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Persistent Friedel oscillations in graphene due to a weak magnetic field
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Two opposite chiralities of Dirac electrons in a two-dimensional (2D) graphene sheet modify the Friedel
oscillations strongly: electrostatic potential around an impurity in graphene decays much faster than in
2D electron gas. At distances r much larger than the de Broglie wavelength, it decays as 1/r3. Here we
show that a weak uniform magnetic field affects the Friedel oscillations in an anomalous way. It creates
a field-dependent contribution which is dominant in a parametrically large spatial interval p−1

0 � r � kF l2,
where l is the magnetic length, kF is Fermi momentum, and p−1

0 = (kF l )4/3/kF . Moreover, in this
interval, the field-dependent oscillations do not decay with distance. The effect originates from a spin-
dependent magnetic phase accumulated by the electron propagator. The obtained phase may give rise to
novel interaction effects in transport and thermodynamic characteristics of graphene and graphene-based
heterostructures.

DOI: 10.1103/PhysRevB.103.085418

I. INTRODUCTION

Graphene, a single-atom-thick honeycomb sheet of car-
bon atoms [1,2], possesses unusual material characteristics
as compared to other two-dimensional (2D) electron systems.
Having high electron mobilities, the particles in graphene are
orders of magnitude faster than in silicon; they conduct heat
much more efficiently than in diamond and conduct current
order of magnitude better than in copper. Among other unique
properties, graphene is transparent and impermeable to most
gases and liquids, including helium [3]. It is harder than dia-
mond and more elastic than fiber carbon at the same time.

Unique electronic properties of graphene [3–37] stem from
the fact that it is single-atom thick. It supports carriers with
Dirac-like dispersion. When doping is low, the Fermi level is
located in the close vicinity of K and K ′ points in the Brillouin
zone. The reason for this is that graphene quasiparticles pos-
sess chiral properties related to the two-sublattice structure of
the honeycomb lattice. The latter also implies that the lattice
unit cell contains two sites (atoms), leading to a “pseudospin”
degree of freedom.

One of the most prominent effects in regular 2D electron
systems is the interaction-induced zero-bias anomaly in the
tunnel density of states (DOS). For small impurity concentra-
tion, this anomaly can be traced to the fact [38] that impurities
are dressed with Friedel oscillations of the electron density
[39] which falls off as 1/r2 with distance, r, from the impu-
rity. Modification of the wave functions due to scattering of
electrons from the dressed impurities gives rise to the singular
correction to the self-energy. Upon the advent of graphene, the
calculations similar to that in 2D gas [6,8,14], indicated that
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the zero-bias anomaly in graphene is absent. The underlying
reason for this absence is that, with matrix underlying Hamil-
tonian of spin-orbit type, the backscattering of electrons is
forbidden [40]. As a result, the Friedel oscillations in graphene
falls off faster than in 2D gas, as 1/r3.

Since Refs. [6,8,14] the Friedel oscillations in graphene
were studied in great detail, both analytically within con-
tinuum approximation and numerically, within tight-binding
approximation. The results are summarized in the review [41].

Application of a magnetic field turns the spectrum of
graphene into a ladder of nonequidistant Landau levels. The
corresponding perturbation of the electron density around an
impurity can be cast into a sum over these levels [33,41].
Still, at elevated temperatures, the discreteness of the Lan-
dau levels does not manifest itself, and the behavior of the
Friedel oscillations with distance becomes quite a nontrivial
issue. A natural expectation is that a weak, nonquantizing
magnetic field, modifies the Friedel oscillations in graphene
in the same way as in the 2D electron gas [42]. By causing
the curving of the semiclassical trajectories, the field gives
rise to the position-dependent magnetic phase, and thus breaks
the periodicity of the oscillations. Still, the decay law of the
oscillations remains the same as in a zero field. In fact, such
an intuitive reasoning, in application to graphene, is wrong.
It is not only the phase but also the magnitude of the Friedel
oscillations that exhibits a crucial dependence on the magnetic
field.

In the present paper we consider this question system-
atically and find the field-dependent form of the Friedel
oscillations. We shed light on the nature of the magnetic field
modification. Our key finding is that the potential oscillates
anomalously. Namely, it does not fall off with distance, r, in
a parametrically large interval. This omnipresent effect plays
a central role in a variety of quantum many-body contexts
in graphene. The polarization operator (PO) is an essential
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quantity for the evaluation of interaction effects using the
Feynman diagrams. The nondecaying part in the PO dramati-
cally changes the power counting in the integrand expressing
Feynman diagrams. From the new power counting, the mag-
netic effect may give rise to a new zero-bias anomaly in
the DOS of graphene, modified to the quasiparticle lifetime
and thermodynamics of Dirac electrons in the Fermi-liquid
regime. It may also induce new temperature dependence
for the dc/ac conductivities [43]. The obtained nondecaying
Friedel oscillations open an avenue for controlled stud-
ies of magnetotransport. They also manifest themselves in
field-related thermodynamic properties of graphene and ma-
terials with a pseudomagnetic field such as randomly strained
graphene, stacked and twisted Dirac materials, and the prop-
erties of the wormholes in them [44–46].

The Hamiltonian that incorporates the B field in Landau
gauge reads H = HB + ûVimp(r),

ĤB = vF [(px − eBy)�̂x + py�̂y], (1)

where Vimp(r) is the short-ranged impurity potential, vF is the
Fermi velocity, and �̂x,y = σ̂x,y ⊗ τ̂z. One can define �̂z =
σ̂z ⊗ τ̂0, together with �̂x,y, to form a su(2) algebra. The Pauli
matrices σ̂x,y,z act in the space of A and B sublattices of
the honeycomb lattice, τ̂z is the Pauli matrix distinguishing
between two Dirac points (K and K ′) of the graphene disper-
sion relation and τ̂0 is the identity matrix. We consider the
simplest case of the diagonal disorder û = uÎ , where u is a
scalar. The uniform field breaks the chiral symmetry near each
Dirac point individually since p · �̂, �̂ = (�̂x, �̂y) does not
commute with the Hamiltonian. It is this noncommutativity,
specific for graphene and other Dirac materials [47], that
causes the observable modification of Friedel oscillations in
a weak magnetic field, B. Quantitatively, the criterion of weak
field is that the magnetic length, l = ( h̄c

eB )1/2, is much larger
than the de Broglie wavelength, k−1

F . Below we show that
weak field modifies the screened Coulomb potential [48–50]
V (r) to

VH (r) = gV (2kF )

2π2vF r2

[
1

r
cos

(
2kF r − p3

0r3

12

)

+ r2

2kF l4
sin

(
2kF r − p3

0r3

12

)]
. (2)

Here V (2kF ) is the 2kF component of the interaction, while
the impurity potential is treated in the Born approximation
with g = u

∫
d2r Vimp(r). There are two competing terms.

One can see that when the magnetic phase p3
0r3 � 1 with

p−1
0 = (kF l )4/3/kF , the potential is decaying as a polyno-

mial function, ∼1/r3. When 1 � p3
0r3 � kF r, the potential is

oscillating anomalously, with a constant amplitude. This per-
sistent effect comes from the diagonal part û = uÎ of impurity
potential, while other nonmagnetic impurity potentials do not
contribute to VH (r) in the leading order in impurity scattering
(for details, see Appendices A and B).

The paper is organized as follows. In Sec. II, we present a
qualitative derivation of persistent Friedel oscillations, which
follows from the semiclassical magnetic phase accumulated
by the electron propagator. In Sec. III, we present a thor-

FIG. 1. Electrostatic potential, VH (r), is plotted vs dimensionless
distance kF r from the impurity [big (red) circle] in the presence of a
weak magnetic field, B, in the range 1 � kF r � k2

F l2. The figure
is obtained from Eq. (2) using a typical value of p0/kF = 0.1. The
potential VH (r) is measured in units of W0 = k3

F gV (2kF )/2π 2vF . The
amplitude of oscillations first decays as 1/r3 and then converges to
a constant ∝B2. The inset illustrates the classical trajectory of 2D
electrons between 0 and r in the presence of a weak magnetic field.
L is length of the arc, r is the simply |r|, and θ (r), the angle of the
arc, is approximately given by r/kF l2.

ough calculation of the polarization operator in the presence
of a weak magnetic field and derive Friedel oscillations
of electron density. The implications to interaction effects
are discussed in Sec. IV. Concluding remarks are given
in Sec. V.

II. QUALITATIVE DISCUSSION

In this section, we make a qualitative argument for new
effects of Friedel oscillations in Eq. (1). Both modifications
of Friedel oscillations, namely, the phase p3

0r3 in oscillations
and the persistent part, can be understood semiclassically. The
electron propagator, Gs,s′ (0, r), where s = ± represent A/B
sublattices, accumulates a phase, ks,s′L, when electrons prop-
agate along the semiclassical arc. Here L is the length of arc
shown in the inset of Fig. 1 and ks,s′ is an effective momentum.
The diagonal component of Dirac propagator, Gs,s(0, r), can
be understood as a propagator of the 2D electron gas with
an effective Fermi energy Es

F = EF [1 − s(2k2
F l2)−1] and an

effective cyclotron frequency ω0 = vF (kF l2)−1. This yields an
effective momentum ks,s = kF [1 − s(2k2

F l2)−1] for diagonal
propagators. While if s �= s′, ks,s′ = kF . For details of deriving
effective momentums, see Appendix C.

The phase p3
0r3 in the oscillations is due to the curving

of the path. Semiclassically, the propagator acquires a mag-
netic phase kF (L − r) because of the curving of trajectory.
Since L = kF l2θ , r = 2kF l2 sin(θ/2), and θ (r) � r/kF l2, the
magnetic phase kF (L − r) becomes equal to p3

0r3/24. The PO
involves a product of two propagators, and thus the magnetic
phase in PO is doubled. This is exactly the magnetic phase of
Friedel oscillations.

The persistent part of Friedel oscillations originates from
the deviation of ks,s′ from kF . The effective momentum
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implies spin-dependent magnetic phases, ∼(ks,s − kF )r =
−sr(2kF l2)−1 of diagonal propagators. Although the phase
is spin dependent, it does not depend on the valleys. The
phase could then be expressed compactly, −θ (r)�̂z/2. The
PO involves a trace of two propagators. Using the fact that
Pauli matrices are traceless and tr�̂2

z �= 0, the leading mag-
netic contribution to PO is from a square of θ (r), namely,
θ (r)2 ∝ r2/k2

F l4. This is the new amplitude of the second term
in Eq. (2).

Importantly, the anomalous effect in Eq. (2) persists even
at high temperatures, T ∼ T0 ≡ vF p0, which is much higher
than the cyclotron energy. The temperature scale, T0, can be
derived qualitatively. Quasiclassically, the electron propagator
accumulates a dynamical phase kF L along the arc (see the
inset in Fig. 1). The condition kF (L − r) ∼ 1 can be cast in
the form r ∼ p−1

0 , since kF (L − r) ∝ (p0r)3. Then, the spatial
scale p−1

0 translates into the energy scale vF p0. This, in turn,
sets the temperature scale, T0.

III. THE POLARIZATION OPERATOR

In this section, we show the emergence of persistent Friedel
oscillations by calculating the PO rigorously in the momen-
tum space. We start from the summation over Landau levels
for PO and then develop a low energy effective theory around
the Fermi level. We show how the spin-dependent magnetic
phase of the gauge-invariant electron propagator manifests
itself in the matrix elements of PO. Using the obtained form
of the PO, we derive the Friedel oscillations and observe
their persistent behavior. Finally, we discuss the smearing of
anomalies in the PO under a weak magnetic field.

A. Summation over Landau levels

We start from a general expression for the PO in the mo-
mentum space

�(k, ω) =
∞∑

n,n′=0

∑
s,s′=±

nF (s′ωn′ ) − nF (sωn)

ω − (sωn − s′ωn′ )

∣∣Mn,n′
s,s′,k

∣∣2
, (3)

where nF (ω) is the Fermi-Dirac distribution, while the fre-
quencies, ωn, are given by ωn = (2n)1/2vF /l . The quantities
Mn,n′

s,s′,k are the matrix elements of exp (ikr) between the states
〈s, n| and |s′, n′〉. Since the wave functions are the vectors
consisting of the oscillator states n and n + 1, the square of the
matrix element can be expressed via the generalized Laguerre
polynomials, Ln

m, as follows:

∣∣Mn,n′
s,s′,k

∣∣2 = (−1)n′−n e−x

π l2

[
Ln−n′

n′−1 (x)Ln′−n
n−1 (x) + Ln−n′

n′ (x)

× Ln′−n
n (x) + 2ss′

( n

n′
)1/2

Ln−n′
n′−1 (x)Ln′−n

n (x)

]
,

(4)

where x = k2l2/2. The summation in Eq. (3) is performed
over two valleys and two spins. However, the main contribu-
tion comes from the states near the Fermi level, EF , which
we assume to be positive. This allows one to set s = s′ = 1 in
Eq. (4). The condition that the magnetic field is weak can be
cast in the form NF  1, where NF = k2

F l2/2 is the number
of Landau levels with energies between ε = 0 and ε = EF .

To perform the summation over n and n′ it is convenient
to use the following integral representation of the Laguerre
polynomials

Ln
m(x)= 1

2π

∫ 2π

0

dθ

(1 − eiθ )n+1
exp

{
xeiθ

eiθ − 1
− imθ

}
. (5)

In the vicinity of the Kohn anomaly, k ≈ 2kF , we have x  1.
Under this condition, the major contribution to the integral
Eq. (5) comes from the vicinity of θ = π . Substituting θ =
π + ψ into the integrand and expanding with respect to ψ

yields the following integral representation for the square of
the matrix element (for details see Appendix D):

∣∣Mn,n′
s,s,k

∣∣2 = 1

4π3l2

∫
dψ dψ ′

4
exp

{
ix

48
(ψ3 + ψ ′3)

}[∑
ν=±

exp

{
i

(
x

4
− n + n′ + ν

2

)
(ψ + ψ ′)

}

−2 exp

{
i

(
x

4
− n + n′

2

)
(ψ + ψ ′) + i

ψ − ψ ′

2

}]
. (6)

Here the spin-dependent magnetic phase, the signal of chiral
symmetry breaking, manifests itself in the matrix element
as a small, but non-negligible phase ν(ψ + ψ ′), with ν =
±. The negative sign in the second line is the result of
the Berry phase π , which is specific for Dirac electrons.
The two features are responsible for the main result of the
paper.

Since the main contribution to the sum in Eq. (3) comes
from n and n′ close to NF , it is convenient to introduce the new
variables m = NF − n, m′ = −NF + n′. Then the summation
in Eq. (3) can be performed with the help of the following

identity:

+∞∑
m,m′=−∞

nF
(
εF +

√
2vF
2l m′) − nF

(
εF −

√
2vF
2l m

)
m′ + m

× cos [(m′ − m)α + β] = − π2T cos β

ω0 sinh(2π |α|T/ω0)
, (7)

where ω0 = vF (kF l2)−1 is the effective cyclotron frequency
and α, β are real numbers. When applying the above iden-
tity to the summation in Eq. (3), we set α = y with
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y ≡ 2−1(ψ + ψ ′) and β = 0. As we will see in the next
section, the integration over y defines a characteristic scale,
y ∼ (kF l )−2/3. This scale for y implies that the temperature
damping term A(T ) ≡ T [ω0 sinh(2πyT/ω0)]−1 is essen-
tially temperature independent at T � T0, namely, A(T ) ≈
[2π (kF l )2/3]

−1
. At T  T0, the damping factor is important,

as it becomes exponential: A(T ) ≈ 2T ω−1
0 exp (−πT/T0). In

the following, we work in the low-temperature limit, T � T0.
This effect of persistent oscillation will survive up to T ∼ T0,
while at higher temperatures the Friedel oscillations will be
washed out.

B. The form of the PO

Equipped with Eqs. (6) and (7), one can write the static PO,
�(k) ≡ �(k, 0), as a single integral with respect to variable y
(for details see Appendix E). To clarify two different effects
in �(k), we present �(k) as the sum of two terms �1(k) +
�2(k). Here �1(k) and �2(k) are expressed by

�1(k) = − 1

4π3/2vF l

∫ ∞

a

dy

y3/2

×
{ ∑

ν=±1

cos

[
(kF δkl2 − ν)y + k2

F l2y3

12
+ π

4

]

− 2 cos

[
kF δkl2y + k2

F l2y3

12
+ π

4

]}
(8)

and

�2(k) = 1

2vF lπ3/2

∫ ∞

a

dy

y3/2

(
1

k2
F l2y

)

× sin

(
kF δkl2y + k2

F l2y3

12
+ π

4

)
. (9)

Here δk = k − 2kF is the momentum measured from 2kF .
Finite low-y cutoff, a, of the order of the lattice spacing, does
not affect the form of the Friedel oscillations. We will see that
�1 and �2 are responsible for the two distinct contributions
to the Friedel oscillations in Eq. (2).

Here we derive the PO in the real space. We start with
the contribution Eq. (8). Transformation to the real space is
accomplished by the following radial integral:

�(r) =
∫ ∞

0
k dk(2π )−1J0(kr)�(k)

� kF

∫ ∞

−∞
dδ k(2π )−1J0(kF r)�(kF + δk), (10)

where J0(x) is the zeroth-order Bessel function. Here we
have used the fact that δk � kF . In the domain kF r  1
we can replace the Bessel function by the large-x asymptote
J0(x) ≈ (2/πx)1/2 cos (x − π

4 ). The integration over k sets
y = r(kF l2)−1. Then the summation over ν in Eq. (8) yields

�1(r) = − kF

2vF π2r2
sin

(
2kF r − p3

0r3

12

)

×
[

cos

(
r

kF l2

)
− 1

]
. (11)

The effect of the weak magnetic field is not negligible if
the magnetic phase p3

0r3 ∼ 1. From here, the characteris-
tic scale for y is (p0kF l2)−1 = (kF l )−2/3. Since we consider
the distances r � kF l2, i.e., much smaller than the Lam-
our radius, the magnitude of 2kF r oscillations given by sin
function in the equation above can be further simplified
to kF (2vF π2r2)−1(1 − cos r/kF l2) = (4vF π2kF l4)−1. The re-
sult for �1 describes the contribution to the oscillations of
the electron density which do not decay with distance in the
domain k−1

F � r � kF l2. It reproduces the second term in
Eq. (2).

Evaluation of the contribution �2(r) to the PO defined by
Eq. (9) involves the same steps as the evaluation of �1(r). The
result reads

�2(r) ≈ 1

2π2vF r3
cos

(
2kF r − p3

0r3

12

)
. (12)

It reproduces the first term in Eq. (2). The decay 1/r3 is
specific for graphene, while the phase is the same as in 2D
electron gas.

The real-space static PO, �(r), determines the Hartree
potential VH (r), via modulation of the electron density δn(r)
around the impurity. Within the Born approximation, δn(r) =
g�(r). Since the density modulation originates from the
backscattering of fermions, δn(r) determines the Hartree
potential as VH (r) = V (2kF )δn(r) (for the derivation see Ap-
pendix F). As such, the Hartree potential VH (r) is equivalent
to gV (2kF )�(r).

C. Smeared anomalies

The spin-dependent magnetic phase, θ (r)�̂z/2, leads to a
new term, �1(k), in the PO, while the curving of path smears
the existing anomaly in �2(k). We start from the momentum-
space representation of the PO given in terms of the product
of the Airy functions [51]. Then we differentiate Eq. (9) with
respect to δk twice and obtain

�′′
2 (k) = −(vF

√
p0kF )−1F (δk/p0), (13)

where F (z) ≡ Ai(z)Bi(z). This represents the smearing of the
Kohn anomaly of the PO by the weak field. The inset of Fig. 2
illustrates how the anomaly get smeared.

Importantly, �′
1(k) can also be obtained as (for details see

Appendix G)

�′
1(k) = (2vF )−1

√
p0/kF F ′′(δk/p0). (14)

This term only emerges in the presence of the magnetic
field. In the limit δk  p0, �′

1(k), it converges to zero as ∝
B2(δk)−5/2. This asymptote, plotted in Fig. 2, has same origin
with persistent oscillations. To better understand the effect,
one can Fourier transform �1(k) using the asymptote. From
power counting, it is straightforward to see the emergence of
the nondecaying oscillating function, ∼B2 sin(2kF r).

IV. IMPLICATIONS TO INTERACTION EFFECTS

Graphene is a 2D Fermi liquid when EF > 0. This im-
plies that the scattering rate of the quasiparticle around Fermi
surface obeys �(ω) ∝ ω2/EF ln(EF /ω). In perturbation the-
ory in interaction parameter, two leading Feynman diagrams
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FIG. 2. Asymptote of derivative �′
1(k) is plotted versus

the dimensionless x = δk/p0. The red curve depicts
−2vF

√
kF /p0�

′
1(k)/C = [Ai(x)Bi(x)]′′/C versus x. Here C is

a positive constant, approximately equal to 0.12. The blue curve is
1/(

√|x|)5, converging to �′
1 when x  1. The inset depicts �′′

2 (k).
The black curve is −vF

√
p0kF �′′

2 (k) = Ai(x)Bi(x), demonstrating
the smearing of the anomaly. The green represents D�(x)/

√|x|,
namely, the Kohn anomaly in PO in a zero field. D is a positive
constant, approximately equal to 0.16.

contributing to the electron lifetime are shown in Fig. 3.
We evaluate these diagrams in the presence of the weak
magnetic field using the obtained form of the electron propa-
gator. The computation leads to an unexpected result [43]: the
quasiparticle lifetime acquires a singular in ω magnetic cor-
rection �(ω; B) − �(ω; 0) ∝ ω2

0/EF ln(ω/EF ). Here �(ω; B)
is the scattering rate of quasiparticle with frequency ω in
the presence of the magnetic field, B, ω0 = vF (kF l2)−1. The
expression is valid when EF > ω > {ω0, T }. The magnetic
correction above is more singular in frequency ω than the
nonmagnetic part. This singularity originates from the spin-
dependent magnetic phase, θ (r)�̂z, in electron propagators.
Interestingly, the field-dependent interaction corrections to
various observables in graphene, including zero-bias anomaly
in the density of states and ac/dc conductivities, also exhibit
more singular behavior in either ω or temperature, T [43].

V. CONCLUDING REMARKS

In this paper we demonstrated that weak magnetic field
manifests itself in the Friedel oscillations in two ways: it
modifies (i) the phase of the oscillations and (ii) makes the

FIG. 3. The leading contributions to the lifetime of quasipar-
ticles. Solid lines represent the Feynman propagators. The wavy
lines represent the electron-electron interactions. (a) Fock diagram.
(b) Hartree diagram.

magnitude of oscillations nondecaying in a parametrically
large interval. The origin of the modification of the phase
in oscillations, ∼p3

0r3, can be traced to the curving of the
classical trajectory of an electron in a weak magnetic field (see
inset in Fig. 1). The trajectory is curved even at r much smaller
than the Larmour radius, leading to the magnetic phase [42]
∼(p0r)3. This effect just by itself leads to remarkable high-
temperature interaction effects in 2DEG [52–54].

Graphene also supports modification of the magnitude of
the Friedel oscillations by a weak field. The origin of this
effect is an emerging spin-dependent phase in electron propa-
gators, ∼ exp[−i�̂zθ (r)/2]. This effect manifests in persistent
Friedel oscillations and leads to nontrivial magnetic correc-
tions to many-body characteristics in graphene. The transport
and thermodynamic properties of monolayer Dirac materials,
randomly strained graphene, and stacked and twisted Dirac
materials will also be anomalously sensitive to this magnetic
phase even at temperatures T ∼ T0, which is much higher than
the cyclotron energy [42].

Technically, to develop the theory of interaction effects in
Dirac materials in the presence of the weak field, one can
use the obtained form of the PO and/or Friedel oscillations
in the Feynman diagrams (in the momentum or real-space
representations). However, a word of caution is in order here.
Since the field dependence also enters the fermion Green’s
functions, in the Feynman diagrams, one should also consider
modified propagators on the same footing along with Friedel
oscillations. The explicit form of the Feynman propagators in
the weak B field is derived in Appendix A.

Experimentally, Friedel oscillations can be observed with
the scanning tunneling microscope (STM), which images 2D
surfaces at the atomic level [34,55,56]. In STM, data are deter-
mined by backscattering processes along the energy contours.
Experimental tests of these oscillations would include exam-
ining the temperature dependence of the Friedel oscillations
through an extended range of temperatures 0 � T � T0, de-
termining the persistent range of oscillations, p−1

0 � r � kF l2,
and investigating the effect of their B dependence.
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APPENDIX A: REAL-SPACE CALCULATION
OF THE FRIEDEL OSCILLATIONS

Consider the modification of the Friedel oscillations in
graphene by a weak uniform magnetic field. The Hamiltonian
that incorporates the B field in Landau gauge reads

HB = vF [(px − eBy)�̂x + py�̂y] + ûVimp(r) (A1)

with û = uÎ . Here Vimp(r) is the short-ranged impurity
potential, vF is the Fermi velocity, and �̂x,y = σ̂x,y ⊗ τ̂z.
One can define �̂z = σ̂z ⊗ τ̂0, together with �̂x,y to form a
su(2) algebra. Clearly, the uniform field breaks the chiral
symmetry since, in a finite field, p · � does not commute with
HB. In the following, we report the result for the Green’s

085418-5



KE WANG, M. E. RAIKH, AND T. A. SEDRAKYAN PHYSICAL REVIEW B 103, 085418 (2021)

function in the asymptotic region k2
F l2  kF r  1,

G(x, x′|ω) = I (x, x′; ω)M̂(r; ω). Here M is given by

M̂(r; ω) �
[

sgn(ω) + i

2kF r

]
r̂ · �

+ exp

{
−i

θ (r)

2
sgn(ω)�̂z

}
, (A2)

where we only preserve the leading orders with the nonquan-
tized condition kF r � k2

F l2. Here l = √
h̄/eB is the magnetic

length, kF is the Fermi momentum, and ω is the frequency
measured from the Fermi energy. We also define functions
I (x, x′; ω) by

I (x, x′; ω) = kF

2vF

1√
2πkF r

e−iχ exp

{
i sgn(ω)

×
(

kF r

[
1 + ω

εF

]
− p3

0r3

24
+ iπ/4

)}
, (A3)

where r = |x − x′|, χ = (x − x′)(y + y′)/(2l2) describe
breaking of the translational invariance and p3

0 = 1/(kF l4)
is a scale introduced by Sedrakyan et al. in Ref. [42] to
characterize the magnetic phase in the Green’s function of the
2D electron gas.

Having the form of Green’s function in the presence of a
weak field, one can calculate the polarization operator.

�(x, x′; ω) = −i
∫

�

dω′

2π
I (x − x′; ω′)I (x − x′; ω′ − ω)

× tr[M̂(r; ω)M̂(−r; ω′ − ω)]. (A4)

Here we still consider an impurity with û = uI4. After putting
expressions into the equation above, one can obtain the 2kF

component of the polarization operator

�2kF (x, x′; 0) ≈ u

vF

cos
(
2kF r − p3

0r3

12

)
4π2r3

+ u

vF

sin
(
2kF r − p3

0r3

12

)
4π2

1

2kF l4
. (A5)

This result fits well with Eqs. (21) and (22) in the main text,
the result obtained in the momentum space. The decay of the
first oscillatory term here is consistent with the result of free
Dirac electrons [6,8,14]; however, there is an additional mag-
netic phase p3

0r3/12 that breaks the periodicity of oscillations.
The ratio between magnitudes of the first and the second os-
cillatory functions is proportional to k3

F r3/k4
F l4. When (i) 1 �

kF r � (kF l )4/3, the polarization operator in real space decays
as 1/r3; and (ii) (kF l )4/3 � kF r � (kF l )2, the chiral symme-
try breaking effect dominates. This symmetry-breaking term
is proportional to B2 sin(2kF r), i.e., it oscillates with constant
amplitude.

Finally, one can evaluate the effective electrostatic poten-
tial around the impurity (where we restore spin 1/2 back),

which yields

VH (r) = gV (2kF )

2π2vF

cos
(
2kF r − p3

0r3

12

)
r3

+gV (2kF )

2π2vF

1

2
p3

0sin

(
2kF r − p3

0r3

12

)
. (A6)

APPENDIX B: EFFECT OF DISORDER

In the main text, we considered the disorder potential to be
ûVimp, with û = uÎ . Around Eq. (2), we discuss the effects of
other disorder potentials on the Hartree potential. This section
provides further detailed calculations. Consider a nonmag-
netic impurity, which should be Hermitian and time-reversal
symmetric. Then the û could be expressed by ten parameters
[9,57]

û = uÎ +
∑

s,l=x,y,z

usl�s�l , (B1)

where the matrices are given by

�x = τ̂z ⊗ σ̂x, �y = τ̂z ⊗ σ̂y, �z = τ̂0 ⊗ σ̂z, (B2)

�x = τ̂x ⊗ σ̂z, �y = τ̂y ⊗ σ̂z, �z = τ̂z ⊗ σ̂0. (B3)

Here the Pauli matrices τ̂ are acting on space of the valley
indices while the Pauli matrices σ̂ act in the space of A/B
sublattices. Components of impurity potentials are explained
as follows:

(1) uÎ is the diagonal disorder, the electric-static potential
averaged over A/B sublattices.

(2) uxz and uyz introduce the hoppings between A and B.
(3) usx, usy introduce the intervalley scatterings, s = x, y, z.
(4) uzz defines the difference between on-site chemical

potentials on A and B sublattices. It represents the sublattice
symmetry-breaking mass term.

The polarization operator is given by

�(r, r′; ω) = −i tr

(
û

∫ +∞

−∞

dw′

2π
G(r, r′; ω′)G(r′, r; ω′ − ω)

)
.

Then we define an intermediate matrix, which does not de-
pend on the nature of impurity potentials

T (r, r′; ω) = −i
∫ +∞

−∞

dω′

2π
G(r, r′; ω′)G(r′, r; ω′ − ω).

After the integration, we find that T reads as

T (r, r′; ω) = kF

vF

1

16π2r2
ei|ω|/vF r ×

(
Q 0
0 σzQσz

)
, (B4)

where σy is the second Pauli matrix and Q is defined by

Q = cos X

( 1
kF r + kF r

k2
F l2

kF p−
k2

F l2

− kF p+
k2

F l2
1

kF r − kF r
k2

F l2

)

+ sin X

⎛
⎝ k2

F r2

2k4
F l4

kF p−
k2

F l2
1

kF r

− kF p+
k2

F l2
1

kF r
k2

F r2

2k4
F l4

⎞
⎠. (B5)
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Here X = 2kF r − p3
0r3/12. Then the polarization operator is

given by

�(r, r′; ω) = tr[ûT (r, r′; ω)]. (B6)

Since T is quasidiagonal, the intervalley scattering compo-
nents of the impurity vanish after the trace. So we only need
to take u, uxz, uyz, and uzz into consideration, involving the
matrices

�x�z = τ0 ⊗ σx, �y�z = τ0 ⊗ σy, �z�z = τz ⊗ σz.

Among these impurity potentials, we find that only the u com-
ponent gives nonzero contribution to PO in the leading order:

�(r, r′; ω) = kF

vF

u

4π2r2
ei|ω|/vF r

[
1

kF r
cos

(
2kF r − p3

0r3

12

)

+ r2

2k2
F l4

sin

(
2kF r − p3

0r3

12

)]
. (B7)

As we can see, only the diagonal disorder uÎ gives the
persistent Friedel oscillations. Other impurity potentials do
not contribute to the polarization operator in the leading order
in impurity scattering. In this way, we see that Eq. (2) of the
main text will remain unchanged in the presence of generic
nonmagnetic impurity potentials.

APPENDIX C: DERIVATION OF EFFECTIVE
MOMENTUMS

In this section, we give a derivation of effective momen-
tums ks,s′ , mentioned by the qualitative argument from the
main text, in the operator formalism (summations over Lan-
dau levels). Since ĜK and ĜK ′ , propagators at valleys K and
K ′, can be connected by σ̂zĜK σ̂z = ĜK ′ , we will only focus on
the calculation of one valley, K valley.

Under a magnetic field, the free Dirac electrons are trans-
formed into ladders of Landau levels. The positive part of
Landau levels are given by ωn = √

2nvF /l . Here vF is the
Fermi velocity and l is the magnetic length. The corre-
sponding wave function at K valley is given by ψn,kx (x) =

1√
2
[ϕn−1,kx (x),−ϕn,kx (x)], where ϕn,kx (x) is the wave function

of the nth Landau level of 2D electrons. Considering the pos-
itive Fermi energy EF , we only need to consider the Landau
levels around EF . Then from definition of propagators, we get
the following expression:

Gs,s′
K (x, x′; ω) �

∫
dkx

2π

∑
n

ψ s
n,kx

(x)ψ s′,∗
n,s,kx

(x′)

× 1

ω − ωn + iδ�(ω − EF )
. (C1)

Here s, s′ = ± refer to A/B sublattices and �(x) is the step
function. The off-diagonal propagators could be expressed in
terms of diagonal ones via the following expression:

Gs,s′
K (x, x′, ω) = l2ωps′

vF r2

[
G11

K (x, x′, ω) − G22
K (x, x′, ω)

]
(C2)

with p̃± = ±(y − y′) − i(x − x′). The derivation (see
Ref. [33]) mainly involves the properties of Laguarre
polynomials. Thus we could only focus on the Landau

summations for diagonal propagators. One puts the expression
of ψn,kx (x) and finds

Gs,s
K (x, x′; ω) � 1

2

∫
dkx

2π

∑
n

ϕn−(s+1)/2,kx (x)

×ϕ∗
n−(s+1)/2,s,kx

(x′)
1

ω − ωn
. (C3)

One can transfer the index s into (ω − ωn)−1 by variable
change n → n − (s + 1)/2. This method yields

Gs,s
K (x, x′; ω) � 1

2

∫
dkx

2π

∑
n

ϕn,kx (x)ϕ∗
n,s,kx

(x′)

× 1

ω − ωn+(s+1)/2
. (C4)

We expand ωn+(s+1)/2 = √
2n + (s + 1)vF /l around the

Fermi energy and find

ωn+(s+1)/2 � EF

(
1 + s

2k2
F l2

)
+ (δn + 1/2)

EF

k2
F l2

.

Here it introduces an effective Fermi energy EF [1 +
s(2k2

F l2)−1] and effective cyclotron frequency ω0 = EF /k2
F l2.

Subsequently, the effective Fermi energy introduces an effec-
tive momentum by ks,s = Es

F /vF . One can immediately see
ks,s = kF [1 + s(2k2

F l2)−1].
One could use Eq. (C2) to find that the effective momentum

in the off-diagonal Green’s functions is exactly the Fermi
momentum. It indicates that ks,s′

F = kF , if s �= s′. Combining
two facts, one could conclude that

ks,s′ = kF

(
1 + s + s′

4k2
F l2

)
. (C5)

APPENDIX D: DETAILS OF THE CALCULATION
OF THE MATRIX ELEMENTS |Mn,n′

s,s,k|2

We start from the integral representation of the Laguerre
polynomials

Ln
m(x)= 1

2π

∫ 2π

0

dθ

(1 − eiθ )n+1
exp

{
xeiθ

eiθ − 1
− imθ

}
. (D1)

In the vicinity of the Kohn anomaly, k ≈ 2kF , we have x  1.
Under this condition, the major contribution to the integral
Eq. (5) comes from the vicinity of θ = π . Substituting θ =
π + ψ into the integrand and expanding with respect to ψ ,
we get

Ln
m(x) ≈

∫
dψ

2π

1

2n+1
exp

[
x

2
+ iπm + iφn

m(ψ )

]
, (D2)

where the phase φn
m(ψ ) is given by φn

m(ψ ) =
( x

4 − m − n+1
2 )ψ + xψ3

48 . The last term in the brackets
originates from the denominator in Eq. (5) expanded and
exponentiated. This term is important since n ≈ NF , and thus
n  1.

From Eq. (D2), and the form of φn
m(ψ ), we conclude that

the integrand in the product Ln−n′
n′−1 (x)Ln′−n

n−1 (x) contains the
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phase

φn−n′
n′−1 (ψ ) + φn′−n

n−1 (ψ ′) =
(

x

4
− n + n′ − 1

2

)
(ψ + ψ ′)

+ x

48

(
ψ3 + ψ ′3), (D3)

while the integrand in the product Ln−n′
n′−1 (x)Ln′−n

n (x) contains
the phase

φn−n′
n′−1 (ψ ) + φn′−n

n (ψ ′) =
(

x

4
− n + n′

2

)
(ψ + ψ ′)

+ 1

2
(ψ − ψ ′) + x

48
(ψ3 + ψ ′3).

(D4)

With the help of Eqs. (D3) and (D4) one gets the integral
representation for the square of the matrix element, which is
Eq. (6) in the main text.

APPENDIX E: DETAILS OF OBTAINING THE INTEGRAL
REPRESENTATION OF THE POLARIZATION OPERATOR

Since the main contribution to the sum in Eq. (3) comes
from n and n′ close to NF , it is convenient to introduce the new
variables m = NF − n, m′ = −NF + n′, so that the relevant
m, m′ are much smaller than NF . Note also, that the first terms
in Eqs. (D3) and (D4) measure the proximity of the momen-
tum, k, to the Kohn anomaly k ≈ 2kF . Indeed, with x = k2l2

2 ,

we have x
4 − n+n′

2 ≈ kF l2

2 δk − m′−m
2 , where δk = k − 2kF . On

the other hand, the cubic terms in Eqs. (D3) and (D4) are the

smooth functions of k, so it is sufficient to replace x by k2
F l2

2 in
these terms. Using these notations in Eq. (6), we rewrite the
static polarization operator as a sum over m and m′

�(k) =
∑
m,m′

nF (ωNF +m′ ) − nF (ωNF −m)

ωNF +m′ − ωNF −m

1

4π3l2

∫
dψ dψ ′

4
exp

[
i
k2

F l2

24
(ψ3 + ψ ′3)

]

×
[ ∑

ν=±1

exp

{
i

(
kF l2δk

2
− m′ − m + ν

2

)
(ψ + ψ ′)

}
− 2 exp

{
i

(
kF l2δk

2
− m′ − m

2

)
(ψ + ψ ′) + i

ψ − ψ ′

2

}]
. (E1)

Subsequent steps rely on the relative smallness of m, m′.
Using this smallness, we expand ωNF −m − ωNF +m′ as

ωNF −m − ωNF +m′ ≈ −
√

2vF
2l (m + m′), and replace the

difference nF (ωNF +m′ ) − nF (ωNF −m) by nF (ωNF +m′ ) −
nF (ωNF −m) ≈ nF (εF +

√
2vF
2l m′)−nF (εF −

√
2vF
2l m). Finally,

we extend the summation over m and m′ to ±∞.
The above simplifications allow one to perform the sum-

mation over m and m′ explicitly. This is achieved with the
help of the identity in Eq. (7). Upon applying this identity,
the polarization operator Eq. (E1) acquires the form

�(k) = − kF

2π2v2
F

∫
dψ dψ ′

4|ψ + ψ ′| exp

[
i
k2

F l2

24
(ψ3 + ψ ′3)

]

×
[ ∑

ν=±1

exp

{
i

(
kF l2δk

2
− ν

2

)
(ψ + ψ ′)

}

− 2 exp

{
i
kF l2δk

2
(ψ + ψ ′) + i

ψ − ψ ′

2

}]
. (E2)

Define 2y = ψ + ψ ′, 2z = ψ − ψ ′. Then the double integral
assumes the form

�(k) = − kF

2π2v2
F

∫
dy dz

4|y| exp

[
i
k2

F l2

12
(y3 + 3yz2)

]

×
{ ∑

ν=±1

exp(ikF l2δky − iνy)

−2 exp(ikF l2δky + iz)

}
.

We see that the exponents in both terms are the quadratic
forms of z. Thus, with respect to z, the integrals of both terms
are Gaussian. The result of the integration reads

�(k) ≈ − 1

4π3/2v2
F l

∫ ∞

a

dy

y3/2

{ ∑
ν=±1

cos

[
(kF δkl2 − ν)y

+ k2
F l2y3

12
+ π

4

]
− 2 cos

[
kF δkl2y + k2

F l2y3

12

− 1

k2
F l2y

+ π

4

]}
.

Then one could express it as the sum of two terms �1(k) and
�2(k) to reproduce Eqs. (8) and (9) in the main text.

APPENDIX F: RELATION BEWTEEN THE
HARTREE POTENTIAL AND THE STATIC

POLARIZATION OPERATOR

The modulation of the electron density, δn(r), around the
impurity determines the Hartree potential by

VH (r) =
∫

d2r1V (r − r1)δn(r1). (F1)

Here V (r − r1) is the screened Coulomb potential.
Since the modulation originates from the backscattering
of fermions, δn(r1) oscillates with the momentum 2kF .
This implies that the Fourier component δn(k) is nonzero
only when |k| = 2kF . Upon the Fourier expansion of
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V (r − r1) = ∫
d2k(2π )−2eik(r−r1 )V (k), one obtains

VH (r) =
∫

d2k

(2π )2
eikrV (k)δn(k). (F2)

Here we use the expression of δn(k) that
∫

d2r1e−ikr1δn(r1) =
δn(k). Since the Coulomb potential is rotational invariant,
V (k) = V (k). Thus the expression above is further simplified
to be

VH (r) = V (2kF )
∫

d2k

(2π )2
eikrδn(k). (F3)

One uses the Fourier expansion of δn(r) and immediately sees

VH (r) = V (2kF )δn(r). (F4)

In the Born approximation, the modulation of density δn(r)
is estimated by δn(r) = g�(r). Here g = u

∫
d2r Vimp(r) and

�(r) is the static polarization operator in real space. Finally,
one obtains the relation between the static polarization opera-
tor and the Hartree potential

VH (r) = gV (2kF )�(r). (F5)

APPENDIX G: DETAILS OF THE CALCULATION OF �′
1(k)

The first step is to redefine the variable inside the integral
of Eq. (15) of the main text

t = (kF l )2/3y.

Then Eq. (15) of the main text is now written as the integral
over t

�1(k) = (kF l )1/3

4π3/2vF l

∫ ∞

a′

dt

t3/2

{ ∑
ν=±1

cos

[(
δk

p0
+ ν

√
p0

kF

)
t

+ t3

12
+ π

4

]
− 2 cos

[
δk

p0
t + t3

12
+ π

4

]}
(G1)

with the new cutoff a′ = (kF l )2/3a. The next step is to take the
first derivative of �1(δk, 0) versus δk

�′
1(k) = − (kF l )1/3

4π3/2 p0lvF

∫ ∞

a′

dt√
t

{ ∑
ν=±1

sin

[(
δk

p0
+ ν

√
p0

kF

)
t

+ t3

12
+ π

4

]
− 2 sin

[
δk

p0
t + t3

12
+ π

4

]}
. (G2)

Here we use the integral expression of the product of Airy
functions:

Ai(z)Bi(z) = 1

2π3/2

∫ ∞

0
dt

1√
t

sin(zt + π/4 + t3/12).

Then we write �′
1(δk, 0) as the summation of three Airy

functions:

�′
1(k) = − (kF l )1/3

2p0lvF

{∑
ν=±

Ai

(
δk

p0
+ ν

√
p0

kF

)

×Bi

(
δk

p0
+ ν

√
p0/kF

)
− 2Ai

(
δk

p0

)
Bi

(
δk

p0

)}
. (G3)

Since
√

p0/kF � 1 (weak magnetic field), one can take Tay-
lor expansion of the product of Airy functions

Ai(x + ν
√

p0/kF )Bi(x + ν
√

p0/kF )

around x = δk/p0. Define F (x) ≡ Ai(x)Bi(x). Up to the
second-order perturbation, Eq. (G3) is rewritten as

�′
1(k) ≈ − (kF l )1/3

2p0vF

{∑
ν=±

[
F (x) + ν

√
p0/kF F ′(x)

+ p0/kF

2
F ′′(x)

]
− 2F (x)

}∣∣∣∣∣
x=δk/p0

. (G4)

Here, the leading term cancels since

2Ai(δk/p0)Bi(δk/p0) − 2Ai(δk/p0)Bi(δk/p0) = 0,

while the first-order perturbation ∝√
p0/kF also vanishes due

to the fact∑
ν=±

ν
√

p0/kF [Ai(δk/p0)Bi(δk/p0)]′ = 0.

So the left term is the second-order perturbation in the Taylor
expansion

�′
1(k) = − (kF l )−2/3

2vF
[Ai(δk/p0)Bi(δk/p0)]′′. (G5)

Upon using
√

p0/kF = (kF l )−2/3, we reach

�′
1(k) = −

√
p0/kF

2vF
[Ai(δk/p0)Bi(δk/p0)]′′. (G6)
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