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Unconventional four-terminal thermoelectric transport due to inelastic transport:
Cooling by transverse heat current, transverse thermoelectric effect, and Maxwell demon
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We show that, in mesoscopic four-terminal thermoelectric devices with two electrodes (the source and the
drain) and two heat baths, inelastic-scattering processes can lead to unconventional thermoelectric transport.
The source (or the drain) can be cooled by passing a thermal current between the two heat baths, with no
net heat exchange between the heat baths and the electrodes. This effect, termed “cooling by transverse heat
current,” is a mesoscopic heat drag effect. In addition, there is a transverse thermoelectric effect where electrical
current and power can be generated by a transverse temperature bias (i.e., the temperature bias between the two
heat baths). This transverse thermoelectric effect originates from inelastic-scattering processes and may have
advantages for improved figures of merit and power factor due to spatial separation of charge and heat transport.
We study the Onsager current-affinity relations, the linear-response transport properties, and the transverse
thermoelectric figure of merit of the four-terminal thermoelectric devices for various system parameters. We find
that the figures of merit are optimized in different parameter regions for the transverse and the (conventional)
longitudinal thermoelectric effects, respectively. Meanwhile, the maximum figure of merit for the transverse
thermoelectric effect is higher than the figure of merit for the conventional longitudinal thermoelectric effect.
In addition, we investigate the efficiency and power of the cooling by the transverse heat current effect in both
linear and nonlinear transport regimes. Finally, we demonstrate that, by exploiting the inelastic transport in the
quantum-dot four-terminal systems, a type of Maxwell demon can be realized using nonequilibrium heat baths.

DOI: 10.1103/PhysRevB.103.085429

I. INTRODUCTION

The study of thermoelectric transport on the nanoscale
[1–5] is important for at least two reasons. First, it is a realm
where mesoscopic fluctuations and dissipations work together
with quantum mechanics [6–19]. Second, nanostructured
materials are important routes toward high thermoelectric ef-
ficiency and power, as motivated by the seminal works of
Hicks and Dresselhaus [20–23]. While most of the studies are
based on elastic transport processes, recent researches found
that inelastic transport processes lead to phenomena that have
not been found in elastic transport [8,17,24–33]. The first
example is the cooling by heating effect in three-terminal (i.e.,
two electronic electrodes and a bosonic terminal) thermoelec-
tric transport where one of the two electronic reservoirs can
be cooled (the other one heated) by heat injection from the
bosonic reservoir [34–36]. The second example is the linear
thermal transistor effect, namely, that using the three-terminal
inelastic thermoelectric transport thermal transistor effect can
be realized in the linear-response regime without relying on
nonlinear negative differential thermal conductance [30,37].

Inelastic thermoelectric transport realizes high-efficiency
and powerful thermoelectric devices. As shown in Refs. [26]
and [38], high figure of merit inelastic thermoelectric de-
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vice requires only small bandwidth of the bosons involved
in the inelastic processes. Unlike Mahan and Sofo’s proposal
of using narrow electronic bandwidth [39], such a require-
ment does not cause suppressed electrical conductivity and
power [29,40,41], if the interaction between electrons and
bosons are strong. Such inelastic thermoelectric devices can
have large figures of merit and high power factors. It was
found recently by Whitney et al. [42] that, in four-terminal
thermoelectric transport through a quantum dot (QD; i.e., the
source, the drain, and the two electrodes that are capacitively
coupled with the QD as two thermal baths), electrical power
can be generated even when the total heat injection from the
two thermal baths vanishes. Such unconventional thermoelec-
tric conversion is realized through mesoscopic Coulomb drag,
which is an inelastic mesoscopic transport process.

In this work, we show that a nontrivial phonon drag effect,
termed “cooling by transverse heat current,” can emerge in
four-terminal thermoelectric systems with two electrodes and
two thermal (phonon) baths (can also be baths with other
collective excitations, e.g., charge-density waves). Through
the cooling by transverse heat current effect, we mean that one
of the two electronic reservoirs (the source or the drain) can
be cooled by passing a heat current between the two thermal
baths. Note that, throughout this paper, the meanings of the
words “transverse” and “longitudinal” should be interpreted
through the configuration depicted Fig. 1. They refer rather
to configurations instead of genuine geometry. Nevertheless,
the configurations have geometric origins and may relate to
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FIG. 1. Schematic of a four-terminal mesoscopic thermoelectric
device. The source and the drain are electronic reservoirs. The other
two terminals serve as the heat baths which only provide collective
excitations to the central quantum system (i.e., provide only energy
output or input). They do not exchange charge with the central
quantum system nor other reservoirs. One heat bath H has higher
temperature than the other heat bath C. These heat baths can be
bosonic (e.g., phonon bath) or electronic (e.g., electronic bath with
charge fluctuations as the collective excitations). Four heat currents
JS , JH , JC , JD and the electric current Je are illustrated.

a specific geometry in genuine material systems. The key
microscopic processes are the inelastic transport assisted by
the collective excitations in the thermal baths. The inelastic
transport also yields other anomalous effects such as trans-
verse thermoelectric effects (i.e., electrical current and power
can be induced by a transverse temperature gradient). Here,
the transverse thermoelectric effect is similar to the Nernst-
Ettingshausen effect but not due to time-reversal symmetry
broken by a magnetic field or magnetization, instead due to
broken space symmetry (chirality). The cooling by transverse
heat current is similar to the thermal Hall effect, which is
again not due to broken time-reversal symmetry but rather
to the inelastic transport and broken space symmetry. These
unconventional transport effects are promising for heat control
on the nanoscale as well as high-performance thermoelectric
devices, as shown by our results. The spatial separation of
heat and charge flow [3,8,26,38,43], as well as the enriched
controllability enables more degrees of freedom to manipulate
thermoelectric transport. In this work, we first discuss the
linear thermoelectric transport and the thermoelectric figure of
merit in the four-terminal inelastic thermoelectric systems. We
then study the cooling by transverse heat current effect with
emphasizing on the cooling efficiency and power beyond the
linear transport regime. Last, we show that the four-terminal
inelastic devices can realize a type of Maxwell demon using
nonequilibrium baths.

This paper is organized as follows: Section II gives the
basic thermodynamic framework for the study of thermoelec-
tric transport. Specifically, the thermodynamic currents and
affinities are given and the linear transport theory is estab-
lished. Section III introduces the microscopic model and its
realization using quantum-dots systems. Transport currents
and the linear transport coefficients are derived. In Sec. IV,

we investigate the longitudinal (conventional) and transverse
thermoelectric transport as well as their figures of merit. In
Sec. V, we discuss in detail the effect of cooling by transverse
heat current. In Sec. VI, we demonstrate the Maxwell demon
in the four-terminal system. In Sec. VII, we study thermoelec-
tric transport effects in quantum-dots ensembles. In Sec. VIII,
we give the conclusions and discussions.

II. THERMODYNAMIC CURRENTS AND AFFINITIES

We consider a four-terminal thermoelectric device as illus-
trated in Fig. 1. The electrical current Je flows from source
to drain. In addition, there are four heat currents, JS , JD, JH ,
and JC . Only three of them are independent, due to energy
conservation, i.e.,

JS + μS

e
Je + JH = JC + JD + μD

e
Je, (1)

where e is the carrier charge, and μi (i = S, D) are the
electrochemical potentials of the two electrodes. The three in-
dependent heat currents are chosen as the heat current flowing
out of the source JS , and the symmetric and antisymmetric
combinations of JH and JC , defined as

Jin ≡ JH − JC, Jq ≡ JH + JC

2
. (2)

Jin is regarded as the total heat current injected into the central
quantum system from the two thermal baths, while Jq is the
heat exchange current between the two heat baths intermedi-
ated by the central quantum system.

The affinities can be found via examining the entropy pro-
duction,

dS

dt
= − JS

TS
− JH

TH
+ JD

TD
+ JC

TC
, (3)

where Ti (i = S, D, H,C) are the temperatures of the four
reservoirs. Inserting Eq. (1), we obtain

dS

dt
= JS

(
1

TD
− 1

TS

)
+ Jin

(
1

TD
− 1

2TH
− 1

2TC

)

+ Jq

(
1

TC
− 1

TH

)
+ Je

(
μS − μD

eTD

)
(4)

≡ JSAS + JinAin + JqAq + JeAe. (5)

Hence the affinities are

AS ≡ 1

TD
− 1

TS
, Ain ≡ 1

TD
− 1

2TH
− 1

2TC
,

Aq ≡ 1

TC
− 1

TH
, Ae ≡ μS − μD

eTD
. (6)

From the above, one can see that the heat current JS is
driven by the temperature difference between the source and
the drain. In the linear-response regime, AS ≈ (TS − TD)/T 2

where T is the equilibrium temperature of the whole sys-
tem. On the other hand, the heat current Jin is driven by the
temperature difference between the drain and the two heat
baths. In the linear-response regime, Ain ≈ (Tav − TD)/T 2

where Tav ≡ 1
2 (TH + TC ) is the average temperature of the two

heat baths. In comparison, Jq is driven by the temperature
difference between the two heat baths, i.e., in linear response,
Aq ≈ (TH − TD)/T 2.
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FIG. 2. Schematic of QD four-terminal thermoelectric devices.
There are two parallel transport channels. Each channel has two QDs
with different energies and a heat bath to enable inelastic transport.
The two channels are spatially separated so that the heat bath H (C)
couples only to the upper (lower) channel.

III. MICROSCOPIC SYSTEMS AND REALIZATIONS
IN QUANTUM-DOT SYSTEMS

We consider the quantum-dot system illustrated in Fig. 2
and show that several unconventional phenomena can emerge.
The system consists of four QDs: QDs 1 and 2 (of electronic
energy E1 and E2) are coupled with the hot heat bath H , while
QDs 3 and 4 (of energy E3 and E4) are coupled with the cold
heat bath C. The two transport channels, QDs 1 and 2 vs QDs
3 and 4, are independent of each other. We first illustrate the
underlying physics using QDs with a single energy level, and
then extend the theory to the more realistic situations using
QDs with many energy levels that obey the Gaussian distribu-
tion. Such a model with many energy levels describes many
parallel copies of the microscopic system depicted in Fig. 2.
We assume that the system is in the high-temperature regime
(e.g., �100 K) where the phonon-assisted inelastic transport
is dominant and the Coulomb interactions can be ignored
without affecting the qualitative results and conclusions. Such
a high-temperature regime is also advantageous for waste
heat harvesting and cooling applications based on inelastic
thermoelectric transport due to electron-phonon interactions.
This is because the phonon density of states at the several tens
of meV scale is significant and the phonon occupation num-
bers also increase with temperature. Meanwhile, the Coulomb
interactions become less relevant because they are consider-
ably weaker than other energy scales such as kBT and the
QD energies. To suppress the elastic sequential tunneling, we
consider QDs with mismatched energies, i.e., E1 �= E2 and
E3 �= E4. We focus on the regime where the energy differ-
ences |E1 − E2| and |E3 − E4| are comparable or larger than
kBT . We remark that, beside the phonon-assisted transport,
there are several other mechanisms that can induce inelastic
transport, such as charge fluctuations [25], photons [37,44],
and magnons [45]. The relevant interactions in these mech-
anisms are the Coulomb interaction, the electron-photon
interaction, and the exchange interaction, respectively. The

heat baths can be bosonic (e.g., phonon baths) or electronic
(e.g., electrodes capacitively coupled with the central quan-
tum system). On the other hand, the QDs can be replaced
by quantum-wells [46] and p-n junctions [26]. In all these
realizations, the temperatures of the four reservoirs can be
controlled by local heating. The substrate also affects the local
temperatures of these reservoirs.

In the model considered in this work, the phonon-assisted
hopping particle currents through the two independent chan-
nels are calculated as follows:

I12 = �1→2 − �2→1, I34 = �3→4 − �4→3, (7)

where �i→ j = 2γep fi(1 − f j )Ni j is the electron transfer rate
from QD i to QD j. The prefactor 2 takes into account the spin
degeneracy in electrons. γep is the phonon-assisted hopping
rate calculated from the Fermi golden rule. We remark that γep

is a parameter specific to material and system. It depends on
the material that makes the QDs, as well as the substrate where
the QDs reside. Besides, it depends on the geometry of QDs.
γep also depends on the phonon energy because it is related to
the phonon density of states. We argue that γep should be op-
timized for realistic systems to enhance the electron-phonon
scattering rate so that the unconventional thermoelectric ef-
fects predicted in this work can be significant. However,
because here we do not target specific materials but instead
focus on the principles and mechanisms, for all calculations in
this work, we have set γep = 1. None of the results presented
in the figures in this work depend on the specific number
adopted for the parameter γep. fi is the electronic distribu-
tion on the ith QD (i = 1, 2, 3, 4). Ni j ≡ |nB[(Ej − Ei )/kBTi j]|
where nB ≡ 1/(ex − 1) is the Bose-Einstein distribution func-
tion, T12 = T21 = TH and T34 = T43 = TC . In the above, I12 is
the particle current flowing from the QD 1 to the QD 2, I34 is
the particle current flowing from the QD 3 to the QD 4.

At the nonequilibrium steady states, the electronic distri-
butions on the QDs, fi, can be determined by the quantum
master-equation approach. In this work, we shall instead con-
sider the following simpler situations where the underlying
physics can be revealed directly by using the Fermi golden
rule (i.e., the rate equation) approach. For this purpose, we
assume that the contacts between the source and the two QDs
1 and 3 can be made very good. Under such conditions, we
can approximate the distributions on the two QDs 1 and 3 as
f1 ≈ nF ( E1−μS

kBTS
) and f3 ≈ nF ( E3−μS

kBTS
), where nF ≡ 1/(ex + 1)

is the Fermi-Dirac distribution. Similarly, if the contacts be-
tween the drain and the two QDs 2 and 4 are very good,
the distributions on QDs 2 and 4 can be approximated as
f3 ≈ nF ( E2−μD

kBTD
) and f4 ≈ nF ( E4−μD

kBTD
).

When the linewidth of the QDs are much smaller than kBT ,
we can ignore the linewidth of the QDs. In this regime, the
relationships between the currents are

JS = (E1 − μS )I12 + (E3 − μS )I34, (8a)

JH = ω1I12, JC = −ω−1I34, (8b)

ω1 ≡ ωu ≡ E2 − E1, ω−1 ≡ ωd ≡ E4 − E3. (8c)

From the definition of the heat currents, we have

Jin = ω1I12 + ω−1I34, Jq = 1
2 (ω1I12 − ω−1I34). (9)
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Linear expansion of the currents in Eq. (7) in terms of the
affinities, and using the above equations, we obtain the fol-
lowing linear-response transport equations:

Ji =
∑

j

Mi, jA j, i, j = e, S, in, q (10)

The physical transport coefficients are given by the matrix el-
ements Mi, j . For instance, the electrical conductance is given
by G = Me,eT , while the diagonal heat conductances are KS =
MS,ST , Kin,in = Min,inT , and Kq,q = Mq,qT . Microscopically,
the transport coefficients are given by

Mi, j = �0

kB
〈aia j〉, (11)

ae ≡ e, aS ≡ El,σ − μ, ain ≡ ωσ , aq ≡ 1

2
σωσ . (12)

Here, �0 ≡ �0
1→2 + �0

3→4 where the superscript 0 denotes the
quantities calculated at thermal equilibrium. e is the elemen-
tary charge of the carrier. The average in the above equation
is defined upon the two channels

〈· · · 〉 =
∑

σ

pσ · · · . (13)

Here, the integer index σ is used to label the two channels:
σ = 1 for the upper channel and σ = −1 for the lower chan-
nel. Thus, p1 ≡ �0

1→2/�0 for the upper channel, while p−1 ≡
�0

3→4/�0 for the lower channel and
∑

σ pσ = 1. Therefore,
the weights for the average are proportional to the hopping
rate in each channel. El,σ in Eq. (12) denotes the energy of
the QD on the left side of each channel, i.e., El,1 = E1 for the
upper channel and El,−1 = E3 for the lower channel. μ is the
equilibrium chemical potential which is set as the energy zero
throughout this paper, i.e.,

μ ≡ 0. (14)

ω1 and ω−1, as given in Eq. (8c), represent the energy dif-
ference between the QDs in the up and down channels,
respectively.

IV. CONVENTIONAL AND UNCONVENTIONAL
THERMOELECTRIC ENERGY CONVERSIONS

In the four-terminal system, there are three Seebeck coeffi-
cients

SS = Me,S

Me,eT
= kB

e

p1E1 + p−1E3

kBT
= kB

e

〈aS〉
kBT

, (15)

Sin = Me,in

Me,eT
= kB

e

p1ω1 + p−1ω−1

kBT
= kB

e

〈ain〉
kBT

, (16)

Sq = Me,q

Me,eT
= kB

e

p1ω1 − p−1ω−1

2kBT
= kB

e

〈aq〉
kBT

. (17)

Here, the average is defined in Eq. (13) and the quantities aS ,
ain, and aq are defined in Eq. (12). The above three Seebeck
coefficients represent the thermoelectric effects induced by
three temperature gradients corresponding to the three thermal
affinities As, Ain, and Aq. The first one is the conventional
thermoelectric effect, the second one is the inelastic thermo-
electric effect studied in Refs. [8,26,30,38], and the third one

is the transverse thermoelectric effect proposed and studied in
this work. An important question is which symmetry needs to
be broken to get the finite Seebeck coefficients given above.
For example, a finite SS needs the breaking of “particle-hole”
symmetry, TPH , around the equilibrium chemical potential
μ [30]. A finite Sin is related to broken left-right mirror
symmetry, TMx [30]. From the above equations, both the left-
right TMx and up-down TMy mirror symmetries need to be
broken to have finite Sq. Interestingly, Sq is invariant under
the multiplicative operator TI = TMx ∗ TMy (we call TI the
inversion operator), but Sq changes sign under each of the
mirror operators. In geometry, the broken of the two mirror
symmetries while preserving the inversion symmetry is asso-
ciated with broken chirality. Therefore, we can conclude that
the transverse Seebeck coefficient Sq is associated with broken
chirality.

In the transverse thermoelectric effect, the spatial sep-
aration of the charge and heat currents is advantageous
(as demonstrated by the results in this work) since the
electrical and thermal conduction can be manipulated inde-
pendently [8,26,43]. Explicitly, the maximal energy efficiency
ηmax and the figure of merit for the transverse thermoelectric
effect ZqT is

ηmax = ηC

√
ZqT + 1 − 1√
ZqT + 1 − 1

, (18a)

ZqT = M2
e,q

Me,eMq,q − M2
e,q

= 〈aq〉2〈
a2

q

〉 − 〈aq〉2
, (18b)

where ηC is the Carnot efficiency of the thermoelectric engine
and aq = 1

2σωσ . The power factor is defined as Pq = GS2
q .

From Eq. (18b), we can see that a large figure of merit can be
achieved when the average of aq is large while the variance of
aq is small. Besides, the following two types of unwanted heat
or charge conduction must be suppressed: (1) the heat conduc-
tion from H to C that does not contribute to thermoelectric
conversion, (2) the charge conduction between the source
and the drain due to elastic processes. The former phonon
heat conduction can be reduced by, e.g., enhancing phonon
scattering with random interfaces and disorders between the
H and C heat baths (or using materials with low phonon
heat conductivity). The latter charge conduction leads to Joule
heating. This charge conduction due to elastic processes can
be suppressed by increasing the energy difference between
the two QDs in each channel, or by enhancing the inelastic
processes via strong electron-phonon interactions (e.g., using
III-V semiconductor QDs where the electron-phonon cou-
pling is strong) and high temperature [8]. It has been shown
in Refs. [8] and [38] that a proper energy difference between
the QDs can suppress the elastic conduction effectively.

A configuration favoring the figure of merit and power
factor for the transverse thermoelectric effect is to have
ωu = −ωd , i.e., opposite energy difference for the up and
down channels. We also notice that a configuration with
“quadrapole-type” symmetry, i.e., E1 = −E2 = −E3 = E4,
can lead to SS = Sin = 0, but Sq �= 0. In comparison, a
“dipole-type” configuration, E1 = −E2 = E3 = −E4, favors
thermoelectric conversion through Sin, as has been shown in
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Ref. [38]. The above symmetries can be explicitly seen from
Eqs. (15)–(17).

The figures of merit for the other two thermoelectric effects
can be written in terms of the averages over the microscopic
quantities,

ZST = 〈aS〉2〈
a2

S

〉 − 〈aS〉2 , aS = El , (19a)

ZinT = 〈ain〉2〈
a2

in

〉 − 〈ain〉2 , ain = ωσ . (19b)

We remark that the above equations also hold for the
situations where there are multiple transport channels. For
instance, in an ensemble of QD pairs where electrons transport
in parallel in the ensemble. Examples of such configurations
were studied in Ref. [38] and will also be presented in this
paper. Furthermore, unlike the conventional thermoelectric
figure of merit in Eq. (19a) that requires the small variance
of the electron energy, which is challenging to realize [39],
the inelastic thermoelectric figure of merit [Eq. (19b)] and the
transverse thermoelectric figure of merit [Eq. (18b)] do not
require the small variance of the electron energy. Instead, the
small variance of the phonon energy is required to achieve
high figure of merit for these unconventional thermoelectric
effects. Therefore, these unconventional thermoelectric ef-
fects open alternative routes toward high thermoelectric figure
of merits which may not be limited by the conventional chal-
lenges.

V. COOLING BY TRANSVERSE HEAT CURRENT

We discover a mode of cooling in our system, i.e., cooling,
say, the source by driving a heat current between the heat baths
H and C, i.e., the cooling by transverse heat current effect.
This is different from the previous “cooling by heating” effect
where cooling is driven by a finite heat current injected into
the quantum system. In the cooling by transverse heat current
effect, heat injected into the quantum system is not necessary,
since the driving force of the cooling is the energy exchange
between the two heat baths via the central quantum system.

It is convenient to demonstrate the cooling by transverse
heat current effect in the situations with

Ae = Ain = 0. (20)

The two heat currents of concern are then given by [29,47]

JS = MS,SAS + MS,qAq, (21a)

Jq = MS,qAS + Mq,qAq. (21b)

Cooling by transverse heat current is to cool the source
(i.e., JS > 0 despite AS < 0) by a positive Jq (we assume
TH > TC , i.e., Aq > 0). To have JS > 0 while AS < 0, one
needs

MS,q > 0. (22)

We propose to fulfill such a requirement via the following
energy configuration:

E1 = ε, E2 = ε + ω, E3 = ε + ω, E4 = ε, (23)

for εω > 0. We shall consider the case with both ε > 0 and
ω > 0. The situation with both ε and ω negative gives the
same results. There are lots of other energy configurations that
can realize cooling by the transverse heat current effect. Here
we consider the above energy configuration to simplify our
discussions. We remark that the cooling by transverse heat
current effect can also cool the drain instead of the source.
Nevertheless, in this work, we discuss only the cooling of the
source to simplify the study.

We then focus on situations restricted by Eq. (20). The
restriction Ain = 0 establishes a relation between TH and TC ,
so only one of them is independent. We may regard TH as an
independent variable, whereas TC is determined by

TC =
(

2

TD
− 1

TH

)−1

. (24)

We set TS < TD and aim at cooling the source (i.e., JS > 0)
using Jq through the mesoscopic heat thermal current effect.

The coefficient of performance (COP) for the cooling by
transverse heat current effect in our four-terminal system is
given by [48,49]

ηCOP = JS

Jq
. (25)

Microscopically, the currents are

JS = εI12 + (ε + ω)I34, Jq = 1
2ω(I12 + I34). (26)

In the cooling by transverse heat current effect, when Ae =
Ain = 0, the entropy production of the system is

dS

dt
= JSAS + JqAq. (27)

Therefore, we have

ηCOP =
(

TSAq − TS

Jq

dS

dt

)
TD

TD − TS
. (28)

The reversible COP is

ηrev
COP =

( TS

TC
− TS

TH

) TD

TD − TS
= −Aq

AS
. (29)

Furthermore,

ηCOP

ηrev
COP

= −JSAS

JqAq
= 1 − 1

JqAq

dS

dt
. (30)

The above relationship clearly demonstrates that the cooling
of the source is driven by Aq. In other words, the negative
entropy production associated with the cooling of the source,
JSAS < 0, is compensated by the positive entropy production
of JqAq, in agreement with Kedem and Caplan [50].

It is expected that at the reversible COP ηrev
COP, the cooling

power vanishes, since the entropy production rate and the
currents vanish [41,51]. In other situations, 0 < ηCOP < ηrev

COP.
We shall keep the temperature of the drain TD as fixed in the
discussions below. In realistic situations, TD can be set by the
temperature of the substrate.
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FIG. 3. (a) Cooling power JS as functions of temperature ratios
TS/TD and TH/TD for ε = 10 meV and ω = 20 meV. (b) Cooling
power JS as functions of QD energies ε and ω for kBTH = 60 meV
and kBTS = 6 meV. (c) COP ηCOP measured in units of the reversible
COP ηrev

COP for the cooling by transverse heat current effect as a func-
tion of the temperature ratios TS/TD and TH/TD when QDs energy is
the same as in panel (a). (d) ηrev

COP as functions of QD energies ε and ω

for the same parameters as in panel (b). Common parameters: μ = 0,
kBTD = 10 meV, and TC = 1/(2/TD − 1/TH ). Throughout this paper,
“a.u.” denotes “arbitrary units.”

The working condition of the cooling by transverse heat
current effect is set by JS > 0 for AS < 0. For each given
energy configuration, this imposes restrictions on the temper-
atures TH and TS . In fact, there is a minimum temperature that
one can cool the source down for a given set of TH and TS . On
the other hand, for a given temperature of the source TS , there
is a minimum TH to realize the cooling by the transverse heat
current effect.

In Fig. 3(a), we plot the cooling power JS as functions
of the temperatures TH and TS measured in units of TD. In
the study in this section, we include the nonlinear effects in
the transport by calculating the heat currents using the Fermi
golden rule (i.e., the rate equation) approach [52]. As will be
seen below, the cooling by transverse heat current effect is
more visible in the large-temperature-bias regime. For a given
set of ε and ω, the cooling power increases with both TH

and TS . The condition, JS = 0 defines the lowest temperature
of the source TS that can be cooled down for a given TH ,
or the lowest temperature of the heat bath TH that starts to
cool the source via the thermal current effect at a given source
temperature TS . We use the Fermi golden rule, Eq. (7), to
calculate the currents, power, and efficiency throughout this
work.

In Fig. 3(b), we study the cooling power JS as a function
of ε and ω for fixed TS and TH . The results provide useful
information in the search of large cooling powers by tuning
system parameters. It is found that high cooling powers can be
achieved in the region with ω 	 ε, especially for ω < kBTH .

FIG. 4. (a) The lowest temperature of source TS that can be
cooled down via the cooling by transverse heat current effect as
functions of ε and ω for kBTH = 60 meV. (b) The lowest temperature
of the hot heat bath TH that can perform the cooling by the trans-
verse heat current effect as functions of ε and ω for kBTS = 6 meV
and ω � 0.9ε. Other parameters: μ = 0, kBTD = 10 meV, and TC =
1/(2/TD − 1/TH ).

In Fig. 3(c), we show the ratio of the COP over the re-
versible COP ηCOP/η

rev
COP for a given energy configuration

[ε = 10 meV and ω = 20 meV, identical to Fig. 3(a)] as a
function of the temperature ratios TS and TH . It is found that
high ratios of ηCOP/η

rev
COP appear for low TS for a given TH .

In those regions, the cooling power is very small. In fact, the
cooling power is large when TS is high, i.e., the opposite trend
of the COP. Such power-efficiency trade-off is consistent with
existing knowledge (particularly as illustrated in Ref. [51]
and later confirmed in Refs. [53] and [54]). The optimal ratio
ηCOP/η

rev
COP emerges close to the minimum TS for the cooling

by the transverse heat current effect.
The dependence of the ratio ηCOP/η

rev
COP on the QD energy

ω and ε [for the same parameters as in Fig. 3(b)] is shown
in Fig. 3(d). Large ratios of ηCOP/η

rev
COP appear close to the

minimum of ω for each given ε. Apparently, the efficiency
has an opposite trend in the dependence of QD energies. That
is, the cooling power JS is large for ω 	 ε, while the COP
ratio ηCOP/η

rev
COP is large for ω ≈ ε.

We then study the optimal energy configuration, ω and ε,
that achieves the lowest temperature of the source TS after
a sufficiently long time cooling. This is determined by the
lowest temperature of the source TS that gives JS = 0. The
results are presented in Fig. 4(a). Again, the lowest TS is
achieved when ω 	 ε. In the opposite limit, ε 	 ω, the cool-
ing by transverse heat current effect is quite ineffective. We
also calculate the minimum temperature of the hot heat bath
TH required by cooling by the transverse heat current effect,
i.e., JS = 0, for various energy configurations, as presented in
Fig. 4(b). We find that the region with ω 	 ε does not require
too high a temperature of the heat bath TH to perform cooling
by transverse heat current. Therefore, a favorable parameter
regime for cooling by the transverse heat current effect is
ω 	 ε with ω � kBTH .

In realistic situations, the two energies ωu and ωd may not
be equal. We show how the cooling power and COP vary with
the two energies ωu and ωd in Fig. 5. Both the COP and the
cooling power favor the situations with −ωu > ωd . For such
a regime, cooling induced by the cold terminal C is more
effective, since each phonon emission process gives more
energy to the heat bath C. The entire picture is that the current
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FIG. 5. (a) COP and (b) cooling power of cooling by the trans-
verse heat current effect as functions the two energies ωu and
ωd . Other parameters: μ = 0, kBTD = 10 meV, kBTH = 15 meV,
E1 = E4 = 10 meV, and TC = 1/(2/TD − 1/TH ).

in the upper circuit I12 is sensitive to phonon temperature TH

and energy ωu since it is dominated by the thermal emission of
phonons from the heat bath H . However, for the current in the
lower circuit I34, it is mostly determined by the temperature
of the source and the drain, while relatively insensitive to the
phonon temperature TC and the energy ωd .

VI. FOUR-TERMINAL SYSTEMS
AS A MAXWELL DEMON

The second law of thermodynamics is a general law for
macroscopic systems which states that the entropy produc-
tion rate of any macroscopic system cannot be negative. An
imagined system with feedback control that violates the con-
ventional formulation of the second law was created by James
C. Maxwell [55], which proposed that a creature (called “the
Maxwell demon”) with the ability of tracking the velocity of
individual gas particles could create a temperature gradient
in two macroscopic chambers of gases which are originally
at equilibrium with each other. The Maxwell demon can ac-
quire and store the information of the particles. Removing
such information, however, as revealed by Landauer [56],
necessarily yields positive entropy production to restore the
second law of thermodynamics. There have been a number of
proposals of the Maxwell demon in different forms in various
systems [57–62].

In this section, we study a possible implementation of
the Maxwell demon in the quantum-dot architecture acting
on a system without changing its number of particles or its
energy, following the recent works [61,62] but in different
setups and mechanisms. In the four-terminal setup illustrated
in Fig. 6, our target is to induce a Maxwell demon based on
two nonequilibrium baths (the cold and the hot baths) which
can reduce the entropy of the system, the source and the drain,
without giving energy or changing the particle number of the
system. More explicitly, we aim to induce a heat flow from
the cold reservoir, i.e., the source, to the hot reservoir, i.e.,
the drain, without exchanging energy or particle number with
the system (i.e., the source plus the drain). This aim can be
achieved by the cooling by transverse heat current effect at
TS < TD. The entropy reduction in the source and drain is
compensated by the larger entropy increase in the cold and hot
heat baths. Therefore, the entropy increase rate of the whole

FIG. 6. Schematic of a four-terminal mesoscopic thermoelectric
device as a Maxwell demon. The demon supplies no work or heat to
the system, i.e., the total heat current injected into the central quan-
tum system from the two thermal baths is zero, Jin = JH − JC = 0.

system is not negative and the second law of thermodynamics
is not violated.

The condition for which the Maxwell demon neither injects
nor extracts heat or energy is

Jin = 0. (31)

Such an unconventional effect is driven by the temperature
gradient between the two heat baths H and C. Therefore, the
power of the Maxwell demon vanishes when the tempera-
ture gradient between the two heat baths H and C becomes
zero.

We first show that the cooling by transverse heat current
effect indeed survives even when Jin = 0 (i.e., the total heat
current injected into the quantum system is zero). In Fig. 7(a),
we give the three thermal currents JS , Jq, and Jin as functions
of ωd with other parameters fixed and given in the caption of
the figure. We focus on the conditions where AS < 0, Ain = 0,
and Aq > 0. It is seen from Fig. 7(a) that there is indeed a
special point, ωd 
 57 meV, where cooling by the transverse
heat current effect survives at Jin = 0. We also notice from the
figure that the sign change of Jin does not affect cooling by the
transverse heat current effect. The COP ηCOP and the cooling
power JS remain positive for ωd > 57 meV, regardless of the
sign change of the heat current Jin. However, only the case
with Jin = 0 represents the nonequilibrium Maxwell demon.
In Fig. 7(b), we give the entropy production rate dS/dt and
the COP ratio ηCOP/η

rev
COP as functions of the energy ωd . It is

seen that, as the entropy production rate decreases, the COP
approaches 0.83ηrev

COP. To visualize the energy conversion, we
present the numerator and the denominator in Eq. (30), i.e.,
−JSAS and JqAq, in Fig. 7(c). We further show the JqAq and the
ratio ηCOP/η

rev
COP in Fig. 7(d). Using log scales in these figures,

one can see that, although the entropy production rate dS/dt
is reducing with ωd , it is not vanishing even for large ωd . In
fact, all the quantities, −JSAS , JqAq, and dS/dt , are decreasing
rapidly with increasing ωd , and there are visible discrepancies
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(a) (b)

(c) (d)

FIG. 7. (a) Thermal currents and (b) COP ratio ηCOP/η
rev
COP and

entropy production dS/dt as a function of QD energy ωd . (c) −JSAS ,
JqAq and (d) JqAq, dS/dt as functions of QD energy ωd , where the
y axis is in log scales. Other parameters: μ = 0, kBTD = 10 meV,
kBTH = 15 meV, kBTS = 9 meV, E1 = E4 = 10 meV, ωu = 4 meV,
and TC = 1/(2/TD − 1/TH ).

between the numerator −JSAS and the denominator JqAq in
Eq. (30). In the end, as shown in Fig. 7(d), at large ωd the
entropy production rate is still about 17% of the input JqAq.
Therefore, the efficiency ηCOP is about 83% of the reversible
efficiency ηrev

COP.
Figure 8 presents the cooling power JS and the COP as

functions of the QD energies ωu and ωd at the condition Jin =
0. The white areas represent the parameter regions where
the nonequilibrium Maxwell demon cannot be achieved. As
shown in Fig. 8(a), high cooling powers can be achieved in
the region with ωu < 10 meV. However, in such a region, the
cooling efficiency is small. In fact, Fig. 8(b) shows that the
cooling efficiency is large only when ωu > 10 meV, reflecting
the power-efficiency trade-off in the nonequilibrium Maxwell
demon mode [51,53].

FIG. 8. (a) Cooling power JS and (b) COP ratio ηCOP/η
rev
COP of

cooling by the transverse heat current effect as functions the two
energies ωu and ωd for Jin = 0. Other parameters: μ = 0, kBTD =
10 meV, kBTH = 25 meV, E1 = E4 = 10 meV, and TC = 1/(2/TD −
1/TH ).

VII. THERMOELECTRIC TRANSPORT EFFECTS
IN QUANTUM-DOT ENSEMBLES

To further study the performance of the thermoelectric and
the cooling by the transverse heat current effects, we investi-
gate the thermoelectric transport in quantum-dot ensembles.
We consider the situations where there are multiple QDs pairs
in the upper and lower channels in Fig. 2. For simplicity, we
assume that electrons transport in parallel in these QDs pairs.
The total transport effect can be calculated by summing up the
currents in all possible channels. This model also describes
electron transport in QDs with multiple energy levels. To
simplify the problem, we use a distribution function to char-
acterize the possible QD energy in the ensemble. Specifically,
we consider the situations with Gaussian distributions of the
QD energies. For instance, the Gaussian distributions of the
QD energy Ei (i = 1, 2, 3, 4) with a variance �2

QD are [38]

gi(Ei ) = ρ0

�QD

√
2π

exp

(
− (Ei − Ei0)2

2�2
QD

)
. (32)

Here, ρ0 is related to the density of QDs in the ensemble.
Generalizing the considerations in Sec. III, we obtain

Je =
∫∫

dE1dE2g1(E1)g2(E2)I12(E1, E2)

+
∫∫

dE3dE4g3(E3)g4(E4)I34(E3, E4). (33)

Meanwhile we can get the expression of the heat current
flowing out of the source:

JS =
∫∫

dE1dE2E1g1(E1)g2(E2)I12(E1, E2)

+
∫∫

dE3dE4E3g3(E3)g4(E4)I34(E3, E4), (34)

and the heat exchange current between the two heat baths
intermediated by the central quantum system is

Jq = 1

2

∫∫
dE1dE2(E2 − E1)g1(E1)g2(E2)I12(E1, E2)

− 1

2

∫∫
dE3dE4(E4 − E3)g3(E3)g4(E4)I34(E3, E4).

(35)

The total heat current injected into the central quantum system
from the two thermal baths is

Jin =
∫∫

dE1dE2(E2 − E1)g1(E1)g2(E2)I12(E1, E2)

+
∫∫

dE3dE4(E4 − E3)g3(E3)g4(E4)I34(E3, E4).

(36)

In the above,

I12(E1, E2) = �1→2(E1, E2) − �2→1(E1, E2), (37a)

I34(E3, E4) = �3→4(E3, E4) − �4→3(E3, E4). (37b)

Here, �1→2(E1, E2) = 2γep f1(1 − f2)N12 where f1 = 1/

{exp[(E1−μS )/kBTS] + 1}, f1 =1/{exp[(E2−μD)/kBTD] +
1} and N12 =|1/{exp[(E2−E1)/kBTH ]−1}|. Similarly,
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FIG. 9. (a) The COP ratio ηCOP/η
rev
COP as functions of ω0 and ε0

for kBTH = 60 meV. (b) COP ratio ηCOP/η
rev
COP as functions the QD

energies difference ωu0 and ωd0 when E10 = 10 meV, E40 = 10 meV,
kBTH = 16 meV. Other parameters: μ = 0, �QD = 2 meV, kBTS =
6 meV, kBTD = 10 meV, and TC = 1/(2/TD − 1/TH ). Note that ρ0 is
irrelevant for the results here.

�3→4(E3, E4) = 2γep f3(1 − f4)N34 where f3 = 1/{exp[(E3 −
μS )/kBTS] + 1}, f4 = 1/{exp[(E4 − μD)/kBTD] + 1} and
N34 = |1/{exp[(E4 − E3)/kBTC] − 1}|. The linear transport
coefficients can still be calculated using Eq. (11) where the
average is now generalized to include the ensemble average
defined by the distribution functions of the QD energies, i.e.,

〈· · · 〉 =
∫∫

dE1dE2 · · · p+(E1, E2)

+
∫∫

dE3dE4 · · · p−(E3, E4), (38a)

p+(E1, E2) = g1(E1)g2(E2)�0
1→2(E1, E2)/N , (38b)

p−(E3, E4) = g3(E3)g4(E4)�0
3→4(E3, E4)/N , (38c)

N =
∫∫

dE1dE2g1(E1)g2(E2)�0
1→2(E1, E2)

+
∫∫

dE3dE4g3(E3)g4(E4)�0
3→4(E3, E4).

(38d)

In the above, the subscript + denotes the upper channel,
while the subscript − denotes the lower channel (see illustra-
tion in Fig. 2).

We first study the cooling by the transverse heat current
effect for the QD ensemble. In Fig. 9(a), we present the ratio
of the COP over the reversible COP, ηCOP/η

rev
COP, as a function

of the QD energies ω0 and ε0 with the Gaussian distribution
(here, we set E10 = E40 = ε0, E20 = E30 = ω0 + ε0). From
the figure, we find that the high cooling efficiency can be
achieved in the region with large ω0 and ε0. In addition,
we present in Fig. 9(b) the ratio ηCOP/η

rev
COP as a function

of the two energies ωu0 and ωd0 when E10 = 10 meV and
E40 = 10 meV. We find that the cooling efficiency reaches the
optimal value when 15 meV < ωd0 < 20 meV. By compar-
ing Fig. 9(a) with Fig. 3(d), and Fig. 9(b) with Fig. 5(a), we
find that for QD ensembles with a finite Gaussian broadening
�QD in the QD ensemble leads to lower energy efficiency. But
the qualitative features are the same.

We then study the cooling power JS and the ratio
ηCOP/η

rev
COP as functions of the temperatures TH and TS

FIG. 10. (a) Cooling power JS , (b) COP ratio ηCOP/η
rev
COP as

functions of temperature ratios TS/TD and TH/TD, the parameters
are E10 = 10 meV, E20 = 40 meV, E30 = −5 meV, E40 = 10 meV,
�QD = 2 meV, and TC = 1/(2/TD − 1/TH ). Note that ρ0 is irrelevant
for the results here.

measured in units of TD for a given energy configura-
tion (E10 = 10 meV, E20 = 40 meV, E30 = −5 meV, E40 =
10 meV) in Fig. 10. We find that large cooling power appears
for high TS and TH . However, in such a regime, the cooling
efficiency ηCOP/η

rev
COP is very small, reflecting the power-

efficiency trade-off [51,53]. These results are qualitatively
consistent with Figs. 3(a) and 3(c). The energy efficiency is
smaller in Fig. 10(b) for the same parameters when compared
with the results in Fig. 3(c).

In our four-terminal thermoelectric system, both the
conventional thermoelectric effect [related to SS in Eq. (15)]
and the transverse thermoelectric effect [related to Sq in
Eq. (17)] coexist. Since the maximal energy efficiency
of the thermoelectric engine increases with the figure of
merit, we compare the figure of merit for the conventional
thermoelectric effect and the transverse thermoelectric
effect. The results are presented in Figs. 11(a) and 11(b) for
the transverse and conventional thermoelectric effects,
respectively. From the figures we find that the figure
of merit for the transverse thermoelectric effect ZqT
is prominent for ωu0 ≈ −ωd0, whereas the figure of
merit for the conventional thermoelectric effect ZST
is prominent for ωu0 ≈ ωd0. Nevertheless, it is clearly
visible that in the same parameter region, the optimal
ZqT (
3) is larger than the optimal ZST (
1.5). The

FIG. 11. (a) Figure of merit for the transverse thermoelectric
effect ZqT and (b) figure of merit for the conventional thermoelectric
effect ZST as functions the QD energy differences ωu0 and ωd0 for
the Gaussian distribution. Other parameters: μ = 0, kBT = 10 meV,
�QD = 2 meV, E10 + E20 = 0, and E30 + E40 = 0. Note that ρ0 is
irrelevant for the results here.
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results indicate that the transverse thermoelectric effect is
potentially more advantageous than the conventional thermo-
electric
effect.

VIII. CONCLUSION AND DISCUSSIONS

We have discovered and studied a mode of cooling by the
transverse heat current effect, using a four-terminal (i.e., the
source, the drain, and two thermal baths) QD thermoelectric
device. Such an effect describes cooling of the source driven
by the heat exchange between the two thermal baths, rather
than the total heat injected into the quantum system [35]. A
simple realization is to use a device with four QDs which
simultaneously breaks the particle-hole symmetry, the left-
right and up-down inversion symmetries. The cooling power
and the energy efficiency manifest trade-off effect, e.g., high-
energy efficiency comes with low cooling power, consistent
with the common intuitions.

In addition, a transverse thermoelectric effect, i.e., gener-
ating electric power using the temperature difference between
the two heat baths is studied. In the transverse thermoelectric
effect, electric and heat transport are spatially separated. Such
a thermoelectric effect has the advantage of manipulation
of heat and charge transport in different spatial dimensions.
Such spatial separation enables disentangling the correlations
between electric conduction and phonon heat conduction, so
that they can be engineered independently to yield high fig-

ure of merit and output power. The current-affinity relations,
linear-transport properties, and the transverse thermoelectric
figure of merit are studied.

We also show that the four-terminal quantum-dot sys-
tem can realize a type of Maxwell demon where the demon
exploits nonequilibrium effects to drag heat from a low-
temperature reservoir (i.e., the source) to a high-temperature
reservoir (i.e., the drain), even when there is no net energy and
charge exchange between the demon and the system.

Finally, we generalize the transport equations to the situa-
tions with an ensemble of QDs pairs where electrons transport
in parallel. We apply such a generalization for the study of
energy efficiency for both the transverse thermoelectric ef-
fect and cooling by the transverse heat current effect. We
find that the Gaussian broadening of QD energy leads to
reduced energy efficiency. Our findings demonstrate that in-
elastic transport can bring about phenomena that have not
been found in previous studies based on elastic transport
processes as well as introduce alternative, promising routes
toward high-efficiency thermoelectric energy conversions.
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