and nonlinear electronic dynamics in matter. Appli-
cations of such approaches include nonlinear optical constants
[40], high harmonic generations [41–43], and light-matter
energy transfer [44,45].

By solving the TDKS equation in the time domain,
we can also investigate ultrafast electron dynamics in graphite
induced by a pulsed electric field without any perturbative
approximations. We can describe the dynamics of whole
sp valence electrons including the dynamics at the Dirac
cone. Using ordinary functionals, however, collisional effects
cannot be included sufficiently, although carrier relaxation
dynamics are known to be important in graphite [46] and
graphene [47]. This limits the validity of the TDDFT approach
to a short duration before the relaxation becomes significant.
The relaxation time should depend on the laser parameters and
is considered a few tens of femtoseconds [9,26,46,47].

A theoretical description of the propagation of light
is another important subject. There has been progress in
developing combined simulations of TDDFT for electron
dynamics and electromagnetism analysis for a light propa-
gation by adopting a multiscale strategy [48]. The method
has been successfully applied to analyze ultrafast and non-
linear light propagations: the attosecond transient absorption
spectroscopy mimicking pump-probe experiments [49] and
the spatial distribution of energy deposition that is the basic
information to analyze laser processing [50,51].

This paper is organized as follows: In Sec. II, we provide
a formalism and a computational method based on TDDFT.
Electron dynamics in a unit cell of graphite induced by pulsed
electric fields are discussed in Sec. III. Light propagations
through graphite thin films are discussed in Sec. IV. Finally,
in Sec. V, a summary will be presented.

II. THEORY

A. Electron dynamics in a unit cell

We describe a time evolution of electron orbitals in a unit
cell of graphite under a strong pulsed electric field by solving
the TDKS equation for Bloch orbitals. Expressing the applied
electric field using a vector potential A(t ) in the velocity
gauge [39], we have

i
∂

∂t
ubk(r; t ) =H[A]ubk(r; t ) , (1)

where ubk are the Bloch orbitals with band index b and
wavenumber k. The Hamiltonian H[A] is given by

H[A] = 1

2m

[
p̂ + h̄k + A(t )

c

]2

+ Vps(r) + VH[n](r) + Vxc[n](r) , (2)

where Vps, VH, and Vxc are ionic pseudopotentials, Hartree
potentials, and exchange-correlation potentials, respectively.

The Hartree and the exchange-correlation potentials depend
on the electron density n(r; t ) that is expressed as

n(r; t ) = 2

�BZ

∫
�BZ

dk′
(occ)∑

b

|ubk′ (r; t )|2 , (3)

where �BZ is the volume of the Brillouin zone (BZ). The
summation of b is taken over all occupied bands. The inte-
gration in the BZ is carried out by numerical quadrature using
appropriately selected sampling points. Therefore, Eq. (3) can
be rewritten as

n(r; t ) =2
BZ∑
ki

(occ)∑
b

wi|ubki (r; t )|2 , (4)

where ki and wi are the sampled k-points and their weight-
ing coefficients, respectively. A uniformly distributed ki with
equal wi is often used for calculations of periodic crystals. In
this paper, however, we use a nonuniform k-point sampling in
the BZ to obtain convergent results with less computational
costs. Details will be explained in Sec. II C.

From the Bloch orbitals, the electric current density aver-
aged over the unit cell J(t ) is given as below:

J[A](t ) = − 2

�cell

∑
bki

wi

∫
�cell

dr′ u�
bki

(r′, t )

×
[

p̂ + k + A(t )

c
− i(r̂,VNL)

]
ubki (r

′, t ) , (5)

where VNL is the nonlocal part of the pseudopotential Vps, and
�cell is the volume of the unit cell.

B. Light propagation

We next consider a description of light propagation in a
thin film of graphite. We will use the “Maxwell + TDDFT
multiscale method” [48], calculating light propagations in
solids by combining electromagnetics field analysis and elec-
tronic dynamics calculations. We note the spatial scale of
the electromagnetic fields of the propagating light is a few
hundreds of nanometers and is much larger than that of the
microscopic electronic dynamics. To overcome the mismatch
of the two spatial scales, we use a multiscale method intro-
ducing the two coordinate systems for the macroscopic and
microscopic dynamics.

The multiscale method is a natural extension of a macro-
scopic electromagnetism that is usually used to describe light
propagation in a medium. In the macroscopic electromag-
netism, one usually solves the macroscopic Maxwell equation
using a grid system in which the grid spacing is typically
much larger than atomic scale. The microscopic dynamics
are considered through a constitutive relation that expresses,
for example, the electric field and the electric current locally
J (t ) = J[E (t )]. To describe the propagation of an intense
pulsed light, we cannot use any perturbative constitutive re-
lations. Instead, we solve the TDKS equation to relate the
current density and the electric field. We need to consider
electron dynamics at each grid point that is used to solve the
macroscopic Maxwell equation, since electron dynamics at
each point are different. The microscopic coordinate is used
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to solve the TDKS equation to calculate microscopic electron
dynamics.

For the macroscopic electromagnetic fields, we solve the
one-dimensional Maxwell equation:

1

c2

∂2AX (t )

∂t2
− ∂2AX (t )

∂X 2
=4π

c
JX (t ) , (6)

where X is the macroscopic coordinate variable, and AX (t ) is
the vector potential field at X . At each point X , we consider
a microscopic electronic system. At the microscopic scale,
we consider the electron dynamics of an infinitely extended
system under a spatially uniform electric field specified by
AX (t ), where we treat X as a parameter. The electron motion
is described by Bloch orbitals uXbk that satisfy

i
∂

∂t
uXbk(r; t ) =H[AX ]uXbk(r; t ). (7)

The current density JX (t ) is determined by Eq. (5) with
JX (t ) = J[AX ](t ). We solve the TDKS and the Maxwell equa-
tions simultaneously, exchanging AX (t ) and JX (t ) at every
time step.

It should be noted that the present multiscale formalism
returns to the ordinary macroscopic electromagnetism when a
field is sufficiently weak.

The detail of our formalism is explained in Ref. [48].

C. Computational details

We consider an ABA-stacked graphite crystal. Fig. 1(a)
illustrates the crystal structure. The lattice constant and the
interlayer distance are set as 1.42 and 3.35 Å, respectively.
We use a rectangular unit cell of 6.70 × 4.25 × 2.46 Å, which
contains eight carbon atoms. For electron-ion interaction,
we employ a norm-conserving pseudopotential [52] having
four valence electrons in a single atom. For the exchange-
correlation potential, the adiabatic local density approxima-
tion (ALDA) with Perdew-Zunger functional [53] is adopted.
To express Bloch orbitals, we use a three-dimensional Carte-
sian grid representation with a finite-difference scheme for
differentiation operators. The crystalline unit cell is divided
into 26 × 16 × 16 uniform grids. The resulting grid spacing is
about 0.26 × 0.27 × 0.15 Å; the grid spacing for the z direc-
tion (E -field direction) is set to be finer than the other spatial
axes. For the summation over k-space in Eqs. (4)–(5), the en-
tire BZ is sampled by 7928 nonuniformly generated k-points
[see Fig. 1(b)]. Since electronic excitations dominate around
the Dirac cone region in the k-space [see Fig. 1(c)], we use a
nonuniform sampling, a dense sampling for focused regions
and a coarse sampling in the other areas, to improve the accu-
racy while avoiding the increase of the computational cost. In
the kx (interlayer) direction, the BZ is divided into four. Each
kykz layer is sampled by 414 coarse points and 1568 dense
points, as shown in Fig. 1(b). The weighting coefficients are
about wi ≈ 4.88 × 10−4 and 3.05 × 10−5, respectively. The
time evolution is calculated using an enforced time reversal
symmetry (ETRS) [54] propagator with a time step of �t =
0.04 au (0.96 as). For computation, we use an open-source
TDDFT program package, Scalable ab initio Light-Matter
simulator for Optics and Nanoscience (SALMON), which has
been developed in our group [55].

FIG. 1. Schematic illustration of a calculated system: (a) Lin-
early polarized electric field irradiates an ABA-stacked graphite
crystal normally, for which we use a rectangular unit cell with eight
carbon atoms. (b) Nonuniform k-point distribution to sample the
entire Brillouin zone (BZ) that contains 1656 coarse points and 6272
dense points. (c) Band structure and electron occupation in the weak
(left) and strong (right) field cases.

III. ELECTRON DYNAMICS IN A UNIT CELL

A. Dielectric function

Before discussing nonlinear and ultrafast responses, we
first show the calculation of the dielectric function of graphite
to confirm the reliability of our model in the linear response.
We use a real-time scheme to calculate the dielectric function,
as described below [48]. Here, as a vector potential in Eqs. (2)
and (5), we adopt a Heaviside step function with a small
amplitude δA:

Az(t ) = δA θ (t ), (8)

which corresponds to an impulsive electric field described
by the Dirac delta function given as E(t ) = −∂t A(t )/c. For
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FIG. 2. Dielectric function of a crystalline graphite in the direc-
tion parallel to the layer: (a) the real part Reεzz and (b) the imaginary
part Imεzz. The experimental spectra are also plotted as black [56]
and gray [57] broken curves.

this perturbation, we calculate the induced current density
from Eq. (5) and take the Fourier transformation to obtain
the conductivity and the dielectric constant as a function of
frequency ω:

σzz(ω) =
∫

dt Jz(t )eiωt∫
dt Ez(t )eiωt

, (9)

and

εzz(ω) =1 + 4π i

ω
σzz(ω) . (10)

In Fig. 2, we show the calculated dielectric function
εzz(ω) (blue solid curve). For comparison, we also show
the experimental spectra [56,57] (broken curves). Since we
include all valence orbitals, the calculated dielectric func-
tion shows reasonable agreement with measurements for the
wide energy region. In later sections, we will mostly discuss
the interaction of laser pulses with a central frequency of
ω1 ∼ 1.55 eV. At this frequency, the dielectric constant is
εTDDFT(ω1) = 5.3 + 10i in our TDDFT calculation. This is
close to the measured value εexp(ω1) ≈ 5 + 9i [56].

B. Response to pulsed electric fields

Next, we investigate electronic dynamics and optical re-
sponses of graphite induced by a short and strong pulsed
electric field. We will use the following waveform:

Az(t ) =Emax

cω1
f (t ) cos ω1t, (11)

with cos2-type envelope function

f (t ) =
{{cos[π (t − TP/2)/TP]}2 0 � t � TP

0 otherwise
, (12)

where Emax is the maximum amplitude of the electric field and
TP is the duration of the pulse envelope. The pulse duration
is conventionally expressed using the full-width half-maximal

FIG. 3. (a) Applied electric field and (b)–(e) induced current
density for four different maximal field amplitudes Emax. The central
frequency and the pulse duration are set to ω1 = 1.55 eV and TP =
80 fs, respectively. In (b)–(e), purple lines show calculated current
density using Eq. (5). Black broken line shows the linear results with
σ = 0.047 − 0.018i au.

(FWHM); for the cos2-shaped envelope function adopted
here, the FWHM duration is given by TFWHM ≈ 0.364TP.

Figure 3(a) shows temporal profiles of the applied pulsed
electric field, and Figs. 3(b)–3(e) show induced currents for
four different amplitudes of the electric field: Emax = 8.7 ×
10−3 to 2.7 × 10−1 V/Å. The pulse duration is taken to be
TP = 80 fs (TFWHM ≈ 30 fs). The purple solid curve shows
the current density calculated by Eq. (5), and the dotted
black curve shows the current density assuming a linear
response, using a conductivity J (LR)

z (t ) = [Reσ (ω1)]Ez(t ) −
[Imσ (ω1)/ω1]Ėz(t ) with the conductivity from the TDDFT
calculation, σ = 0.047 − 0.018i au.

From the calculation, we find the following nonlinear be-
havior as the amplitude Emax increases. When the applied field
amplitude is weak, Jz(t ) agrees well with the estimate assum-
ing the linear response J (LR)

z (t ), as seen in Fig. 3(b) at Emax =
8.6 × 10−3 V/Å. Here, the optical response is conducting:
the current is mostly in phase with the electric field E (t ).
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FIG. 4. Temporal evolution of the complex conductivity calcu-
lated from the short-time Fourier transform in Eq. (13). (a) The
real part, (b) the imaginary part, and (c) the phase angle of the
conductivity are plotted for three cases of maximum electric field
amplitude.

As the field amplitude increases, the current starts to depart
from the linear response. At Emax = 2.7 × 10−2 V/Å, shown
in Fig. 3(c), the current gradually attenuates during the pulse
irradiation, and a phase change appears at around t = 40 fs.
The attenuation becomes maximum in Fig. 3(d), where the
field strength is Emax = 8.6 × 10−2 V/Å. Further increasing
the field strength, the amplitude of the current Jz(t ) increases
again in Fig. 3(e) at the field amplitude of 2.7 × 10−1 V/Å.
Here, an appearance of high-frequency oscillations is also
observed.

We consider that the suppression of the induced current is
caused by the SA. To understand the temporal change of the
optical response, it is useful to analyze the relative phase shift
between the applied electric field and the induced current, as
well as the amplitude. The induced current is in phase with
the electric field for the conducting case J ≈ σE , while it has
a phase difference of π/2 to the electric field for insulators,
since the current is expressed as the time derivative of the
polarization J = ∂tP(t ) = χ∂t E .

To analyze the phase change quantitatively, we show the
short-time Fourier transform

σ (ω; t ) =
∫

Jz(t ′)eiωt ′
wb(t ′ − t ) dt ′∫

Ez(t ′)eiωt ′
wb(t ′ − t ) dt ′ , (13)

where wb(t ) is the Blackman window function with the
width of 10 fs. Figure 4 shows the temporal evolution of the
real and imaginary parts, and the phase of the conductiv-
ity. At small Emax, the conductivity behaves as a constant
in time, indicating that the response can be described by
the linear response theory. As Emax increases, the reduction
of the real part Re σ (ω; t ) and the progression of the phase
ang σ (ω; t ) arises. At Emax = 8.6 × 10−2 V/Å, the phase dif-

ference goes to π/2 at the central time of the pulse. These
results indicate that the optical property of graphite changes
from conductor to insulator under the intense optical field.
The red curve in Fig. 4 shows a transient conductivity un-
der a strong applied field corresponding to Fig. 3(e). We
find a characteristic phase inversion in the imaginary part
of the conductivity. This change is considered to come
from the Drude-like response of metallic media due to an
increase of excited carriers caused by the strong applied
field. We will later discuss the occupation distribution of
this case.

Next, we investigate the electronic excitation energy, that
is, the energy transfer from the applied electric field to elec-
trons in the unit cell. From the induced current J(t ) under the
applied electric field E(t ), the energy deposition per unit time
and volume can be evaluated by W (t ) = E(t ) · J(t ). There-
fore, we introduce the electronic excitation energy per atom at
time t by

Eex(t ) = �cell

Natom

∫ t

−∞
dt ′ E(t ) · J(t ) , (14)

where Natom denotes the number of atoms contained in the unit
cell. For a weak field, the excitation energy reduces

E (LR)
ex (t ) = �cell

Natom

∫ t

−∞
dt ′ Re σzz(ω1)[Ez(t ′)]2

, (15)

if the frequency dependence of the conductivity is small.
In Fig. 5, we plot Eex(t ) for four different Emax amplitudes.

It shows a clear indication of the SA. In the small amplitude
case in Fig. 5(a), the calculated Eex(t ) (red) behaves close
to the linear response result E (LR)

ex (t ) (black curve). As the
amplitude increases, Eex(t ) greatly departs from E (LR)

ex (t ). The
ratio of the actual excitation energy to the estimation by
the linear response becomes smaller and smaller as the am-
plitude increases.

According to Eq. (15), E (LR)
ex (t ) increases monotonically

with t . However, in Figs. 5(b)–5(d), Eex(t ) shows even a
descending behavior in the second half of the pulse. This
energy reduction is related to the anticonducting phase shift
shown in Fig. 4. The presence of the anticonducting current
J(t ) ∝ −E(t ) causes a negative contribution to the energy
deposition W (t ) � 0.

In Fig. 6, we show the total amount of energy transfer from
the pulsed electric field to electrons in the unit cell that is
equal to the electronic excitation energy after the pulse ends
Eex(TP ). The energy transfer is plotted against the maximum
amplitude of the applied electric field Emax for four different
pulse durations: TP = 10, 20, 40, and 80 fs. This plot again
shows a clear indication of the SA.

At weak amplitude Emax < 10−2 V/Å, the transferred en-
ergy is almost quadratic in Emax and is proportional to the
pulse duration. These behaviors are consistent with the con-
ducting response. This behavior changes abruptly at and
above the amplitude Emax = 10−2 V/Å. The transferred en-
ergy shows a smaller slope or even does not increase for a
certain region of the maximum field amplitude in the region
of 10−2 to 10−1 V/Å. At amplitude region of 4 × 10−2 to 2 ×
100 V/Å, the transferred energy is almost independent of the
pulse duration TP. This indicates that the saturation takes place
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FIG. 5. Excitation energy as a function of time Eex(t ) for four cases of different field amplitudes. The broken curve is calculated assuming
the linear response E (LR)

ex (t ).

at an early stage of the irradiation, as quick as 10 fs. At the
amplitude region Emax > 100 V/Å, the energy transfer again
depends on the pulse duration.

C. Comparison with measurements

Let us compare the maximum field amplitude that shows
the SA with the measured value of saturation intensity.

FIG. 6. Energy transfer from the pulse to the medium as a func-
tion of the maximum amplitude of the electric field Emax for four
different pulse durations: TP = 10, 20, 40, and 80 fs.

There are several measurements for single- and multilay-
ered graphenes. The measured saturation intensity depends
strongly on the duration as well as the frequency of the laser
pulse. In early measurements, longer pulses of more than
a picosecond duration were used. Later, there were several
measurements that used pulses of femtosecond duration that
correspond well with our calculations.

In our calculation, the saturation starts at the field ampli-
tude of 4 × 10−2 V/Å that corresponds to the intensity of the
pulse I = 1.9 × 1010 W/cm2 if we assume that the maximum
field amplitude in the medium is equal to that of the incident
pulse. This should be a good approximation for extremely
thin films. We compare our value with measurements that
were conducted in similar physical conditions using laser
pulses with wavelengths of about 800 nm. There are a few
measurements using graphite thin films. Using the pulse of
20 fs duration and for 280-layered graphene, Isat = 3.0 ×
1010 W/cm2 was reported [58]. Using the pulse of 56 fs du-
ration and for 60-layered graphene, Isat = 5.7 × 1010 W/cm2

was reported [15]. There are also a few measurements for
a single layer of graphene. Using the pulse of 80 fs dura-
tion, Isat = 2.3 × 1010W/cm2 was reported [12]. Using the
pulse of 100 fs duration, Isat = 7.6 × 1011W/cm2 was re-
ported [18]. There was also a measurement using the pulse
of duration 200 fs giving Isat = (4 ± 1) × 109 W/cm2[14].
These measurements using light pulses of shorter than a few
hundred femtoseconds coincide with the saturation intensity
in our calculation. There are also theoretical calculations of
Isat = 5 × 109 ∼ 1 × 1010 W/cm2 using a tight-binding
model [31] and Isat = 6.5 × 1010 W/cm2 including various
many-body effects [15]. They also show a reasonable agree-
ment, although the physical effects included are different in
each approach.

In early measurements, much lower saturation intensity
was reported using lower frequency and longer pulses, for
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FIG. 7. Temporal evolution of the projected density of states (pDoS) at the vicinity of the Fermi level. (a)–(c) The applied pulse duration
and maximal field amplitudes are set as TP = 40 fs and Emax = 2.7 × 10−2 V/Å and (d) 2.7 × 10−1 V/Å, which correspond to Figs. 3(c) and
3(e), respectively. The total density of states (tDoS) is plotted as a broken line.

example, Isat = 7.4 × 106 W/cm2 using a laser pulse of wave-
length 1550 nm and duration 3.8 ps [59]. For longer pulses,
it becomes important to consider equilibrium processes by
collisional relaxations.

D. Occupation distribution

Next, we discuss how the occupation of electrons changes
during the irradiation of the pulse. For this purpose, we per-
form density of states (DoS) analysis of the excited carriers.
We first define the total DoS (tDoS) D(E ) in the ground
state by

D(E ) = 2

Natom

(all)∑
b

∑
ki

wiδ(E − εbki ), (16)

where εbki is the single particle energy of the orbital b at
ki, and the summation is taken over all orbitals. We next
define the projected DoS (pDoS) that indicates the electron
occupancy at time t ,

D(proj)(E ) = 2

Natom

(all)∑
b

∑
ki

wiδ(E − εbki )Pbki (t ), (17)

with

Pbk(t ) =
(occ)∑

b′

∣∣∣∣
∫

�cell

dr u�
b′k(r; t ) ubk+A(t )/c(r)

∣∣∣∣
2

, (18)

where we use the so-called Houston function ubk+A(t )/c(r) as
the reference state to define the electronic excitation.

Figure 7 shows the tDoS [Eq. (16)] and the pDoS
[Eq. (17)]. Figures 7(a)–7(c) show the electron occupation at

times t = 20, 40, and 60 fs under the field of maximum am-
plitude Emax = 2.7 × 10−2 V/Å that corresponds to Fig. 3(c).
Each timing corresponds to Fig. 7(a) linear, Fig. 7(b) satura-
tion, and Fig. 7(c) anticonducting responses, respectively. In
Fig. 7(a), there appear small peaks of excited electrons and
holes at ≈ ± 0.8 eV from the Fermi surface. The separation
of two peaks is equal to the average frequency of the pulse
ω1 = 1.55 eV. The maximum density of the excited carriers is
two orders of magnitude smaller than the tDoS.

At t = 40 fs, shown in Fig. 7(b), the excited carrier density
is comparable with the tDoS. At this time, the induced current
is substantially suppressed, as seen in Fig. 3(c). The occupa-
tion change explains the mechanism of the SA: a substantial
part of the valence electrons are already excited, while the
conduction states are mostly filled. These two effects suppress
the excitation of electrons. We note that the occupation change
is only a fraction of the tDoS, as seen in Fig. 7(b). Since
electronic excitations take place anisotropically in k-space,
the saturation appears although only a fraction of electrons
is excited in energy representation. It should, however, be
noted that the present TDDFT calculation does not take full
account of the relaxation effects since the e-e collision effects
are not included sufficiently. As noted in the Introduction,
thermalization of the electron distribution within a few tens
of femtoseconds was experimentally reported for graphite
[46]. At t = 60 fs, when the anticonducting response appears
in Fig. 3(c), the number of excited carriers becomes small
compared with that at the time t = 40 fs. It indicates that the
appearance of the anticonducting current is related with the
decrease of the carrier density.

Figure 7(d) shows the occupation distribution at the peak
time of the field when an intense field of 2.7 × 10−1 V/Å
was applied. The field amplitude corresponds to that used
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in Fig. 3(e). We can see that the carriers distribute in wide
energy. It originates from multiple excitation processes in
which excited carriers are re-excited by the applied electric
field and make transitions to a higher energy band. These final
states have a higher DoS than those of the Dirac cone and
allow existence of high-density carriers. These high-density
carriers are expected to contribute to the metallic response that
was observed in Fig. 4.

At this field strength, we still observe a strong SA, as seen
in Figs. 5(d) and 6.

IV. LIGHT PROPAGATION

We first summarize a description of the light propagation
in ordinary electromagnetism. The reflectance R and the pen-
etration depth Lp at the surface of the graphite is given by

R = (n − 1)2 + κ2

(n + 1)2 + κ2
, Lp = c

2ωκ
, (19)

where n and κ are the real and the imaginary parts of the
index of refraction of graphite, respectively. Here, ω is the
frequency of the light. From the dielectric constant εexp(ω1) ≈
5 + 9i [56], the index of refraction of the graphite is given
by n(ω1) + iκ (ω1) = 2.9 + 1.7i at ω1 = 1.55 eV. From these
values, we obtain R = 0.36 and Lp = 36 nm, respectively.
When a weak light irradiates the bulk graphite surface nor-
mally, the intensity of the pulse decays exponentially as I ∝
exp(−x/Lp) at the penetration distance x.

A. Thin film of 50 nm

In this subsection, we will investigate light propagation
through a thin film of graphite of 50 nm thickness. This
corresponds to about 150 sheets of honeycomb layers. Since
the thickness is comparable with the absorption depth of the
graphite, a part of the incident light will transmit to the op-
posite side. In the next subsection, we consider a thicker film
without transmission.

Using the multiscale method described in Sec. II B, we
calculate light propagation by solving the wave equation of
Eq. (6) combining the electron dynamics described by Eq. (7).
We consider a linearly polarized light irradiating the graphite
thin film normally. In Fig. 8, we plot the electric field profiles
at several times. The pulsed light initially stays in the left vac-
uum region, as shown in Fig. 8(a), and propagates toward the
positive x direction. The red line shows the field for the case
of a strong pulse with the maximum intensity of 1012 W/cm2

at the vacuum. The black line shows the field for the case of
a weak pulse with the maximum intensity of 1010 W/cm2.
The black line is multiplied by a factor of 10 so that two
curves coincide with each other in the vacuum region. The
difference between the two curves shows nonlinear effects
in the propagation. At the final time shown in Fig. 8(e), we
clearly observe a consequence of the SA. Compared with the
weak pulse, the transmitted electric field of the strong pulse
is much stronger. Looking in detail, the front parts of the two
pulses coincide with each other. After a few cycles, the electric
field of the strong pulse is much larger than the weak pulse.
We also find a decrease of the reflected wave for the strong
pulse case.

FIG. 8. Time evolution of the electric field of a laser pulse irradi-
ating a graphite thin film of 50 nm thickness normally (gray region).
Two different intensity cases are compared, the maximum inten-
sity in the vacuum of I = 1012 W/cm2 (red) and I = 1010 W/cm2

(black). The pulse duration is set as TP = 20 fs.

In Fig. 9, we show the intensity (fluence) dependence of
the reflectance R, the transmittance T , and the absorbance A
that satisfy R + T + A = 1. The pulse frequency and duration
are set to 1.55 eV and 20 fs, respectively. As seen from the
figure, nonlinear behavior becomes visible at and above the
intensity of 1 × 1011 W/cm2. The transmittance increases as
high as 0.4, about three times larger than the estimate from
the linear response. Both the reflectance and the absorbance
decrease for the strong field.

In Ref. [58], there was a measurement of transmission of
a laser pulse of 775 nm and 20 fs duration through multi-
layer turbostraic graphene with 280 layers. It was reported
that the transmission starts to increase at the intensity of
3 × 109 W/cm2. The increase of the transmission is about

FIG. 9. Intensity dependence of reflection R(I ) and transmittion
coefficients T (I ) for the thin film graphite of 50 nm thickness. The
pulse duration is set to TP = 20 fs.
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FIG. 10. Time evolution of a pulsed light irradiating a graphite
thin film of 250 nm thickness (gray region). A red line shows the
electric field of a strong pulse with maximum intensity of I =
1012W/cm2. A dashed black line shows the electric field of a weak
pulse magnified so that the incident pulses look the same.

13% at the intensity of 3 × 1010 W/cm2. In Ref. [15], there
was a measurement of transmission of a laser pulse of 800 nm
and 56 fs duration through 60 layers of film. It was reported
that the saturation intensity is 5.7 × 1010 W/cm2, and the
enhancement of 13% in the transmittance was observed at
the intensity of 1.4 × 1011 W/cm2. In view of the different
pulse durations and film thicknesses, our result is in qualitative
agreement with these measurements.

B. Thicker film of 250 nm

We next consider the light propagation through a film of
250 nm thickness. Since it is much thicker than the penetration
depth, we expect a very small transmission. We consider again
a linearly polarized light normally irradiating the thin film.

FIG. 11. Energy deposition as a function of distance from the
surface (a) for a weak pulse and (b) for strong pulse cases.

The intensity and the duration of the incident pulse is set as
I = 1012 W/cm2 and TP = 20 fs, respectively.

We show a typical light propagation in Fig. 10. The red line
shows the electric field of the propagating light. As expected,
all the pulses are reflected or absorbed at the film. The broken
black line shows the propagation of the weak pulse, multiplied
with a constant so that it coincides in the linear limit. Looking
at the reflected wave of the bottom panel in Fig. 10(e), the
front parts of the electric field of two intensities are close to
each other. After t = 10 fs, there appears a phase delay in the
strong pulse.

In Fig. 11, we show the energy deposition from the laser
pulse to electrons in the medium as a function of the distance
from the surface, x. For comparison, the energy deposition,
assuming a linear response, is shown by the dashed curve.
It shows the exponential decay as a function of x. In the
upper panel, we show the case of the laser pulse of the in-
cident intensity I = 1010 W/cm2. In this case, the deposited
energy is well fit by the exponential curve, indicating that
the absorption can be described by the ordinary ohmic resis-
tance. In the lower panel, the absorption of the laser pulse
of the intensity I = 1012 W/cm2 is shown. At the surface,
the absorption is weaker than the estimate by the linear re-
sponse, which is caused by the SA. As the distance from
the surface increases, the energy deposition becomes larger
than the estimate by the linear response. Because of the
SA, the laser pulse is not absorbed efficiently at the sur-
face, and the pulse can reach deeper inside the materials. It
then causes the enhanced energy deposition deep inside the
medium.

To obtain a systematic understanding, we summarize in
Fig. 12(a) the deposited energy Eex(x) as a function of the
penetration depth from the surface x, and in Fig. 12(b) the
maximum electric field at the depth x. They are shown for
pulses with different maximum intensities. The pulse duration
is chosen to be TP = 20 fs. In Fig. 12(a), the black dotted line
is an exponential curve exp(−x/LP ) with LP = 36 nm that is
expected in the linear response in Eq. (19).

At small intensity I � 1 × 1011 W/cm2, the slope of Eex(t )
is well fit by the exponential function, indicating the linear
response. The change in slope around x = 200–250 that can
be seen at all intensities is due to the reflection at the back sur-
face (L = 250 nm). At I = 2 × 1011 W/cm2, the SA becomes
appreciable, and the slope of Eex(x) becomes small in the re-
gion about x � 50 nm. From Fig. 12(b), the maximum electric
field at the surface is about 0.06 V/Åfor the incident pulse of
I = 2 × 1011W/cm2. At this field amplitude, a sizable SA is
seen in the single cell calculation, as seen in Fig. 6.

In the range of 5 × 1011 to 1 × 1012 W/cm2, a plateau with
a very small gradient of Eex(x) appears in the vicinity of
x = 100 nm, where the maximum electric field amplitude is
close to 4 × 10−2 to 7 × 10−2 V/Å. This range of amplitude
coincides again with the region where the SA is seen in Fig. 6.
The SA makes the pulse penetrate deeper inside the medium
than that expected from the linear response. For the inci-
dent pulse with I > 5 × 1011W/cm2, the energy deposition
at the surface increases as the intensity increases and shows
a slope that is smaller than that expected from the linear
response. Here, the maximum electric field amplitude exceeds
0.1 V/Å, where while the SA is still significant, the excitation
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FIG. 12. (a) Deposited energy Eex(x) in the thin-film graphite of 250 nm thickness as a function of the distance from the surface x,
(b) maximum electric field amplitude at the depth x, and (c) deposited energy plotted against the maximum electric field amplitude. The curves
shown are for pulses of intensities I = 109 ∼ 1013 W/cm2. The pulse duration is set to TP = 20 fs for all intensities.

energy increases as the field amplitude increases, as seen in
Fig. 6.

In Fig. 12(c), the deposited energy is plotted against the
maximum electric field amplitude. This is constructed from
the results of Figs. 12(a) and 12(b), removing the information
of the depth x. We can indeed confirm that the deposited
energy is very well correlated with the local value of the
maximum electric field amplitude. We find that the deposited
energy is almost the same for a region of electric field ampli-
tude 0.4 V/Å < Emax < 0.8 V/Å. This coincides accurately
with the result shown in Fig. 6 at TP = 20 fs.

V. SUMMARY

We investigated ultrafast and nonlinear optical responses
of graphite thin films employing the first-principles TDDFT.
First, we investigated optical responses in a unit cell of
graphite under a pulsed electric field. We carried out cal-
culations using a pulsed electric field of various maximum
amplitude and duration. We find that a SA dominates in
the nonlinear response. During the irradiation of a pulsed
electric field of a few tens of femtoseconds, there appears a
change of optical response from conducting, insulating, and
anticonducting phases. The SA becomes significant above a
certain threshold of the maximum amplitude of the applied

electric field, around Emax ∼ 0.01 V/Å. The threshold ampli-
tude becomes smaller as the pulse duration increases. The
energy transfer from the pulsed electric field to electrons in
the medium is found to saturate very quickly, as fast as 10 fs.
At sufficiently high amplitude above Emax = 1 V/Å, the satu-
ration disappears.

We next carried out calculations of a propagation of pulsed
light through thin films of graphite. Coupled multiscale calcu-
lations of light propagation and electron motion were carried
out, making it possible to investigate the nonlinear light prop-
agation in the first-principles level. For a thin film of graphite
with 50 nm thickness that is comparable with the penetra-
tion depth, the transmitted wave shows a clear indication of
the SA. We investigated the reflectance, transmittance, and
absorbance for a pulsed light of 6 fs FWHM duration and
various maximum intensities. We found the effect of the SA
becomes substantial at and above the maximum intensity of
I = 1 × 1010 W/cm2. The transmittance increases from 0.12
in the linear response region to 0.4. We also performed a
calculation for a thick sample of 250 nm thickness, where the
transmitted wave was very small. We found that the intense
pulse penetrates deeper inside the medium by the SA. Look-
ing in detail at the energy deposition from the light pulse to
electrons, there appears a plateau region of absorbance for the
field amplitude of 0.04 < Emax < 0.07 V/Å. This makes the
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penetration of the light pulse deeper inside the medium for
pulses of maximum intensity I > 2 × 1011 W/cm2.
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