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Plasmons and magnetoplasmon resonances in nanorings
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Plasmonic sensors based on metallic nanorings benefit from resonances covering a wide spectral range and
homogeneous cavity fields. Here, we explore the potential for nanorings in active plasmonics by examining
the tunability of plasmon resonances due to external magnetic fields. Within the electrostatic approximation, we
compute plasmon resonances and their shifts in magnetic fields for both solid and planar nanorings. In particular,
solid nanorings of circular, elliptical, and disk-shaped cross sections are critically examined and compared to
planar rings. Overall, we find that magnetoplasmon shifts in nanorings are greatly reduced compared to standard
nanoparticles. However, flat geometries are found to be preferable and allow for relatively large shifts.
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I. INTRODUCTION

Nanorings are useful in plasmonic sensors and related
devices. Their plasmon resonances are highly sensitive to
changes in surrounding analyte concentration and the local
field inside the ring cavity is relatively homogeneous [1,2].
This is of practical importance for field enhancement in sen-
sors designed to detect analytes placed at a distance from the
nanoparticle surface, such as sensors relying on binding to
antibodies [2]. Moreover, a wide range of resonance wave-
lengths are available by varying the ratio between inner and
outer radii. Traditionally, solid nanorings have been fabricated
from noble metals and support resonances across the visible or
near-infrared range [1,2]. Recently, however, planar nanorings
based on graphene have emerged [3], extending the range of
available resonances far into the deep infrared.

While nanostructures with fixed resonances are normally
considered, active plasmonics has recently been employed to
increase device sensitivity [4–6]. By shifting plasmon reso-
nances using external magnetic fields, it is possible to isolate
the sensor response from background signals using lock-in or
phase-sensitive detection. To this end, it is crucial that large
magnetoplasmon shifts are obtained. For simple nanoparticles
such as nanospheres and nanodisks, a perturbative analysis
[7] shows that the maximal sensitivity to magnetic fields is
found for ellipsoidal shapes including spheres. The simple
explanation is that these shapes support plasmon modes, in
which electrons always move in the plane perpendicular to the
magnetic field, thereby maximizing the Lorentz force. Such
modes are not found in, e.g., nanodisks, in which the internal
electric field has significant out-of-plane components in the
vicinity of corners [7].

In the present work, we extend the analysis of magneto-
plasmon resonance shifts to nanoring geometries. We consider
quite general geometries, in which a circular, elliptical, or
disk-shaped cross section is revolved around a displaced axis
of revolution, thereby producing a toroidal nanostructure as
shown in Fig. 1(a). We restrict the analysis to the electrostatic
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regime, in which the resonance eigenvalue problem is scale
invariant [8–11]. Hence, resonances only depend on relative
geometrical measures such as the ratio between inner and
outer radii. The width of the cross section is 2 a and the mean
radius of the toroid is R. Hence, the axis of revolution, taken
as the z axis, is displaced by R relative to the center of the
cross section. We allow R to take values less than a, in which
case a “spindle toroid” is formed; see Fig. 1(b). The border
case R = a produces a “horn toroid” and a true toroid with a
punctured center is formed if R > a. We consider both solid
nanorings as well as planar ones with a vanishing thickness.
Such planar nanorings can be realized in graphene, in which
sheet thickness is many orders of magnitude smaller than radii
in the ring geometry [3].

By construction, the nanoring geometries are cylindrically
symmetric. Moreover, the external magnetic field is assumed
along the symmetry axis, as seen in Fig. 1(a). In this manner,
cylindrical symmetry is preserved even in the presence of
the field. This allows for a very efficient formulation of the
localized surface plasmon resonance eigenvalue problem that
essentially becomes one dimensional. Magnetoplasmons are
sometimes grouped into edge, surface, and bulk plasmons
depending on the characteristic trajectories of electrons. In
the present approach, all types are handled on equal footing
and we do not distinguish between them. In Refs. [7,10],
techniques for treating the normal nanoparticle problem, i.e.,
taking R = 0, were presented. By extension of these tech-
niques, we show how toroidal geometries can be handled
similarly. Magnetoplasmon resonance shifts are found from
a perturbative approach that takes the zero-magnetic-field
eigenmode as input. Hence, the complicated problem of solv-
ing the eigenvalue problem in the presence of a magnetic field
is circumvented in this manner. This enables us to compute
resonance shifts (normalized by the cyclotron frequency) that
are universal functions of geometrical ratios only.

II. SOLID NANORINGS

Solid nanoring geometries with cylindrical symmetry are
constructed using the approach outlined in Fig. 1(b). Here,
a circular, elliptical, or disk-shaped cross section defines the
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FIG. 1. Nanoring geometry. (a) Toroid in magnetic field aligned
along the symmetry axis. (b) Toroidal geometries (left) gener-
ated from an elliptical cross section (right) by different radii of
revolution R.

toroidal geometry when the radius of revolution R is specified.
All structures are invariant under rotation by the azimuthal
angle ϕ defined in Fig. 1(a). The cross sections themselves
have horizontal widths of 2 a and heights that may be both
larger and smaller than 2 a. We parametrize a cross section by
the polar angle θ and local radius r = r(θ ) shown in the bot-
tom panel of Fig. 1(b). The angle spans the range θ ∈ [θ−, θ+]
that, in the case of a full toroid, is θ ∈ [−π/2, 3π/2] while a
smaller range applies for a spindle toroid. In this manner, the
plasmon eigenvalue problem is formulated using θ as the only
variable, so that the problem is effectively one dimensional
[10,11].

We note that electrostatic plasmon modes in nanotori as-
suming R > a have previously been analyzed using toroidal
coordinates [12,13]. These studies did not consider magnetic
fields and were strictly limited to circular cross sections.
Hence, this approach is not suited for the present work, in
which a variety of cross sections are considered. Moreover,
we find that the present approach is actually quite efficient
computationally and converges rapidly as the angular grid is

refined. We use nonequidistant angular grids and take care to
add many grid points near corners (based on local variation of
the normal vector). As many as ∼4000 grid points are applied
for the most demanding geometries.

Throughout, we assume nanorings embedded in a ho-
mogeneous and isotropic medium with dielectric constant
ε1. The nanoring itself is characterized by an isotropic but
frequency-dependent dielectric constant ε(ω) in the absence
of a magnetic field. However, in an external field �B = Bẑ
or, equivalently, internal magnetization aligned along z, the
nanoring response is of the gyrotropic form [14],

↔
ε =

⎛
⎜⎝

εxx εxy 0

−εxy εxx 0

0 0 εzz

⎞
⎟⎠. (1)

In a lossless Drude metal with plasma frequency ωp

and cyclotron frequency ωc = eB/me, we have [14–16]
εzz = ε∞ − ω2

p/ω
2, εxx = ε∞ − ω2

p/(ω2 − ω2
c ), and εxy =

iωcω
2
p/[ω(ω2 − ω2

c )]. Hence, corrections due to the magnetic
perturbation are of second or higher order for the diagonal
tensor elements. The off-diagonal response εxy, however, is
proportional to B in a first-order approximation. This, there-
fore, is the dominant effect in weak fields and leads to Faraday
rotation and related phenomena with a linear B-field depen-
dence. Hence, as an approximation valid in weak fields εxx ≈
εzz ≡ ε = ε∞ − ω2

p/ω
2 and εxy(ω) ≈ iωcω

2
p/ω

3. Below, we
apply this simplified form but higher order corrections are
discussed in Sec. IV.

Plasmon modes are classified as either vertical (z direc-
tion) or horizontal (x,y plane), as dictated by the polarization
of the incident excitation. We apply the surface charge ap-
proach to formulate the eigenvalue problem [7–11]. This is
a highly computationally efficient framework, in which a
geometry-dependent integral equation provides plasmon res-
onances. In the electrostatic regime, a given geometry leads
to characteristic eigenvalues that subsequently translate into
actual frequencies once a dielectric constant is specified for
the material; see, e.g., Refs. [7–11] for examples. A position
on the nanoring surface is specified by the angles (θ, ϕ).
For a vertical eigenmode, symmetry demonstrates that surface
charge σ is independent of azimuthal angle ϕ, i.e., σ = σ (θ ).
In contrast, horizontal eigenmodes vary as σ±(θ ) exp(±iϕ).
To linear order in the magnetic field, the vertical plasmon
modes are unaffected and their eigenvalue condition reads [7]

σ (θ ) = ε − ε1

ε + ε1

∫ θ+

θ−
G(v)

n (θ, θ ′)σ (θ ′)S(θ ′)dθ ′. (2)

The horizontal modes, in contrast, are modified by the
magnetic perturbation and their eigenvalue problem is of the
form

σ±(θ ) = ε − ε1

ε + ε1

∫ θ+

θ−

{
G(h)

n (θ, θ ′) ± iεxy

ε − ε1
F (h)

ϕ (θ, θ ′)
}
σ±(θ ′)S(θ ′)dθ ′. (3)

In these expressions, the integral kernels are given by

G(v)
n (θ, θ ′) = [nz(r cos θ − r′ cos θ ′) + nx(R + r sin θ )]F0,1(x, y) − nx(R + r′ sin θ ′)F1,1(x, y), (4)
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and

G(h)
n (θ, θ ′) = [nz(r cos θ − r′ cos θ ′) + nx(R + r sin θ )]F1,1(x, y) − nx(R + r′ sin θ ′)F2,1(x, y),

F (h)
ϕ (θ, θ ′) = nx(R + r′ sin θ ′)[F0,1(x, y) − F2,1(x, y)], (5)

for the vertical and horizontal cases, respectively, with ni the Cartesian components of the normal vector at angle θ . The Fm,n(x, y)
functions are defined in Ref. [10] and their arguments are

x = r2 + r′2 − 2rr′ cos θ cos θ ′ + 2R2 + 2R(r sin θ + r′ sin θ ′), y = −2(R + r sin θ )(R + r′ sin θ ′). (6)

The expressions in Eqs. (4)–(6) are generalizations of the corresponding results derived for cylindrically symmetric nanopar-
ticles to allow for a finite radius of revolution R and agree with previous expressions [10] in the limiting case R = 0. Similarly,
a surface area element in the toroidal geometry is dS = S(θ )dθdϕ with area function S(θ ) generalized to the R 
= 0 case, i.e.,
S(θ ) = r(θ )(R + r(θ ) sin θ )/(nx sin θ + nz cos θ ).

The perturbative solution for the horizontal case in Eq. (3) starts from solving the unperturbed problem

σ0(θ ) = λ0

∫ θ+

θ−
G(h)

n (θ, θ ′)σ0(θ ′)S(θ ′)dθ ′ (7)

to obtain the zeroth-order eigenfunction σ0(θ ) and eigenvalue λ0 = [ε(ω0) − ε1]/[ε(ω0) + ε1]. Here, ω0 is the unperturbed
plasmon resonance that can be found provided a specific model for ε(ω) is assumed. Collecting first-order terms in Eq. (3), the
perturbed eigenvalue becomes

λ ≈ λ0 ± iεxy(ω0)λ0(λ0 − 1)

2ε1

∫ θ+

θ−

∫ θ+

θ−
σ

†
0 (θ )F (h)

ϕ (θ, θ ′)σ0(θ ′)S(θ ′)dθ ′dθ, (8)

where σ
†
0 (θ ) is the adjoint eigenfunction. This implies the simple shifted resonances ω± = ω0 ± 1

2	ω with

	ω ≈ ωc
λ0

λ0 − 1

∫ θ+

θ−

∫ θ+

θ−
σ

†
0 (θ )F (h)

ϕ (θ, θ ′)σ0(θ ′)S(θ ′)dθ ′dθ. (9)

If a dispersive interband response ε∞(ω) ≈ ε∞(ω0) +
ε′
∞(ω0)(ω − ω0) is allowed for, the shift is multiplied by an

additional factor of [1 + ε′
∞(ω0)ω3

0/(2ω2
p)]−1. Since, gener-

ally, the resonance ω0 is significantly smaller than the bare
plasma frequency ωp in metallic nanoparticles, the extra factor
is close to unity. It is conceivable, however, that the shift
could be enhanced by exploiting spectral regions of anoma-
lous interband dispersion, i.e., ε′

∞(ω0) < 0. The perturbed
resonances ω± are symmetrically displaced by ± 1

2	ω relative
to ω0. The splitting 	ω itself is found to be positive for the
lowest plasmon in all structures. For higher plasmons with a
more complicated mode structure, however, negative values
occur.

We first analyze the bare plasmon modes in the absence
of magnetic perturbations. As representative geometries, we
select toroids formed from cross sections that are circular,
prolate, and oblate elliptical, and disk-shaped with corners
rounded by radii of h/4. In Fig. 2, vertical and horizontal
modes are depicted as blue and red curves, respectively, for
Ag nanorings (h̄ωp = 9.3 eV and ε∞ = 5) in air (ε1 = 1).
The vertical and horizontal nanoparticle modes at R = 0 be-
have as expected. Thus, modes are degenerate for spheres,
while modes polarized along nanoparticle long axes are red-
shifted compared to short-axes modes for ellipsoids and disks.
As R is increased, horizontal modes redshift further, while
vertical modes blueshift or remain approximately constant.
Accordingly, the modes cross for prolate ellipsoids near the
formation of a horn toroid at R = a. The “flat” nanorings,
i.e., oblate elliptical or disk-shaped, provide the largest red-

shifts. Hence, horizontal plasmon modes in such geometries
are suitable for obtaining resonances in the infrared. Similar
findings are known from flattened solid nanoparticles such
as oblate ellipsoids [11]. The surface charge distributions in

FIG. 2. Toroid resonances for vertical (blue) and horizontal (red)
modes of Ag nanorings in air. The applied cross sections shown at
R = 0 have different height/width (h/2a) ratios. The panels show
(a) spherical h/2a = 1, (b) prolate elliptical h/2a = 2, (c) oblate
elliptical h/2a = 1/2, and (d) disk-shaped h/2a = 1/2 cross sec-
tions, respectively. Surface charge distributions for R/a = 0 and 2
are included in (d).
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FIG. 3. Magnetoplasmon shifts of nanorings based on elliptical
(top panel) and disk-shaped (bottom panel) cross sections. For disks,
rounding radii at the corners are h/4. Surface charge distributions
are shown for flattened and barrel-shaped horn toroids (R = a) with
elliptical cross section.

Fig. 2(d) demonstrate that a much larger dipole is induced in
the nanoring compared to a nanoparticle with the same cross
section, due to the larger lateral extent. Also, in nanorings
opposite segments of the ring are oppositely charged and,
thereby, concentrate the electric field in the ring cavity. This,
essentially, is the reason behind the homogeneous cavity field
mentioned above.

Next, we turn to the magnetoplasmon resonances. We aim
to determine how the cross-sectional height/width ratio as
well as the radius of revolution affect the magnetoplasmon
shift 	ω. Clearly, a large value of 	ω is desirable for active
plasmonics. As will be made apparent, however, redshifting
resonances by forming nanorings rather than nanoparticles
leads to a substantial reduction of the magnetoplasmon shift.
Our results are based on Eq. (9), which is universally valid for
Drude metals and only requires geometrical input. Moreover,
within scale-invariant electrostatics, only ratios such as h/2a
and R/a matter.

Results for elliptical and disk-shaped cross sections are
illustrated in Fig. 3. Ellipses are special, in that 	ω/ωc = 1
at R = 0 irrespective of ellipticity. Again, this is a conse-
quence of the strictly horizontal internal field allowed by
these geometries. In contrast, shifts decrease for disks as their
heights increase, in agreement with Ref. [7]. A clear trend
supported by both geometries is that flatter structures are
better as they lead to larger shifts. This finding is explained
by comparing the surface charge distributions shown for flat
and barrel-shaped nanorings. Surface charges accumulate in
regions having a large curvature, which means that dipoles
form only in the top and bottom portions of the h/2a = 1.5

FIG. 4. Planar nanoring with mean radius R and width 2 a in
perpendicular magnetic field.

barrel toroid. In contrast, the flat nanoring with h/2a = 0.5
supports a dipole across the central part. As a consequence,
the internal electric field has a large horizontal component,
which translates into a large magnetoplasmon shift due to the
Lorentz force that is maximal for perpendicular electric and
magnetic fields. Hence, such flat geometries appear to support
useful shifts. However, the shift decreases dramatically as the
toroidal geometry expands. Thus, around R ∼ 4a, shifts are
reduced to roughly 10% of their nanoparticle values. This
must be contrasted with the resonance frequency itself, which
only decreases by about 50%, cf. Fig. 2. Hence, the relative
shift is still reduced to 20–30% of the nanoparticle result. As
a consequence, active plasmonics based on magnetoplasmon
shifts in nanorings appears less promising. The homogeneous
field provided by the cavity may still render ring geometries
attractive for sensing purposes, however, and it is important to
identify designs allowing for relatively large magnetoplasmon
shifts in active nanoring plasmonic sensors.

III. PLANAR NANORINGS

Nanostructured graphene has extended the range of avail-
able geometries to a different regime, in which height is orders
of magnitude smaller than other characteristic measures such
as a and R in nanorings. An appropriate description of these
planar geometries starts from the premise that the material
has zero thickness [17–21]. In this manner, the plasmonic
response is formulated in terms of the sheet instead of bulk
response. Conventionally, the graphene response is expressed
via the conductivity rather than susceptibility. For the Drude
metal discussed above, the bulk conductivities are σ (ω) =
iε0ω(ω2

p/ω
2 + 1 − ε∞) and σxy(ω) = ε0ωcω

2
p/ω

2. The corre-
sponding sheet quantities are simply obtained by multiplying
with the sheet thickness h. In narrow graphene rings and small
disks, pronounced quantum confinement effects are observed
in the magnetic properties [22]. In the present work, however,
we restrict the analysis to structures big enough to allow for
use of the bulk response.

The geometries analyzed are illustrated in Fig. 4. These
can be thought of as infinitely flattened versions of the solid
nanorings considered in the previous section, rendering the
geometry two dimensional. Since cylindrical symmetry is still
preserved, potential modes are of the form φ

(l )
± (r)e±ilϕ with

radial coordinate r = (x2 + y2)1/2 and l > 0 integer. The pla-
nar version of the plasmon eigenmode problem for angular
momentum l reads [20]
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λφ
(l )
± (r) = − R+

∫ R+

R−
Kl (r, r′)

{
d

dr′ r
′ d

dr′ − l2

r′

}
φ

(l )
± (r′)dr′

± ilσxy(ω)

σ (ω)
R+{Kl (r, R+)φ(l )

± (R+) − Kl (r, R−)φ(l )
± (R−)} (10)

with eigenvalue λ = 2iωε1ε0R+/σ (ω)h, where the outer and
inner radii are R+ = R + a and R− = max(R−a, 0), respec-
tively, reflecting the fact that the inner radius is zero if R < a.
Note that both sides of Eq. (10) have been multiplied by fac-
tors of R+ for convenience and that, on the left-hand side, this
factor is absorbed into the definition of the eigenvalue to make
it dimensionless. For a disk, i.e., if R− = 0, the eigenvalue
is independent of R+, as is readily shown by scaling r →
r/R+. In turn, since λ = 2iωε1ε0R+/σ (ω)h, the resonance
frequency ω must depend on R+ to keep λ fixed. Hence, for a
free-electron Drude metal with ε∞ = 1 such as graphene this
means that ω ∝ R−1/2

+ . The Kl integral kernel is

Kl (r, r′) = 1

2π

∫ 2π

0

cos lϕ√
r2 + r′2 − 2rr′ cos ϕ

dϕ. (11)

For the important dipole mode with l = 1, K1(r, r′) =
F1,0(r2 + r′2,−2rr′), i.e., one of the F functions introduced
in the previous section.

First, we consider the unperturbed problem by setting
σxy = 0. In this case,

λ0φ
(l )
0 (r) = −R+

∫ R+

R−
Kl (r, r′)

{
d

dr′ r
′ d

dr′ − l2

r′

}
φ

(l )
0 (r′)dr′.

(12)
Here, λ0 and φ

(l )
0 are the unperturbed eigenvalue and

eigenfunction, respectively. We introduce the adjoint eigen-
functions φ

(l )†
0 in the planar case and normalize according to∫ R+

R−
φ

(l )†
0 (r)φ(l )

0 (r)dr = 1. In analogy with the solid nanoring
case, a perturbation analysis of the full problem then yields

λ ≈ λ0 ∓ λ0
iσxy(ω0)

σ (ω0)
R+

∫ R+

R−
φ

(l )†
0 (r)

{
Kl (r, R+)φ(l )

0 (R+)

− Kl (r, R−)φ(l )
0 (R−)

}
dr. (13)

By analyzing the relation between eigenvalue and reso-
nance frequency, it is readily established that for a general
Drude metal with arbitrary ωp and ε∞ we again find res-
onances at ω = ω0 ± 1

2	ω with a normalized shift (to first
order)

	ω

ωc
≈ R+

λ0

∫ R+

R−
φ

(l )†
0 (r)

{
Kl (r, R+)φ(l )

0 (R+)

− Kl (r, R−)φ(l )
0 (R−)

}
dr. (14)

Our computational approach is based on solving Eq. (12)
and subsequently using Eq. (14) to evaluate the plasmon shift.
To this end, an equidistant radial grid containing 750 grid
points is applied. We use midpoint sampling [23] and dis-
cretize both Kl and the radial Laplacian. If the radial grid
spacing is 	r, the discretized Coulomb kernel is approxi-

mated by

Ki j ≡
∫ r j+	r/2

r j−	r/2
K1(ri, r′)dr′

≈
⎧⎨
⎩

K1(ri, r j )	r

− 	r
πri

{
1 + ln

(
	r
16ri

)}, i 
= j

i = j.
(15)

We note that the matrix problem in Eq. (12) is not Hermi-
tian and so φ

(l )†
0 
= φ

(l )
0 .

In Fig. 5, we show the unperturbed eigenvalue λ0 and
normalized magnetoplasmon shift versus geometric ratios in
planar nanorings for the dipole mode l = 1. The eigenvalues
agree with previous results based on an entirely different
numerical approach, i.e., expansion in a finite basis [18].
For an unpunctured nanodisk R− = 0, the lowest eigenvalue
is λ0 = 1.098 and the shift is 	ω/ωc = 0.921. This should
be contrasted with the value 	ω/ωc = 1 found if a disk is
approximated by a thin ellipsoid [21]. Clearly, this approxi-
mation is not quantitatively correct. Both eigenvalue and shift
decrease monotonically as the ring becomes narrower and

FIG. 5. Magnetoplasmon shift in planar nanorings. The same
data are shown versus ratio between inner and outer radii (top panel)
and normalized radius of revolution (bottom panel). Note that for
R � a the disk remains unpunctured and, hence, eigenvalue and shift
are independent of R in this range.
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FIG. 6. Comparison of solid nanorings based on thin nanodisks
(dashed and dotted lines) and their planar approximations (solid
lines) for different heights as indicated by color. Plasmon resonances
and magnetoplasmon shifts are in upper and lower panels, respec-
tively. Rounding radii of solid structures are h/4.

vanish in the extreme limit R− ≈ R+. For Drude metals, the
resonance follows ω0 ∝ λ

1/2
0 (see below) and, so, the results

show that both plasmon resonance and shift decrease as the
hole expands. The decrease of the plasmon shift, however, is
more rapid and as a consequence the relative shift is reduced.

Finally, we study the convergence of both unperturbed
and perturbed plasmons in solid nanorings towards the pla-
nar approximation as h decreases. Hence, for unperturbed
planar nanorings, we solve Eq. (12) and retrieve the reso-
nance from ω0 = ωp/(2ε1R+/λ0h + ε∞ − 1)1/2. In the strict
2D limit h → 0, one has ω0 ≈ ω(2D)

p λ
1/2
0 /(2ε1R+)1/2 with 2D

plasma frequency ω(2D)
p = ωp

√
h. In Fig. 6, we compare the

planar approximation to results using Eq. (7) for solid but
increasingly thin nanorings. The planar theory only captures
the horizontal mode, so no comparison is made for the vertical
one. The solid structures are rounded by h/4 radius quarter
circles to reduce the effect of corners, as shown in the inset in
Fig. 6.

The comparison in Fig. 6 demonstrates that the planar
model is a reasonable approximation for flat solid nanor-
ings with h/2a � 0.2. In particular, at R = 0, the normalized
magnetoplasmon shift in the lower panel of Fig. 6 is found
to be 	ω/ωc ≈ 0.95 for solid nanorings with h/2a = 0.2,
which deviates by about 3% from the planar approximation
	ω/ωc = 0.921. Moreover, solid nanorings with R � a, i.e.,
nanodisks, have roughly constant shifts irrespective of R. This,
again, is in agreement with the expectations from the planar
model, in which the shift is the same for all unpunctured disks,

i.e., for all R � a. For true toroids with a punctured center,
the magnetoplasmon shifts of solid and planar structures are
in excellent agreement. Regarding the plasmon resonances
themselves in the upper panel of Fig. 6, it is seen that devi-
ations of order 10% are found for the horizontal modes. The
planar approximation does not support vertical modes, which
is clearly a deficiency of the model.

IV. EFFECTS OF INTERBAND DISPERSION AND
MAGNETIC NONLINEARITY

The theory analyzed so far has been based on the simple
Drude form for the dielectric tensor assuming constant inter-
band response and ignoring second and higher order magnetic
effects. We now study the more general case in order to
validate the applied simplifications. Hence, we consider the
generalized dielectric response

εxx(ω) = ε∞(ω) − ω2
p

ω2 − ω2
c

, εzz(ω) = ε∞(ω) − ω2
p

ω2
,

εxy(ω) = iωcω
2
p

ω
(
ω2 − ω2

c

) . (16)

Apart from nonlinearities arising from ω2
c , we include

a realistic interband response ε∞(ω) found by subtracting
the intraband part from the experimental response εexp(ω)
from Johnson and Christy [24], i.e., ε∞(ω) = Re{εexp(ω) +
ω2

p/ω
2}, similarly to the approach in Ref. [25]. Since εxx 
=

εzz, the eigenvalue problem assumes a significantly more com-
plicated form [7],

σ±(θ ) = 1

εxxn2
x + εzzn2

z + ε1

∫ θ+

θ−

{
(εxx − ε1)G(h)

n (θ, θ ′)

+ (εzz − εxx )G(h)
z (θ, θ ′) ± iεxyF (h)

ϕ (θ, θ ′)
}

× σ±(θ ′)S(θ ′)dθ ′, (17)

with the z component of the Green’s function G(h)
z (θ, θ ′) =

nz(r cos θ−r′ cos θ ′)F1,1(x, y). We solve this equation by
sweeping over frequency and locating unit eigenvalues of the
right-hand side.

As a practical application of relevance, we now look at
Ag nanorings having a circular cross section such as those
in Fig. 2(a). Here, however, we include full dispersion of the
interband response. In Fig. 7, numerical resonances obtained
from Eq. (17) are compared to the linearized theory in Eq. (9),
both with and without accounting for interband dispersion. To
obtain reliable derivatives, we fit experimental interband data
to a third degree polynomial as shown in the inset in Fig. 7. It
is seen that interband dispersion is relatively more important
at high frequencies, i.e., for less flattened geometries. The two
panels in the figure correspond to R/a = 1 and 2 representing
horn and true tori, respectively. Nonlinear magnetic effects are
observed above h̄ωc ∼ 0.1 eV, which requires a magnetic field
of B ∼ 860 T applying the free-electron mass me ≈ m0 for
conversion. At this field, the magnetoplasmon shift is roughly
1% of the unperturbed resonance for R/a = 1. Thus, nonlin-
ear effects are difficult to observe experimentally. Below this
field, the linearized theory is in excellent agreement with the
full simulation, especially if interband dispersion is included.
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FIG. 7. Numerical resonances for Ag nanotori based on mea-
sured interband dispersion and including magnetic nonlinearities
for two different radii of revolution (red curves). For comparison,
linearized approximations with (solid lines) and without (dashed
lines) interband dispersion are shown in blue. Inset: Experimental
interband response (circles [24]) and polynomial fit.

This is particularly clear at higher energies, at which neglect-
ing interband dispersion leads to significant overestimation
of the magnetoplasmon shift, cf. dashed curves in Fig. 7.

In addition, it is noted that nonlinearity tends to reduce the
plasmon resonances. This is in contrast to solid nanospheres
with unperturbed resonance ω0, for which an upward cor-
rection given by ω± = (ω2

0 + ω2
c/4)1/2 ± ωc/2 is found [26],

as we have verified using the present approach. The down-
ward correction is indicative of nanorings and has previously
been observed experimentally in GaAs nanorings [18]. Such
nonlinearities are accessible in certain semiconductors due to
their small effective mass (me ≈ 0.06m0 in GaAs) leading
to large cyclotron frequencies at relatively small magnetic
fields. In metallic systems, however, observing such effects is
challenging. We therefore conclude that the linearized theory
presented above is likely to remain highly accurate when
applied to real metallic nanostructures, especially if interband
dispersion is accounted for.

V. SUMMARY

Summarizing, we have studied the plasmon properties of
nanorings perturbed by magnetic fields. Efficient perturbative
computational approaches have been developed for both solid
and planar nanorings with cylindrical symmetry. Generally,
the sensitivity to magnetic fields is found to decrease as the
nanoring cross section is made narrower. Thus, the magne-
toplasmon shift is reduced to less than 10% of the value
for ellipsoidal nanoparticles if the ratio between inner and
outer radii exceeds 60%. Overall, flat structures have larger
shifts and planar (two-dimensional) rings outperform solid
ones for narrow rings. Finally, the perturbation approach has
been validated by comparison to full numerical simulation for
Ag nanorings based on experimental dielectric response and
including magnetic nonlinearities.
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