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The electron gas hosted in a two-dimensional solid-state matrix, such as a quantum well or a two-dimensional
van der Waals heterostructure, supports the propagation of plasma waves. Nonlinear interactions between plasma
waves, due to charge conservation and current convection, generate a constant density gradient which can be
detected as a DC potential signal at the boundaries of the system. This phenomenon is at the heart of a plasma-
wave photodetection scheme, which was first introduced by Dyakonov and Shur for electronic systems with a
parabolic dispersion and then extended to the massless Dirac fermions in graphene. In this work, we develop the
theory of plasma-wave photodetection in bilayer graphene, which has the peculiarity that the dispersion relation
depends locally and dynamically on the intensity of the plasma wave. In our analysis, we show how quantum
capacitance effects, arising from the local fluctuations of the electronic dispersion, modify the intensity of the
photodetection signal. An external electrical bias, e.g., induced by top and bottom gates, can be used to control
the strength of the quantum capacitance corrections, and thus the photoresponse.
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I. INTRODUCTION

An electron system in a solid-state matrix displays collec-
tive density oscillations supported by the Coulomb repulsion
between electrons. If the period T of such oscillations is
much longer than the time τeq that is needed for establishing
a local thermal equilibrium in the electron system, then the
oscillations are described by a wave equation and are called
plasma waves [1].

As observed in a seminal paper [2] by Dyakonov and Shur
(DS), a setup which allows one to meet the condition τeq � T
is that of a field-effect transistor (FET), i.e., a conductive
channel where electrons roam, with a source and a drain con-
tact, and capacitively coupled to a gate conductor. The charges
on the gate screen the density oscillations in the channel and
reduce the intensity of the Coulomb interaction, lowering the
frequency of the oscillations below the threshold 2π/τeq. In
this regime, the electron system is well described by hydrody-
namic equations, which are nonlinear in the coupling between
the electron density and velocity. These hydrodynamic non-
linearities originate intriguing interference effects between the
propagating plasma waves, as further pointed out by DS [3–5].

Among these effects, one of notable practical importance is
produced by subjecting the FET to a specific driving: feeding
an AC potential between the source contact and the gate, with
the drain contact floating. This AC potential can be fed into
the FET by an appropriately connected antenna. The result
is that a DC potential, i.e., a photovoltage, is established be-
tween source and drain, as a consequence of a standing wave
being supported in the FET channel, which acts as a cavity.
This concept is called the DS plasma-wave photodetection

scheme, and has received steady theoretical and experimen-
tal interest for a few decades, especially in relation to the
generation and detection of terahertz radiation [6,7]. In par-
ticular, enhanced photoconductance, emission, or interference
phenomena have been measured in double two-dimensional
electron-gas (2DEG) systems, hosted in semiconductor quan-
tum wells [8–10].

The theory predicts that resonant (i.e., frequency-resolved)
photodetection can be achieved, if it is possible to tune the
plasma-wave speed, for example by electrical doping, and if
the channel is sufficiently clean (i.e., if the electron transport
relaxation time τp [11] is not much shorter than T ). Graphene,
a two-dimensional crystal made of carbon atoms [12], pos-
sesses both these qualities: an electrically tunable carrier
density [13] and a large room-temperature mobility, especially
if encapsulated in hexagonal boron nitride (hBN) [14]. In
particular, it has been shown that hBN-encapsulated graphene
allows the electron system to sustain long-lived plasma exci-
tations [15,16] and to enter the hydrodynamic regime [17–23]
even in the absence of a gate. Indeed, graphene-based FETs
were identified early on as ideal candidates to investigate
the DS photodetection scheme [24,25]. Later, larger respon-
sivity was achieved [26] using bilayer-graphene (BLG) [12]
channels and, finally, resonant DS photodetection was demon-
strated [27] using hBN-encapsulated BLG.

Motivated by this recent experimental breakthrough, in this
paper we formulate the theory of DS plasma-wave photode-
tection in dual-gated bilayer-graphene FETs. We emphasize
that in Ref. [27], from a theory point of view, BLG was
modeled as a Fabry-Pérot resonator (i.e., a plasmonic cavity
with reflective edges) only in terms of effective parameters.
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Such treatment does not yield a full picture of the dependence
of the photovoltage on the experimental tuning knobs, such as
the electron density and the gate voltages. Here, we develop a
theory that starts out from a microscopic description of elec-
trons in BLG in terms of a two-band Hamiltonian, and derive
an expression for the DS photovoltage by means of electron
hydrodynamic equations which are specific to BLG. Indeed,
in the electron hydrodynamic regime [28–36], the hydrody-
namic equations in graphene feature peculiar terms [37–39]
arising from its linear electronic dispersion. In BLG, the linear
electronic bands of two adjacent graphene sheets hybridize
and give origin to a new electronic dispersion characterized by
a position-dependent gap [40–42]. In this work, we show that
the electron hydrodynamic equations in BLG are augmented
by terms which derive from the finite gap in the electronic dis-
persion. The electron density and gap fluctuations are coupled,
which modifies the plasma-wave propagation and affects the
DC photovoltage of a FET based on a bilayer-graphene chan-
nel. We thus obtain, on a microscopic footing, the parametric
dependence of the DC photovoltage on the dual-gated BLG
FET.

We stress that BLG is different from a double- or mul-
tilayer graphene system, where vertically stacked graphene
sheets are electronically decoupled, and the electronic disper-
sion in each sheet is unperturbed. Double-layer setups support
intra- and interlayer plasmon modes [43–45] and feature an in-
teresting interplay between plasma-wave propagation [46] and
interlayer electron tunneling or scattering [47–51]. Electron
tunneling in multilayer graphene [52,53] or in gate-defined
lateral tunnel junctions in BLG [54] can also be exploited
to achieve photodetection mechanisms different from the DS
scheme.

The paper is organized as follows. In Sec. II, we introduce
the model and define the set of variables describing the elec-
tron system. For the sake of clarity, we introduce all degrees
of freedom (quantum, thermodynamic, electrostatic) in full
detail, the relations between them, and a perturbative solu-
tion scheme, in focused sections, aiming at a self-contained
and pedagogical exposition. In Sec. III, we introduce the
dynamical model coupling quantum, thermodynamic, and
electrostatic variables, which takes the form of a set of hy-
drodynamic equations. In Sec. IV, we discuss the linearized
solutions of the hydrodynamic equations, which describe
plasma waves, both freely propagating and in the presence of
boundary conditions. In Sec. V, we calculate the photovoltage
when the electron system in a FET channel is subjected to
the Dyakonov-Shur boundary conditions. The differences of
the photoresponse function with respect to the single-layer
graphene case are elucidated. The broadband limit of the
photoresponse function is discussed in the Appendix. Finally,
in Sec. VI, we summarize our procedure and findings.

II. ELECTRON DENSITY IN DUAL-GATED BILAYER
GRAPHENE

A. The setup

We model BLG as two graphene sheets lying in the planes
z = −d/2 (bottom layer) and z = d/2 (top layer), extended
along the x direction from x = 0 to x = L (see Fig. 1.) As

FIG. 1. Schematics of the setup. The two graphene layers form-
ing the bilayer system, at z = −d/2 and z = d/2, are displayed as
thick black lines. The top layer is contacted to source and drain,
represented by the light-shaded shapes. The surfaces of the bottom
and top gates, represented by dark-shaded rectangles, lie at z = −db

and z = dt . The dielectric constants in the three regions of space
delimited by the gates and the layers are denoted εb, εr , and εt , from
bottom to top. In the corresponding regions of space, the electric field
is denoted Eb, E, and Eb. The electric potential at the gates and along
the layers is denoted Vb, Vt , ϕb(x), and ϕt (x). Translational invariance
is assumed in the y direction.

anticipated in Sec. I, and discussed in detail in Sec. II B, the
electronic states in the two sheets are hybridized. We assume
that the system is translationally invariant in the y direction.
Two perfect conductors lie in the planes z = −db (bottom
gate) and z = dt (top gate). The uniform electric potential of
the bottom (top) gate is Vb (Vt). The electric potential in the
bottom (top) layer is ϕb(x) [ϕt (x)]. The dielectric constant is
εb for −db < z < −d/2, εr for −d/2 < z < d/2, and εt for
d/2 < z < dt . The electric field is Eb(x, z) for −db < z <

−d/2, E(x, z) for −d/2 < z < d/2, and E t (x, z) for d/2 <

z < dt . At x = 0 (x = L), the top graphene layers touches the
source (drain) contact. We assume that the electric potential on
the top graphene layer is locally equal to that on the contacts,
while the potential on the bottom graphene layer is free to
float and is determined as detailed in the following section.
Vectors in the two-dimensional (2D) x − y space are denoted
as v = (vx, vy).

B. Bilayer-graphene Hamiltonian

Electrons roaming in the BLG are described by the follow-
ing Hamiltonian in the two-band approximation [40–42]:

Ĥ(x) =
(

0 − ( p̂x−i p̂y )2

2m

− ( p̂x+i p̂y )2

2m 0

)
− �(x)

2

(
1 0

0 −1

)
. (1)

Here, p̂x and p̂y are the components of the electron momentum
operator. The matrices act in the layer space, where the first
(second) component corresponds to the bottom (top) layer.
The index in the layer space is � = b (bottom layer) and
� = t (top layer). The kinetic part of the Hamiltonian uses the
effective mass m ≡ γ1/(2v2

F), where vF is the Fermi velocity
of electrons in single-layer graphene and γ1 is a hopping
parameter of the tight-binding model [40–42]. The value of
the effective mass is m � 0.035 me, where me is the bare
electron mass. Finally, the potential part of the Hamiltonian,
which is diagonal in the layer space, represents the potential-
energy difference between the two graphene layers, also called
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asymmetry,

�(x) ≡ −e[ϕt (x) − ϕb(x)]. (2)

A different potential energy on the two layers, resulting in
� �= 0, can be induced by the electric field of a gate, for
example. The Hamiltonian (1) depends parametrically on the
coordinate x through �(x). This approach is justified if the
wave vector k of the typical variation of �(x) is much smaller
than the Fermi wave vector kF, i.e., we require

k � kF. (3)

The eigenstates of the Hamiltonian (1) are labeled by the wave
vector k and the band index λ, which assumes the values
λ = +1 (conduction band) and λ = −1 (valence band). The
eigenvalues are

ελ,k(x) = λεk(x), εk(x) =
√[

h̄2|k|2
2m

]2

+ �(x)2

4
, (4)

and the corresponding eigenvectors are

ψλ,k(x) =
√

ελ,k(x) − �(x)/2

2ελ,k(x)

(
1

− e2iϕk (h̄k)2/(2m)
ελ,k (x)−�(x)/2

)
, (5)

where ϕk is the angle between the vector k and the versor x̂,
i.e., kx + iky = |k|eiϕk . (Notice that the argument in the square
root is always positive.) From the dispersion (4), we see that
the band gap corresponds to the parameter |�(x)|.

C. Local quasiequilibrium probability distribution

The electronic hydrodynamic regime [28–36] is formally
captured by the assumption that the system is in a state of local
quasiequilibrium, i.e., the probability that the single-particle
state with wave vector k, in the band λ, is occupied is given by
a “displaced” Fermi-Dirac distribution fλ,k [37–39]. For sim-
plicity, we assume that the system is everywhere homopolar,
i.e., there is a single chemical potential for both the conduction
and valence bands. In this case, the probability distribution is

fλ,k(x) = 1
/{

eβ[ελ,k−h̄v(x)·k−μ(x)] + 1
}
. (6)

The inverse temperature β = 1/(kBT ) is assumed to be con-
stant and homogeneous in the system. We suppose that the
chemical potential is everywhere much larger than the tem-
perature, μ(x) � kBT , which allows us to neglect the effects
of local heating and horizontal transport due to temperature
gradients. The vector v(x) is the local electron drift velocity
and μ(x) is the local chemical potential. Consistently with the
assumption of translational invariance along y, in the follow-
ing we assume the drift velocity to be directed along x only.
We point out that the distribution (6) is defined for electron
states in the bilayer and does not discriminate between the
bottom and the top layer, since the electron wave functions in
the two layers are hybridized.

D. Relation between the electron density and the
Hamiltonian variables

The 2D electron density in the �th layer is given by

n�(x) = Nf

∫
d2k

(2π )2

∑
λ=±1

|[ψλ,k(x)]�|2 fλ,k(x), (7)

where the factor Nf = 4 corresponds to the spin and valley
degeneracy in each layer and [·]� denotes the �th component
of the eigenvector in Eq. (5). The electron density polarization
between the two layers is defined as

nb(x) − nt (x) = Nf
�(x)

2

∫
d2k

(2π )2

1

εk(x)

∑
λ=±1

fλ(k, x). (8)

For �(x) = 0, the top- and bottom-layer densities coincide,
nt (x) = nb(x). The total electron density on the BLG is de-
fined as the sum of the electron densities on the two layers,

n(x) ≡ nb(x) + nt (x). (9)

The integrals in Eqs. (7) and (8) can be calculated analyti-
cally in the limit of low temperature and small drift velocity,
defined by the inequalities

v(x) � vF, kBT � εF, (10)

where εF is the Fermi energy and vF is the Fermi velocity. In
this limit, the probability distribution (6) simplifies to

fλ,k(x) = 
[εF(x) − ελ,k(x)], (11)

where 
(x) is the unit step function and we have dropped the
dependence on the drift velocity v(x) in the argument. The
contribution to the integral (8) due to the velocity is of second
order in |v(x)|/vF and can be neglected in the derivation of
the hydrodynamic equations (see Sec. III). To evaluate the
contribution of the valence band, it is necessary to introduce a
momentum cutoff [42]. The electron density polarization and
the total density read, respectively,

nb(x) − nt (x) = − n⊥
2γ1

�(x)

× ln

⎛
⎝ |n(x)|

2n⊥
+ 1

2

√[
n(x)

n⊥

]2

+
[
�(x)

2γ1

]2
⎞
⎠,

(12)

n(x) = 2m

h̄2π

√
εF(x)2 − �(x)2

4
, (13)

where n⊥ ≡ 4v2
Fm2/(h̄2π ).

E. Relation between the electron density
and the electric potential

To calculate the relation between the electron density and
the electric potential, we consider first a homogeneous system,
translationally invariant in the x direction. Therefore, for the
sake of simplicity, in this section we drop the x dependence
from the variables. Due to the translational invariance, the
electric fields are uniform and directed along the ẑ direction,

Eb(z) = ẑEb, E(z) = ẑE , E t (z) = ẑEt. (14)
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From the straightforward application of Gauss’s law to regions
enclosed by planes orthogonal to the z axis, we find the rela-
tions between the electric fields (in SI units) and the electron
density,

−ε0εrE + ε0εtEt = −ent,

−ε0εbEb + ε0εrE = −enb. (15)

It is convenient to find the relations between the uniform
electric fields and the electric potentials on the gates and
the graphene layers. The magnitude E of the electric field
between the two layers is

E = −(ϕt − ϕb)/d = �/(ed ), (16)

where the second equality follows from Eq. (2). The mag-
nitude Et (Eb) of the top (bottom) electric field can be
determined using the electric potential Vt (Vb) on the top
(bottom) gate. We find that

Et =−(Vt−ϕt )/(dt − d/2), Eb =−(ϕb − Vb)/(db − d/2).
(17)

It is now convenient to define the gate-to-channel swing Ut ,
Ub for the top and bottom layer, respectively, and the sum of
the two:

Ut ≡ Vt − ϕt, Ub ≡ Vb − ϕb, U ≡ Ut + Ub. (18)

From the above definitions, we find

Et = −Ut/(dt − d/2), Eb = Ub/(db − d/2), (19)

� = −e[Vt − Vb − Ut + Ub]. (20)

We note that, in principle, one could use the latter equation
to eliminate � using Ut and Ub. However, as we see below, it
is convenient to use this equation to solve for Ub and find �

from the implicit relation (31). We also note that the results
depend only on the difference between the gate potentials, as
expected.

To rewrite the above equations in a more transparent form,
it is convenient to define the capacitance per unit area of
the three capacitors formed by the two layers, and the top
(bottom) layer with the top (bottom) gate,

Cr = ε0εr/d,

Ct = ε0εt/(dt − d/2),

Cb = ε0εb/(db − d/2). (21)

Then, from Eqs. (15) and (19), we finally find the electron
density as a function of the gate-to-channel swings and the
Hamiltonian parameter �,

nt = Ct

e
Ut + Cr

e

�

e
, nb = Cb

e
Ub − Cr

e

�

e
. (22)

Taking the difference and the sum of the latter expression,
we also find the electron density polarization and the total
electron density, respectively,

nb − nt = −Ct

e
Ut + Cb

e
Ub − 2

Cr

e

�

e
, (23)

n = Ct

e
Ut + Cb

e
Ub. (24)

F. Local capacitance approximation

We now consider the case of a nonuniform system where
the electric potentials and the electron density varies on a
length scale l which is much larger than the vertical dimen-
sion of the system, i.e., l � dt + db. In this case, we assume
that the relations (23) and (24) between the densities and the
gate-to-channel swings hold locally in space for any x. This
approximation is usually referred to as the “local capacitance”
or “gradual channel” approximation [55] and reads

nb(x) − nt (x) = Cb

e
Ub(x) − Ct

e
Ut (x) − 2

Cr

e

�(x)

e
, (25)

n(x) = Ct

e
Ut (x) + Cb

e
Ub(x). (26)

We also consider the same approximation for �(x), obtaining

�(x) = −e[Vt − Vb − Ut (x) + Ub(x)]. (27)

G. Determination of the variables as a function
of the total density

The equations E = {(12), (13), (25)–(27)} are a system of
five independent equations for the six variables V = {n(x),
nb(x) − nt (x), �(x), εF(x), Ut (x), and Ub(x)}. This means that
any variable in a subset of five variables of V can be expressed
as a function of the remaining sixth variable in V . In other
words, a single variable is sufficient to uniquely determine
the state of the system at each point x in space. We choose
such variable to be the total density n(x). We now present a
convenient sequence of substitutions to determine all the other
variables in terms of n(x). We can directly solve (13) for εF(x)
and (27) for Ub(x),

εF(x) =
√[

h̄2πn(x)

2m

]2

+ �(x)2

4
, (28)

Ub(x) = Ut (x) − �(x)

e
− (Vt − Vb). (29)

We point out that the choice to eliminate Ub(x) instead of
Ut (x) arises from the fact that the boundary conditions (BCs)
for the hydrodynamic equations of motion (see Sec. III) will
be imposed on the top layer, i.e., the one which touches the
contacts. Then, from (26), we obtain Ut (x) in terms of n(x)
and �(x),

Ct + Cb

e
Ut (x) = n(x) + Cb

e

�(x)

e
+ Cb

e
(Vt − Vb). (30)

Finally, we eliminate nb(x) − nt (x) by equating the right-hand
side of Eqs. (12) and (25). In the equation that we find in this
way, we substitute the expressions for εF(x), Ub(x), and Ut (x).
The result is an algebraic equation which contains �(x) and
n(x) only,

0 = n(x)
Ct − Cb

Ct + Cb
+ Vt − Vb

e

2CbCt

Ct + Cb

− 2
�(x)

e2

CbCr + CbCt + CrCt

Ct + Cb

+ n⊥
2γ1

�(x) ln

⎛
⎝ |n(x)|

2n⊥
+ 1

2

√[
n(x)

n⊥

]2

+
[
�(x)

2γ1

]2
⎞
⎠.

(31)
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Equation (31) is the main result of the lengthy derivation pre-
sented in this section. It is the effective constitutive equation
of our model, which connects the microscopic Hamiltonian
parameter �(x) to the macroscopic variable n(x).

To understand the physical content of Eq. (31), let us
consider the limit �(x) � h̄2πn(x)/m. Using ln(

√
ξ 2 + 1 +

ξ ) ∼ ξ for ξ � 1, with ξ = h̄2πn(x)/[m�(x)], we see that
the last term in the equation is ∼n(x). Then, neglecting n(x)
in the first term of the equation with respect to �(x), we find
a constant value for � given by

Cr�(x) = −e(Vt − Vb)Cseries,

Cseries = 1

C−1
r + C−1

t + C−1
b

, (32)

where Cseries is the series capacitance of the three capacitors
formed by the gates and the two layers. In this case, Eq. (31)
reduces to the requirement that the total charge on the gates
must neutralize the total charge on the BLG. In the general
case, Eq. (31) describes how the two gates, by screening the
carrier density n(x), induce an energy potential difference
�(x) between the two graphene layers. This mechanism has
first been discussed by McCann et al. in Ref. [40].

We note that the system E , although nonlinear, features
the following scaling relation: if the electric potential dif-
ference Vt − Vb is multiplied by a dimensionless factor, then
the system is solved by multiplying all variables by the same

factor as well. This means that the electric potential difference
between the top and the bottom gate merely sets the scale
of the fields in the bilayer system, and can be fixed to a
reasonable reference value in the analysis. In the following
we use Vt − Vb = 100 V for definiteness.

Solving the system E , one obtains the functional depen-
dence of all the other variables in terms of n. The density
dependence of Ut (n) and �(n) is exemplified in Figs. 2 and 3
in a range of parameters. Since the density n(x) depends on
the position x, the solution also yields the spatial dependence
of the variables, which we denote, e.g., Ut (x) = Ut (n(x)).
Similarly, the notation n(x) = n(Ut (x)) means that one has
to solve the system E given the value of Ut (x) and calculate
the remaining variables. More generally, any variable χ in V
can be used as an independent variable and the remaining five
variables in V can be expressed as functions of χ . We will use
this notation in the following, when convenient.

H. Linearization around a homogeneous state

The system E can be solved at each point in space x and
at each instant in time t , to obtain the instantaneous values of
the variables V in the whole system. However, if the system
is almost homogeneous, i.e., n(x) � n̄, the spatial profile of
all variables can be obtained by calculating the spatial fluctu-
ations of one variable χ around its equilibrium value χ̄ and
the derivative of the other variables with respect to χ at equi-
librium. For example, using the density as the independent
variable,

Ut (x) = Ut (n(x)) � Ut (n̄) +
(

dUt

dn

)
n=n̄

[n(x) − n̄] + · · · . (33)

The space and time derivative of the variables can also be expanded similarly, for example,

∂xUt (x) = ∂xUt (n(x)) =
(

dUt

dn

)
n=n(x)

× ∂n(x)

∂x
�

{(
dUt

dn

)
n=n̄

+
(

d2Ut

dn2

)
n=n̄

[n(x) − n̄] + · · ·
}

× ∂n(x)

∂x
. (34)

It is important to realize that due to the nonlinearity of the
system E , the harmonic oscillation of any “drive” variable χd

at frequency ω produces anharmonic oscillations of the other
variables, i.e., a different variable χ in V has components
oscillating at frequencies which are multiples of ω, including
the DC component with ω = 0. A component of χ oscillating
with a frequency

∑n
i=1 λiω, where λi ∈ {−1, 1}, is obtained

by expanding χ up to the order of n in the drive χd. Let us
denote the expansion of χ as follows:

χ (x, t ) = χ̄ + χ (1)(x, t ) + δχ (x) + χ (2)(x, t ) + · · · . (35)

Here, χ̄ represents the steady uniform value. The components
χ (1)(x, t ) and χ (2)(x, t ) oscillate at frequency ω and 2ω and
are first and second order in the drive, respectively. Finally,
δχ (x) is the second-order DC component.

For future purposes, let us specify the relations between
some components of the density n(x, t ) and of the gate-to-
channel swing for the top gate Ut (x, t ), up to second order.
From now on, we use the prime symbol to denote the deriva-
tive with respect to the density n and the bar symbol to denote

quantities evaluated at n = n̄,

χ̄ ≡ χ (n̄), χ̄ ′ ≡
(

dχ

dn

)
n=n̄

. (36)

Expanding the left- and right-hand side of Eq. (30) and equat-
ing terms of the same order, we find

Ūt = e

Ct + Cb

[
n̄ + Cb

e

�̄

e
+ Cb

e
(Vt − Vb)

]
(37)

for the homogeneous components;

U (1)
t (x, t ) = Ū ′

t n(1)(x, t ),

Ū ′
t = e

Ct + Cb

(
1 + Cb

e

�̄′

e

)
(38)

for the first-order components; and

δUt (x) = Ū ′
t δn(x) + 1

2
Ū ′′

t 〈n(1)(x, t )2〉t,

Ū ′′
t = Cb

Ct + Cb

�̄′′

e
(39)
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FIG. 2. (a) The gate-to-channel swing for the top layer and
(b) the asymmetry, as a function of the density n. Different lines
correspond to values of dt equally spaced from dt = 30 nm (solid)
to dt = 300 nm (dashed). The other parameters are db = 100 nm,
τ = 1 ps, L = 5 μm, and Vt − Vb = 10 V.

for the DC second-order components, where we have intro-
duced the time average over one period of the drive,

〈 f (t )〉t = ω

2π

∫ 2π/ω

0
dt f (t ). (40)

The derivatives of Ut with respect to n have been reduced to
the derivatives of � with respect to n because these quantities
can be calculated directly from Eq. (31).

Equation (37) is the analogous of Eq. (30) for a homoge-
neous state and, as discussed in Sec. II G, can be used together
with the other equations in E , trivially expanded at zero order,
to find the equilibrium homogeneous value of the variables
in V .

Equation (39) shows that a finite oscillating fluctuation
n(1)(x, t ) can feed into DC fluctuations δn(x), δUt (x). This
effect, called “rectification,” is generic of systems with a non-
linear “characteristic curve,” as, for example, for a FET. In
our case, the characteristic curves correspond to the relations
between Ut (n) or �(n) and n, shown in Figs. 2 and 3. While
in the rest of this paper we will focus on the rectification
generated by the hydrodynamic nonlinearities due to density
fluctuations at finite wavelength (not merely due to the non-
linearity of the characteristic curves), it is important to keep

FIG. 3. Same as in Fig. 2, but here different lines correspond to
values of Vt − Vb equally spaced from Vt − Vb = 10 V (solid) to Vt −
Vb = 100 V (dashed). The other parameters are dt = 300 nm, db =
100 nm, τ = 1 ps, and L = 5 μm.

in mind that the rectification process described by Eq. (39) is
present in a homogeneous state as well.

Finally, it is useful to calculate the derivatives of the to-
tal gate-to-channel swing U defined in Eq. (18). Deriving
Eq. (29) with respect to n, we immediately find

Ū ′ = 2Ū ′
t − �̄′

e
= e

(Ct + Ct )

(
2 + Cb − Ct

e

�̄′

e

)
≡ e

C
,

(41)

Ū ′′ = 2Ū ′′
t − �̄′

e
= Cb − Ct

Ct + Cb

�̄′′

e
. (42)

The quantity C introduced in Eq. (41) is an effective capac-
itance per unit area, which relates U and n as if they were
the gate-to-channel swing and the carrier density in a standard
single-gate, single-layer setup. The asymmetry between the
role played by the top and bottom capacitances in Eq. (41) is
simply due to the definition of �. Indeed, if one exchanges
the top and bottom indices in Eq. (2) and in Eq. (41), the
definition of C is unchanged. We also note that C may diverge
for particular choices of the capacitances. In this case, the
linearization procedure discussed in this section cannot be
used (because a small fluctuation of the swing produces a di-
vergent fluctuation of the density) and one has to resort to the
nonlinear solution of the system E as discussed in Sec. II G.
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In the limit � = 0, the effective capacitance reduces to the
average C = (Ct + Cb)/2 of the top and bottom capacitances.

III. HYDRODYNAMIC EQUATIONS

A. Continuity and Euler equations

We describe the time evolution of the electron system using
electron hydrodynamic equations [28–36]. Here, we neglect
shear and bulk viscosities [56], consistently with the hypoth-
esis (11) of low temperature. The hydrodynamic variables are
the local drift velocity v(x, t ) and the total density n(x, t ) on
the bilayer. We remind the reader that v(x, t ) is the parameter
entering the quasiequilibrium distribution (6) and n(x, t ) is
defined as in (9). The particle current is given by

j(x, t ) = n(x, t )v(x, t ). (43)

The first hydrodynamic equation is the continuity equation,
which originates from conservation of particle number. The
continuity equation reads

∂t n(x, t ) + ∂x[n(x, t )v(x, t )] = 0. (44)

The second hydrodynamic equation is the Euler equation,
which originates from conservation of momentum. The Euler
equation is derived from the Boltzmann equation, where the
collisional integral vanishes due to the choice (6) for the
probability distribution. In the case of single-layer graphene,
a detailed derivation has been reported in Ref. [39], where
the crucial role of the nonlinear relation between the average
carrier momentum and the average carrier velocity is empha-
sized. Due to this nonlinear relation, the Euler equation is
amenable to an analytical treatment in the limit v(x, t ) � vF

of small drift velocities only. In the case of the BLG, we
proceed along the lines of the derivation detailed in Ref. [39]
and, in the limit v(x, t ) � vF, we obtain the following Euler
equation:

γ (x, t )[∂tv(x, t ) + v(x, t )∂xv(x, t )]

+ e

m

ne(x, t ) − nh(x, t )

n(x, t )
∂xU (x, t )

+ 1

mn(x, t )
∂xP(x, t ) + v(x, t )∂tγ (x, t )

+v(x, t )2∂xγ (x, t ) + 1

τ
γ (x, t )v(x, t ) = 0, (45)

where U (x, t ) is defined as in Eq. (18) and the variable P(x, t )
is the pressure of the electron liquid. The last term repre-
sents friction and τ is a phenomenological relaxation time,
which represents the effect of momentum-relaxing collisions
between the electrons in the fluid element and impurities
or phonons. Straightforward application of the Boltzmann
equation in the relaxation-time approximation [11] leads to
identify τ with the electron transport relaxation time τp. How-
ever, this identity neglects interactions and correlations of
the moving electrons, and thus should be seen as a lower
bound for the parameter τ [20,28,33]. For the hydrodynamic
equations to be valid, both times must be larger than the local
equilibration time τeq. [1] For graphene, a detailed discussion
of this condition, in terms of electron mean-free paths, has
been given in Ref. [29].

In the limit kBT � εF, the dimensionless coefficient
γ (x, t ) reads

γ (x, t ) =
√

1 +
[

m�(x, t )

h̄2πn(x, t )

]2

. (46)

This term represents the local relative change in pressure of
the electronic fluid due to the existence of a nonzero inter-
layer potential-energy difference �(x, t ). If we take the limit
�(x, t ) = 0, then γ (x, t ) = 1 and we recover the standard
Euler equation for two parabolic carriers with opposite charge.
[In this limit, however, the two-band model (1) is not justi-
fied.]

It is a good approximation to neglect the gradient of the
pressure ∂xP(x, t ) with respect to the Coulomb force [39].
Finally, for definiteness, we assume that the Fermi energy lies
in the conduction band, so that ne(x, t ) � n(x, t ) > 0. In this
case, the Euler equation simplifies to

γ (x, t )[∂tv(x, t ) + v(x, t )∂xv(x, t )] = − e

m
∂xU (x, t )

−v(x, t )∂tγ (x, t ) − v(x, t )2∂xγ (x, t ) − 1

τ
γ (x, t )v(x, t ).

(47)

This is the form of the Euler equation that we use in the
following sections to study the photoresponse of a graphene
bilayer in the Dyakonov-Shur scheme. The quantities �(x, t ),
γ (x, t ), and U (x, t ) are functions of n(x, t ), which can be
computed following the procedure explained in Secs. II G
and II H. Hence, the continuity and Euler equations (44)
and (47) define a system of two coupled differential equations
for the two variables n(x, t ) and v(x, t ).

B. Boundary conditions

As anticipated in Sec. I, our aim is to calculate the DC
voltage difference between the drain and the source contacts,
which arises when an oscillating voltage difference is applied
between the top gate and the top graphene layer at the source
contact. We impose that the drain contact is floating and
no current flows. This setup is represented by the following
BCs [4]:

Ut (x = 0, t ) = U0 + Ua cos(ωt ), (48)

j(x = L, t ) = 0. (49)

To solve Eqs. (44) and (47) with the BCs (48) and (49), it is
convenient to resort to the second-order expansion introduced
in Eq. (35), which includes both oscillating and DC compo-
nents. Explicitly, the expansion reads

n(x, t ) = n̄ + n(1)(x, t ) + δn(x) + n(2)(x, t ), (50)

v(x, t ) = v̄ + v(1)(x, t ) + δv(x) + v(2)(x, t ). (51)

Here, n̄ and v̄ is the steady uniform solution, compatible with
the BCs. The linear response of the system to the driving is
represented by n(1)(x, t ) and v(1)(x, t ) and takes the form of a
linear combinations of plasma waves, which will be calculated
in Sec. IV, with amplitude proportional to Ua. The remaining
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terms represent density and velocity fluctuations with ampli-
tude proportional to U 2

a , which arise due to the nonlinear terms
in Eqs. (44) and (47).

The components of the expansion of the current j(x, t )
can be obtained from the components of n(x, t ) and v(x, t )
in Eqs. (50) and (51). Expanding the left- and right-hand side
of the definition (43), and equating components of different
order and frequency, we find the relations

j̄ = n̄v̄, (52)

j (1)(x, t ) = n̄v(1)(x, t ) + v̄n(1)(x, t ), (53)

δ j(x) = n̄δv(x) + 〈
n(1)(x, t )v(1)(x, t )

〉
t , (54)

where the time average is defined in Eq. (40).
From Eq. (48), we obtain the BCs for the components

of the density at x = 0, by setting Ūt = 0, U (1)
t (0, t ) =

Ua cos (ωt ), and δUt (0) = 0 in Eqs. (37)–(39). The value of
U0, together with the parameter Vt − Vb, determines the equi-
librium density n̄ = n(U0), as seen from Eqs. (30) and (31).
Moreover, we find that

n(1)(0, t ) = Ua

Ū ′
t

cos (ωt ). (55)

Equation (49) implies that each component in the current
expansion has to be set to zero at x = L. Setting the right-hand
sides of Eqs. (52)–(54) equal to zero, we obtain the BCs for
the components of the velocity at x = L: v̄ = 0,

v(1)(L, t ) = 0, (56)

and n̄δv(L) = −〈n(1)(L, t )v(1)(L, t )〉t . The six BCs for the
components of the density and of the velocity will be used
in the following algebraic manipulations.

IV. PLASMA WAVES

A. Freely propagating plasma waves

It is well known that the gated electron system in the hy-
drodynamic regime supports the propagation of longitudinal
modes known as plasma waves [2–5], with linear dispersion
ω = sk, where ω, s, and k are the angular frequency, the
speed, and the wave vector of the plasma wave, respectively.
Before we proceed to the calculation of the DS photoresponse,
we calculate the plasma-wave speed s. In systems with a
parabolic electron dispersion, the average value v̄ of the elec-
tron fluid speed affects the plasma-wave speed s consistently
with the Galilean invariance underlying the electronic spec-
trum, i.e., ω = (v̄ ± s)k [2]. Notably, it has been shown that
this is not the case in graphene [39], where a measurement
of the plasma-wave dispersion would reveal the absence of a
Galilean-invariant spectrum [57]. When particular boundary
conditions (BCs) are imposed in a finite-size sample, the
Galilean invariance is of course broken and the plasma waves
have a BC-dependent spectrum, which may even feature un-
stable modes giving rise to self-sustained oscillations [2].

In our case, as discussed in Sec. III B, a bias current
through the sample is absent, and thus we calculate the
plasma-wave speed assuming v̄ = 0. Expanding the continu-

ity and Euler equation at first order, we find

∂tn
(1)(x, t ) + n̄∂xv

(1)(x, t ) = 0, (57)

n̄∂tv
(1)(x, t ) = e2n̄

mCγ̄
∂xn(1)(x, t ) − 1

τ
n̄v(1)(x, t ), (58)

where we use the notation introduced in Eq. (36), the effective
capacitance C defined in Eq. (41), and the first-order expan-
sion of density and of the velocity introduced in Eqs. (50)
and (51). To solve Eqs. (57) and (58), we use an ansatz
representing traveling waves,

n(1)(x, t ) = nK eiKx−i�t + n∗
K e−iK∗x+i�t ,

v(1)(x, t ) = vK eiKx−i�t + v∗
K e−iK∗x+i�t , (59)

where we assume that the wave vector K is in general complex
and the frequency � is real. We require that Re[K] × Im[K] >

0, i.e., the traveling wave is damped in the direction of propa-
gation.

We note that, usually, the calculation of the spectrum as-
sumes that the wave vector is real and the frequency is in
general complex. Which choice is most convenient depends
on the BCs. The usual choice is appropriate when the BCs
are local in time but respect the spatial symmetry of the
system, i.e., they represent the initial value of the amplitude
of a well-defined spatial mode. The spatial quantum number
is conserved in the time evolution, but the mode amplitude
decays in time. Our choice, instead, is more appropriate for
BCs such as (48) and (49), which are local in space and
break the translational invariance of the continuity and Euler
equations, but oscillate in time with a given frequency. The
mode amplitude is then forced to oscillate periodically, but
it decays in space away from the point where the driving is
applied.

Inserting the ansatz (59) into Eqs. (57) and (58), we obtain
the following linear system for the coefficients vK , nK :(

� + i/τ −Ke2/(mCγ̄ )

−n̄K �

)(
vK

nK

)
= 0. (60)

Solving the associated secular equation, we find that there are
two modes at frequency �, with wave vectors K = k(�) and
K = −k(�), where we introduce the dispersion relation

k(ω) ≡ ω

s

√
1 + i

ωτ
, s ≡

√
e2n̄

mCγ̄
, (61)

and the plasma-wave speed s. If ω > 0, the complex square
root is chosen with a positive imaginary part to fulfill the
condition Re[K] × Im[K] > 0.

In the limit ωτ � 1 of negligible friction, we recover the
linear plasma-wave dispersion relation. The expression of the
plasma-wave speed valid in the parabolic case [2] is recovered
in the limit �(x, t ) = 0, when γ̄ = 1 and C = (Ct + Cb)/2.
The second line of the linear system (60) gives the relation
between the coefficients of the velocity and the density in the
ansatz,

vK = �

K

nK

n̄
, (62)

which is just a reformulation of the continuity equation.

085426-8



MICROSCOPIC THEORY OF PLASMON-ENABLED … PHYSICAL REVIEW B 103, 085426 (2021)

B. Plasma waves in the finite-size system

A generic solution of the linearized hydrodynamic equa-
tions, fulfilling the BCs defined in Sec. III B, is necessarily
a linear superposition of the two independent solutions with
� = ω and K = ±k(ω),

n(1)(x, t ) = nk(ω)e
ik(ω)x−iωt + n−k(ω)e

−ik(ω)x−iωt + c.c.,

v(1)(x, t ) = vk(ω)e
ik(ω)x−iωt + v−k(ω)e

−ik(ω)x−iωt + c.c. (63)

In other words, traveling waves are reflected at the boundaries
of the system, such that the solution is a superposition of
traveling waves with opposite wave vectors. Each traveling
wave is damped in space in the direction of propagation.

Inserting these modes superposition into Eq. (55), we
find nk(ω) + n−k(ω) = na/2, and into Eq. (56), we find
vk(ω)eik(ω)L + v−k(ω)e−ik(ω)L = 0. Using Eq. (62), we obtain
the coefficients

n±k(ω) = Ua

2Ū ′
t

1

1 + e±2ik(ω)L
,

v±k(ω) = ± Ua

2Ū ′
t n̄

ω

k(ω)

1

1 + e±2ik(ω)L
. (64)

V. PHOTOVOLTAGE

A. Expression for the photovoltage from the
hydrodynamic equations

The photovoltage is the difference of the DC gate-to-
channel swing for the top layer between the drain and the
source contacts,

�Ut ≡ δUt (L) − δUt (0). (65)

Because of the BC (48), the expression of the photovoltage
simplifies to �Ut = δUt (L). In terms of hydrodynamic vari-
ables, with Eq. (39) we find

�Ut = Ū ′
t δn(L) + 1

2Ū ′′
t

〈
n(1)(L, t )2

〉
t. (66)

The time average on the right-hand side can be directly cal-
culated using the expressions (63) of the linear modes. Now
we proceed to express the quantity δn(L) in terms of averages
of linear modes as well. We first expand Eqs. (44) and (47) to
second order, obtaining

∂t n
(2)(x, t ) + n̄∂x

[
δv(x) + v(2)(x, t )

]
+∂x

[
n(1)(x, t )v(1)(x, t )

] = 0 (67)

and

n̄
[
∂tv

(2)(x, t ) + v(1)(x, t )∂xv
(1)(x, t )

]
= −s2∂x

[
δn(x) + n(2)(x, t )

] − 1

τ
n̄
[
δv(x) + v(2)(x, t )

]

−s2 Ū ′′

Ū ′ n(1)(x, t )∂xn(1)(x, t )

− γ̄ ′n̄
γ̄

(
∂t − 1

τ

)[
n(1)(x, t )v(1)(x, t )

]
. (68)

The derivative of the function γ with respect to the density
can be written as

γ̄ ′ = γ̄ 2 − 1

γ̄ n̄

(
�̄′n̄
�̄

− 1

)
∼

( m

h̄2π n̄

)2
�̄(�̄′n̄ − �̄). (69)

The asymptotic form is valid for �̄ � h̄2π n̄/m and shows that
in this limit, γ̄ ′ vanishes. Then we take the time average of the
second-order equations over one period of the applied voltage,
obtaining

n̄∂xδv(x) + ∂x
〈
n(1)(x, t )v(1)(x, t )

〉
t = 0 (70)

and

n̄
〈
v(1)(x, t )∂xv

(1)(x, t )
〉
t

= −s2∂xδn(x) − 1

τ
n̄δv(x) − s2 Ū ′′

Ū ′
〈
n(1)(x, t )∂xn(1)(x, t )

〉
t

− 1

τ

γ̄ ′n̄
γ̄

〈
n(1)(x, t )v(1)(x, t )

〉
t. (71)

We now integrate Eq. (70) in space from a generic x to x =
L and substitute the result for δv(x) into Eq. (71). We then
integrate the resulting equation in space from x = 0 to x = L
and we find the desired expression for δn(L),

δn(L) = δn(0) +
(

1 − γ̄ ′n̄
γ̄

)
1

s2τ

×
∫ L

0
dx

〈
n(1)(x, t )v(1)(x, t )

〉
t

−1

2

Ū ′′

Ū ′
[〈

n(1)(L, t )2
〉
t − 〈

n(1)(0, t )2
〉
t

]
+s

1

2

n̄

s2

〈
v(1)(0, t )2

〉
t. (72)

Inserting this expression into (66), we obtain the photovolt-
age in terms of average of linear modes,

�Ut =
(

1 − γ̄ ′n̄
γ̄

)
Ū ′

t

s2τ

∫ L

0
dx

〈
n(1)(x, t )v(1)(x, t )

〉
t

+ 1

2

Ū ′
t n̄

s2

〈
v(1)(0, t )2

〉
t

+ 1

2

(
Ū ′′

t − Ū ′
t
Ū ′′

Ū ′

)[〈
n(1)(L, t )2

〉
t − 〈

n(1)(0, t )2
〉
t

]
.

(73)

In this expression, the terms proportional to the first derivative
of the function γ or to the second derivatives of the swings
are peculiar to the bilayer system considered here, and do not
appear in the analogous expression for a 2DEG channel. The
term γ̄ ′ represents the change of pressure with density and Ū ′′,
Ū ′′

t represent quantum capacitance effects, i.e., the nonlinear
scaling of the electric potentials with the electric charge on
the conducting surfaces. Both of these effects are due to the
existence of the asymmetry �(x, t ) between the states in the
two layers, generated by asymmetric gating of the top and
bottom layers. These derivatives are expressed in terms of
derivatives of �(n) with respect to n at the equilibrium density
n = n̄ in Eqs. (38), (39), (41), (42), and (69).
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B. Photoresponse function

The values of the space and time averages in Eq. (73) can
be evaluated directly using the expression (63) of the linear
modes. We find

�Ut = 1

4

U 2
a

Ū ′
t n̄

F (ω), (74)

which is explicitly a second-order expression in the strength
Ua of the driving field. The frequency dependence is given by
the dimensionless nonlinear response function,

F (ω) =
(

1 − γ̄ ′n̄
γ̄

− Ū ′′
t n̄

Ū ′
t

+ Ū ′′n̄
Ū ′

)

×
{

1 − 1

cos [k(ω)L] cos [k(ω)∗L]

}

+
(

1 − 1

2

γ̄ ′n̄
γ̄

)
β(ω) tan [k(ω)L] tan [k(ω)∗L],

(75)

where the function k(ω) is given in Eq. (61) and

β(ω) ≡ 2ωτ√
1 + (ωτ )2

. (76)

Equation (75) is the main result of this work. The function
β(ω) is a frequency-dependent contribution to the photore-
sponse that is independent of the channel length L. It saturates
to β(ω) → 2 for ωτ � 1 and vanishes in the limit ωτ � 1,
i.e., when the external driving is much slower than the damp-
ing rate 2π/τ , where τ is the phenomenological relaxation
time which appears in the Euler equation, given by Eq. (45).
We also remind the reader that γ̄ [defined in Eq. (46)] repre-
sents the local relative change in electronic pressure, evaluated
at the equilibrium density n̄, and γ̄ ′ is its derivative with
respect to the density, explicitly given in Eq. (69).

The response function is shown in Fig. 4 for a few sets
of parameters. The typical frequency dependence of the pho-
toresponse function consists of resonant maxima at the odd
multiples of the fundamental plasma angular frequency,

ωP = 1

4
× 2π

s

L
. (77)

The ratio s/(2L) corresponds to the frequency arising when
a wave travels along the system of length L with speed s and
is reflected by the boundaries. The extra factor 1/2 is due to
the asymmetric BCs imposed on the system. The frequency
dependence and the scaling with the momentum relaxation
time τ has already been studied in detail in the literature [2–5].

We point out that k(ω) depends on n̄ through s [see
Eq. (61)], such that all terms in Eq. (75) depend on the
equilibrium density. However, when ωτ � 1, β → 2 and
the periodic functions in Eq. (75) depend only on the ratio
ω/ωP. In other words, changing the density merely rescales
the response function in frequency space. In this regime, the
amplitude of the photoresponse is governed by the coeffi-
cients γ , Ut , and their derivatives with respect to the density,
which are shown in Figs. 5 and 6 for a set of parameters.
We notice, in particular, that the density dependence of the
relative pressure change γ spans several orders of magnitude,
while the quantum capacitance terms are nonmonotonic. The

FIG. 4. Photoresponse function F (ω) as a function of the ratio
between the angular frequency ω of the applied voltage and the
fundamental plasma angular frequency ωP defined in Eq. (77), for
(a) dt = 30 nm and (b) dt = 300 nm. The other parameters are db =
100 nm, τ = 1 ps, L = 5 μm, Vt − Vb = 100 V, n = 0.1 (solid), 1.0
(dotted), and 5.0 × 1012 cm−2 (dashed).

final combination of these terms in the prefactor of Eq. (75)
depends on the choice of the parameters. Thus, compared
to the DS photoresponse of a single-layer graphene FET,
Eq. (75) displays a more varied dependence on the system’s
parameters, which translates into an easier tuning of the FET’s
operation point to a sweet spot by electrical doping.

VI. SUMMARY AND PERSPECTIVES

In this paper, we have presented a detailed theory of the
photoresponse in a dual-gated, bilayer-graphene field-effect
transistor, based on the effect of nonlinear interference of
plasma waves introduced by Dyakonov and Shur.

The nonlinear relations between the electron density and
the other quantum, thermodynamic, and electrostatic vari-
ables are particularly intricate in this geometry and lead to
the effective constitutive equation (31), which describes the
coupling between the macroscopic electron density n and
the microscopic asymmetry potential �. The hydrodynamic
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FIG. 5. (a) The function γ (n) and (b) its derivative γ ′, rescaled
to be dimensionless, as a function of the density n. Different lines
correspond to values of Vt − Vb from 10 to 100 V, increasing in steps
of 10 V, as indicated by the arrows. The other parameters are dt =
300 nm, db = 100 nm, τ = 1 ps, and L = 5 μm.

equations describing the electron system include a new
term (46) which represents the effect of the asymmetry poten-
tial on the electron pressure. As a consequence, the physics
of the plasma waves is considerably more involved than
in single-layer graphene because a local oscillation of the
electron density induces nonlinear oscillations of the asym-
metry potential. This leads, in turn, to nontrivial quantum
capacitance effects, which appear as leading-order correc-
tions to the expression for the photoresponse (75). The final
photoresponse at fixed frequency varies over a broad range,
depending on the system’s parameters, making it easier to tune
a photodetector to an operational sweet spot by changing the
equilibrium density.

Recent experimental results [27], demonstrating reso-
nant photodetection using bilayer graphene encapsulated in
hexagonal boron nitride, show the possibility to verify our pre-
dictions in real-world devices, with the aim of maximizing the
photoresponse by carefully tuning the system’s parameters.

More generally, we anticipate that the investigation of other
two-dimensional van der Waals heterostructures might lead
to an enhanced platform for Dyakonov-Shur photodetection.
Indeed, in recent years, a large number of two-dimensional
materials has been explored [58,59]; the propagation of cou-

FIG. 6. (a) Second derivative of the gate-to-channel swing for the
top gate Ut (n) and (b) of the sum of the swings U (n), as a function
of the density n. Parameters are chosen as in Fig. 5.

pled light-matter excitations in these materials has been the
subject of continuing investigations [60–62]; and imaging
techniques for two-dimensional samples in the terahertz range
have been refined [63,64]. Electronic states in these materials
are described in terms of microscopic Hamiltonians which,
when appropriately taken into account in the derivation of the
photoresponse, might lead to enhanced quantum capacitance
effects, or even more exotic couplings between quantum and
thermodynamic degrees of freedom, improving the photore-
sponse.
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APPENDIX: BROADBAND PHOTORESPONSE

It is of practical interest to evaluate the photovoltage �Ut

[see Eq. (74)] in the limit (i) ωτ � 1 or broadband limit,
corresponding to overdamped plasma oscillations, and (ii)
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L � ωs, corresponding to a long detection device. These
limits cover the majority of currently available devices where
coherent propagation and interference of plasma waves over
length scales of several microns is hampered by losses. In
these limits, the functional dependence of the photovoltage on
the frequency in Eq. (75) vanishes and we find

�Ut = 1

4

U 2
a

Ū ′
t n̄

(
1 − γ̄ ′n̄

γ̄
− Ū ′′

t n̄

Ū ′
t

+ Ū ′′n̄
Ū ′

)
. (A1)

An alternative route to the calculation of the photoresponse in
the broadband limit is discussed in the rest of this section.

First, in the Euler equation (47), we neglect both terms
γ (x, t )∂t n(x, t ) and n(x, t )∂tγ (x, t ) with respect to the product
γ (x, t )n(x, t )/τ . This approximation is justified by substitut-
ing ∂t with ω and using the limit (i) above. For consistency, in
the same limit, we also neglect the terms which are quadratic
in the velocity. Indeed, by dimensional considerations, we
expect the amplitude of the velocity squared to be proportional
to |ω/k(ω)|2 ∝ ωτ � 1. In Eq. (75), the contribution from the
terms quadratic in the velocity is multiplied by β(ω), which
indeed vanishes in the limit (i). With these approximations,
the Euler equation yields

v(x, t ) = − τe

mγ (x, t )
∂xU (x, t ). (A2)

As discussed at the end of Sec. II H, we can rewrite this
equation as

v(x, t ) = − τe

mγ (x, t )

(
dU

dn

)
n=n(x,t )

×
(

dUt

dn

)−1

n=n(x,t )

× ∂xUt (x, t ). (A3)

Multiplying both sides of the equation by −en(x, t ), introduc-
ing the charge current density J (x, t ) = −en(x, t )v(x, t ), and
recognizing that E (x, t ) = ∂xUt (x, t ) is the electric field due

to the external perturbation, we find the Ohm’s law J (x, t ) =
σt (x, t )E (x, t ) with the effective conductivity

σt (x, t ) = τe2n(x, t )

mγ (x, t )

(
dU

dn

)
n=n(x,t )

×
(

dUt

dn

)−1

n=n(x,t )

. (A4)

We point out that σt (x, t ) is a function of electrostatic vari-
ables and thus, as discussed in Sec. II H, its space and time
dependence can be rewritten as σt (x, t ) = σt (Ut (x, t )).

The second step of the derivation is to insert the expression
for v(x, t ) into the continuity equation, where we also rewrite

∂tn(x, t ) = −e

(
dn

dUt

)
Ut=Ut (x,t )

× ∂tUt (x, t )

≡ C̃t (Ut (x, t ))∂tUt (x, t ), (A5)

where C̃t is an effective capacitance per unit area. The conti-
nuity equation then reads

−C̃t (Ut (x, t )) × ∂tUt (x, t ) + σt (Ut (x, t )) × ∂2
x Ut (x, t )

+
(

dσt

dUt

)
Ut=Ut (x,t )

× (∂xUt (x, t ))2 = 0. (A6)

This is a diffusion equation for Ut (x, t ), which has to be solved
together with the BCs (48) and (49). This equation is identical
to Eq. (3) in Ref. [65] and its solution is discussed there. The
expression for the photovoltage, in the long device limit (ii),
reads [65]

�Ut = 1

4
U 2

a
1

σt (Ūt )

(
dσt

dUt

)
Ut=Ūt

. (A7)

Deriving the expression (A4), we find

1

σt (Ūt )

(
dσt

dUt

)
Ut=Ūt

= 1

Ū ′
t n̄

(
1 − γ̄ ′n̄

γ̄
− Ū ′′

t n̄

Ū ′
t

+ Ū ′′n̄
Ū ′

)
,

(A8)
and thus we exactly recover the result (A1).
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