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Synergistic impeding of phonon transport through resonances and screw dislocations
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Improving the control of heat flow at the nanoscale is essential for promoting its applications in many
fields, such as energy conversion, thermal informatics, and communication technologies. Here we perform a
systematic study on the synergistic effect of screw dislocations and surface resonators on thermal transport of
Si nanowires and the corresponding mechanisms based on molecular dynamics simulations. We uncover that
screw dislocations reduce the thermal conductivity by enhancing the anharmonicity of nanowires due to the
nonhomogeneous stress field. For resonant structures, we demonstrate that the suppression of relaxation time
is the main mechanism for thermal conductivity reduction. The suppression of relaxation time by more than
two orders of magnitude below 4 THz dramatically reduces the resonant structure thermal conductivity, while
the previously proposed group velocity reduction mechanism can only impede phonon transport beyond 4 THz
slightly. By comparing the mechanisms produced by dislocations and resonators, we find that the resonators
have a stronger effect over screw dislocations in impeding the phonon transport at low frequencies while
it becomes opposite at high frequencies. As a result, they can be combined together to manipulate phonon
transport synergistically at all frequencies. Our findings not only provide insights into the mechanisms of thermal
conductivity engineering by screw dislocations and surface resonators, but they also illustrate a paradigm for
ultralow thermal conductivity design through the tailoring of the entire frequency range of phonon transport.
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I. INTRODUCTION

Engineering thermal transport in materials has received
a tremendous amount of attention during the past decades
due to its wide applications, ranging from energy conver-
sion to information and communication technologies. To
enable a highly efficient control of heat flow, it is essen-
tial to manipulate phonon transport over a broad frequency
range. Traditionally, phonon transport has been widely en-
gineered by phonon scattering [1–4], i.e., by introducing
scattering centers inside materials or reducing dimensionality
[5]. This strategy has achieved great success in decreasing the
thermal conductivity (TC) of semiconductors, especially in
promoting the development of thermoelectric materials [6],
where low TC and high electrical conductivity are prefer-
able simultaneously. Phonon scattering is currently based
on the phonon particle picture described by the Boltzmann
transport equation (BTE), and it is efficient in impeding
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the transport of high-frequency phonons. However, due to
the long-wavelength feature of low-frequency modes, it is
difficult to hinder low-frequency phonon transport by scat-
tering. To enable efficient transport control of low-frequency
phonons, the phonon resonant mechanism was introduced re-
cently. Relevant research on semiconductor materials, such as
silicon nanowires (NWs) and membranes, carbon nanotubes,
and graphene nanoribbons, remarkably verify tunable TC aris-
ing from the resonant phonon hybridization, especially for
the effect on low-frequency phonons [7–14]. In general, all
the structures that can produce flat bands in part of or in the
entire Brillouin zone can be regarded as resonant structures.
Such structures can be formed with confined atom motions
or confined phonon propagation in at least one direction. The
former includes caged structures such as skutterudite [15,16]
or clathrates [17,18]. The latter may consist of systems with
surface pillared structures [7,8,19]. Usually, the structures
with confined atoms in lattices have a limited number of res-
onant modes due to the small number of degrees of freedom
associated with the motion of the caged atoms. In contrast,
the surface resonant structures can provide a large number
of resonant modes in the entire frequency range through
a tailored design of the resonant structures. This entails a
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substantial advantage of the surface resonant structure in TC
engineering.

Different from phonon scattering centers, the surface reso-
nant structures, which can produce numerous standing waves
in the entire frequency range, are located on the surface of
materials [8]. Surface nanostructures have a minimal effect
on electrical conductivity, thus providing a promising route
to engineer better thermoelectric materials. The produced
resonant modes (standing waves in resonant structures) can
hybridize with the propagating modes by altering their dis-
persion relations and reducing their group velocities vg. This
mechanism has been widely accepted as the main explanation
for the effect of resonances on the TC of NWs, thin films,
and membranes [8,20]. However, through phonon mean free
path (MFP) calculations, it was found in our previous work
[8,21] that the low-frequency (0–2 THz) phonon MFP can
be reduced by more than two orders of magnitude, while the
averaged phonon group velocity is only reduced up to five
times, which is insufficient to reproduce the obtained MFP.
This discrepancy between phonon MFP and group velocity
reduction indicates that the latter is not the only effect of
resonances. Since the phonon MFP is given by the product
� = vgτ , where τ is the phonon relaxation time, τ must also
be affected by resonances. Therefore, for a better design of
resonant structures, and to promote their applications, it is
necessary to investigate further the detailed mechanisms of
resonances and their effect on phonon transport in nanostruc-
tures.

Moreover, it was revealed that the resonant mechanism
is less effective in impeding the transport of high-frequency
phonons [8,21]. As a result, it needs to be combined with
scattering, so as to efficiently hinder phonon transport over
the entire frequency range. With the advances of modern
nanowire growth technology, dendritic Si NWs, grown by
screw dislocations, have been synthesized experimentally
[22]. These structures consist of NWs with surrounding pillars
and a screw dislocation in the middle. In such systems, the
surrounding branches can act as resonant structures, while
the central screw dislocation can be treated as a source of
enhanced phonon scattering. As a result, screw dislocated
dendritic NWs are ideal platforms for studying the syner-
gistic effect between scattering and resonant mechanisms.
Different from other scattering sources (e.g., point defects
or interfaces), dislocations do not scatter phonons directly,
but they are hypothesized to enhance lattice anharmonicity
[23,24]. However, the link between dislocations and increased
anharmonicity has not been unveiled yet, and it is not known
which phonon frequencies are most affected by dislocations.

In this work, we address the effects of surface resonances,
screw dislocations, and the combination of the two in silicon
NWs by extensive equilibrium molecular dynamics (EMD)
simulations. We study four types of Si NWs: pristine NWs,
screw dislocated (SD) NWs, resonant (Re) NWs, and screw
dislocated resonant (SDRe) NWs. The SD NW, Re NW, and
SDRe NW structures proposed in our work can be synthe-
sised through the vapor-liquid-solid or/and dislocation-driven
methods [22,25–28]. In this work, we investigate the syn-
ergistic reduction of TC in nanostructures by dislocations
and branches as well as the corresponding mechanisms. Our
simulations indicate that the TC of SDRe NWs can reach a

FIG. 1. (a) Side view of a SD NW with Burgers vector
→
b =

0.54 nm; (b) top view of a Re NW; and (c) side view of a SDRe
NW. Here Lw represents the main NW cross-section width, Lh and
Wb are the height and the width of resonant branches, and Lp is the
periodic length of resonant structures.

maximum reduction of 70% compared to one of the pristine
structures, which is 27% and 10% larger than the reductions
solely due to dislocations and resonances, respectively. The
resonant structures, besides reducing the group velocities,
diminish the relaxation times of low-frequency phonons by
more than two orders of magnitude, which is much larger
than the relaxation time reduction produced by dislocations.
Moreover, we find that the inhomogeneous stress, introduced
by screw dislocations, enhances lattice anharmonicity over
the whole phonon spectrum, thus leading to the observed TC
reduction, especially for the contribution of low-frequency
modes.

II. METHODS

We constructed models of square-section silicon NWs,
grown along the 〈100〉 crystallographic direction with a differ-
ent cross-section width Lw. A screw dislocation with Burgers

vector
→
b is then introduced in the middle of the NW and/or

pillars are attached on the four surfaces (Fig. 1). The cross-
section width (Wb), the height (Lh), and the period length
(Lp) of resonant pillars are fixed as 1.09, 2.17, and 3.26 nm,
respectively. The length of all NWs is 13.0 nm, which is
sufficient to attain well converged TC according to our test.
All simulations are performed with LAMMPS [29] with the
interatomic interactions described by the Stillinger-Weber
three-body potential [30], which is commonly adopted for
TC calculations in silicon-based materials [11,31,32]. The
integration time step is set to 0.5 fs, which is small enough to
ensure energy conservation. All systems are first equilibrated
to standard ambient conditions (T = 300 K and P = 1 atm)
in the NPT ensemble using the Nosé-Hoover thermostat and
barostat [33,34] for 8 ns, followed by an NV T equilibration
for 4 ns. Eventually, the systems are evolved in the NV E
ensemble for 7 ns with a heat flux collection every 10 fs for the
last 5 ns. The TC is then calculated based on the Green-Kubo
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FIG. 2. Thermal conductivity as a function of NW cross-section
width Lw for pristine, SD, Re, and SDRe NWs. The inset shows the
thermal conductivity of SDRe NWs with Lw = 4.34 nm vs the height
of the pillars.

formula [35–37] with 24 ensemble averages starting from dif-
ferent initial velocities. As the definition of the cross-section
of branched systems is somewhat arbitrary, to compare to
the results in Ref. [11], the volume of the entire structure
including the pillars is taken into account for the Green-Kubo
TC calculations of pillared NWs. Further simulations are car-
ried out at higher temperatures, up to 600 K, to unravel the
temperature dependence of TC in different NWs. Molecular
dynamics simulations are based on classical mechanics, which
results in a Boltzmann distribution of phonons populations,
which converges to the Bose-Einstein distribution beyond the
Debye temperature (645 K). In this work, the temperature
correction due to the quantum effect [38] is not considered,
as the procedure to rescale the temperature has been proven
incorrect, and it would not affect relative TC trends among
different structures and our conclusions [39].

III. RESULTS AND DISCUSSIONS

The effect of screw dislocations and resonances on the
TC of NWs is first examined and the corresponding results
are illustrated in Fig. 2. To validate our simulation approach,
we first computed the TC of bulk Si, which results in 388 ±
31 W m−1 K−1 at room temperature. This value is close to
the value of 376 ± 19 W m−1 K−1 of Ref. [11]. The TC of
the pristine NW with Lw = 4.34 nm in our simulations is
about 16.4 ± 0.9 W m−1 K−1 at 300 K, which is also close to
that obtained in [40] (19.7 W m−1 K−1) based on nonequilib-
rium molecular dynamics simulations (NEMD). The deviation
might originate from the differences between NEMD and
EMD simulations. It is also worth noting that the TC obtained
in our NWs bounded with {100} surfaces is smaller than the
TC of NWs bounded with {110} surfaces [41] due to the
stronger surface-phonon scattering. The atoms on the {100}
surface possess two dangling bonds, while those on the {110}
surface possess only one dangling bond. Larger dangling bond

density will cause much stronger surface scattering and lead to
smaller TC. With the reduction of the main NW cross-section
width Lw, the TC of pristine NWs decreases due to the en-
hanced surface scattering and confinement effect [40,42–46].
The TC of the pristine NWs obtained in our work is smaller
than the values for thin membranes of similar sizes in [11],
indicating the importance of boundary scattering. Both screw
dislocations and surface resonant structures reduce the TC of
NWs by roughly the same amount for every size.

However, it is worth noting that the magnitude of TC
reduction can be tuned by Burgers vector length [23,24],
resonator dimension, and number density [8,12,47,48]. As an
illustration, we constructed resonant NWs with different pillar
heights Lh, and the corresponding TCs at 300 K are calculated.
As shown by the inset of Fig. 2, the TC decreases linearly
with the increase of pillar height due to the increased number
of resonant modes. Normally, when two phonon scattering
sources are combined, they do not add their TC reductions if
they hinder the modes in a similar frequency range. To check
if surface resonators and screw dislocations can produce a
synergistic effect on TC reduction, we constructed NWs with
both screw dislocations and surface resonators introduced,
i.e., SDRe NWs. As can be seen in Fig. 2, the TCs of SDRe
NWs are further reduced with a relatively large magnitude
compared to the ones of both the SD and Re NWs. The sig-
nificant reduction of TC in SDRe NWs indicates that phonon
resonances can complement dislocations in TC engineering,
which is very promising for ultralow TC design.

To clarify the origin of this synergistic effect of surface
resonators and screw dislocations, it is essential to study how
resonances and dislocations reduce the TC of NWs separately,
especially identifying which phonon frequency range that is
affected by either. Since according to the kinetic theory [49]
the TC is directly related to the phonon group velocities and
relaxation times, we calculated the group velocities and re-
laxation times of the four types of NWs with Lw = 4.34 nm
based on lattice dynamics [50] and spectral energy decom-
position (SED) [51,52] methods, respectively. In the lattice
dynamics calculations, the unit cell length in the periodic
direction for the pristine and SD NWs has the same length
as the conventional Si lattice parameter (5.43 Å) while six
times the conventional lattice is used for Re and SDRe NWs
due to the existence of pillars, which leads to a six times
smaller reciprocal lattice compared to that of pristine and
SD NWs. In SED calculations, four periodic unit cells are
used for velocity calculations, allowing for the calculation
of SED on four wave vectors [51,52]. Figure 3(a) shows the
average group velocity as a function of frequency. In resonant
structures, since the resonant modes themselves possess zero
group velocity, it should be excluded for the average group
velocity calculations. In this aim, we defined the mode weight
factor [53,54] of the pillars Wλ = �i∈pillareλ

iα (eλ
iα )∗, with eλ

iα
being the eigenvector component of atom i in direction α,
and the superscript * denotes conjugation. The summation
is over the atoms in pillars and Wλ = 1 if the summation
is over all the atoms in the unit cell. For the pure resonant
modes, which are localized on pillars, Wλ of the pillar region is
close to 1. In average group velocity calculations, we exclude
those modes with a mode weight factor of the pillars region
larger than 0.8, i.e., W pillar

λ > 0.8. With this procedure, we can
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FIG. 3. The averaged group velocity (a) and relaxation time
(b) of the pristine, SD, Re, and SDRe NWs, where the NW cross-
section width is 4.34 nm and the height of pillars is 2.17 nm.

effectively exclude the pure resonant modes. From Fig. 3(a)
we can find that the inclusion of screw dislocations in NWs
does not affect significantly the group velocities at frequencies
below 8 THz, either for pristine NWs or for NWs with surface
resonators. Above 8 THz, group velocities are reduced slightly
by the dislocation in both cases, but the contribution of these
high-frequency modes to thermal transport is less important.
Unchanged group velocities indicate that the dispersion rela-
tion is almost unaffected by dislocations, revealing the same
harmonic vibrational properties. As a result, the TC reduction
by dislocation has to originate from the variation of phonon
anharmonicity, which determines the relaxation time τ . Con-
trary to dislocations, surface resonances can greatly reduce
the group velocity in NWs in the entire frequency range,
regardless of whether dislocations are involved or not. The
reduction of group velocities by surface resonators is a result
of the hybridization effect between resonant and propagating
modes.

Whereas the decrease of the group velocities in resonant
structures is responsible for the TC reduction, we found that
the MFP of low-frequency modes can be reduced by two
orders of magnitude by resonances [8], which is much larger
than the observed group velocity reduction. As a consequence,
we argue that the relaxation time should also play an im-
portant role in modulating phonon transport. Moreover, in a
previous work, some of us argued that a screw dislocation
cannot directly scatter phonons, but it would hinder phonon

transport by enhancing lattice anharmonicity by inducing
stress [24]. To evaluate the change of relaxation time by
surface resonators and dislocations, we perform SED calcu-
lations and extract the relaxation time of each mode for the
four NW structures [Fig. 3(b)]. For pristine structures, the re-
laxation time decreases rapidly with the increase of frequency,
and the value for most of the modes beyond 4 THz is in the or-
der of picoseconds. With the inclusion of a screw dislocation
in the pristine NW, the relaxation times at all frequencies are
reduced, including those of low-frequency acoustic modes.
The low-frequency relaxation times are reduced by one order
of magnitude below 4 THz, beyond which the reduction is
much weaker.

With the addition of surface pillars, the relaxation time
is slightly decreased above 4 THz compared to the value of
pristine structures. However, it is reduced by more than two
orders of magnitude below 4 THz, which is much stronger
than the reduction retreated by dislocations. The strong re-
duction of relaxation time at low frequencies by resonances
indicates that it plays an important role in TC engineering for
resonant structures. This finding complements the previous
assumptions that resonances mainly reduce the phonon group
velocities, highlighting the effect of resonances on relaxation
times and its importance for TC reduction. The reduction
of relaxation time by flat bands has also been observed in
filled skutterudite [15,16]. The above analysis indicates that
the effect of a screw dislocation on phonon relaxation time is
stronger at high frequencies, while that of surface resonances
is stronger at low frequencies. As a result, the two phonon
manipulation methods can complement each other, and they
are able to produce a synergistic effect on relaxation time
engineering, which is evidenced by the significant reduction
of relaxation time in the whole frequency range in SDRe
NWs.

According to the kinetic theory, the TC of each mode
can be calculated with the obtained group velocity vg and
relaxation time τ according to κ = cvv

2
gτ , where the classical

mode heat capacity cv = kB is used since the TC obtained by
MD simulations is classical. Figure 4 shows the TC of each
mode in the pristine, Re, SD, and SDRe NWs. To represent
the data clearly, we plotted the data in two figures with the
SDRe one in Fig. 4(b). The TC of the pristine NW below
4 THz is relatively large, and some of the modes even possess
TC larger than 1 W m−1 K−1 due to the long MFP. With the
introduction of SD, the TC of the low-frequency modes can
be reduced by approximately one order of magnitude, which
is in accordance with the relaxation time reduction. At high
frequencies, the TC spectral components spread over a broad
range, and some of the them are reduced noticeably while
the rest of them are almost unchanged. As for Re NWs, the
TC spectral components at all frequencies are distributed in
a broad range. There are many components in Re NWs pos-
sessing very small TC due to the almost zero group velocity.
Compared to the SD NWs, the TC of the Re NWs is much
smaller below 4 THz, which indicates the strong hindrance of
low-frequency thermal transport by resonances. For the SDRe
NWs [Fig. 4(b)], the mode TC in the entire frequency range
is dramatically reduced compared to the value of the pristine
structures, which clearly demonstrates the synergistic effect
of dislocation and resonances.
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FIG. 4. The thermal conductivity of each mode for the pristine,
Re, SD, and SDRe NWs. For a better presentation, the values of
pristine, Re, and SD NWs are plotted in (a), while the data for the
pristine and SDRe NWs are plotted in (b).

To analyze the variation of relaxation time, we refer to the
Fermi Golden Rule. According to the Fermi Golden Rule,
the three phonon-phonon scattering rate can be obtained as
follows [55]:

�± = h̄π

4N0

{
n0

λ′ − n0
λ′′

n0
λ′ + n0

λ′′ + 1

}
| V (3)

± |2 δ(ωλ ± ωλ′ − ωλ′′ )

ωλωλ′ωλ′′
,

(1)
where ωλ is the frequency of the λth modes, and V (3)

± repre-
sents the scattering matrix element, which can be cast as

V (3)
± =

∑
0bl ′b′l ′′b′′

∑
αβγ

�
αβγ

0bl ′b′l ′′b′′
eλ
αbe±λ′

βb′ e−λ′′
γ b′′√

m̄bm̄b′m̄b′′
. (2)

Here � denotes the third-order force constant, and eλ
αb is the

eigenvector component of atom b in direction α of the λth
mode. m̄ and l are the average atom mass and unit cell index,
respectively. As illustrated by Eq. (1), there are two quantities
that affect the relaxation time (inverse of scattering rate), i.e.,
the scattering channels and the scattering matrix elements.
The former is characterized by the phase space, while the
latter is determined by the anharmonic force constants as well
as the spatial overlap of the corresponding modes [Eq. (2)].
To clarify which factor is responsible for the relaxation time
reduction by the dislocations and the resonators, we calculated
the phase space of three-phonon scattering for each mode,

FIG. 5. (a) The phase space of three-phonon scattering for the
pristine, SD, Re, and SDRe NWs; phonon dispersion curves of the
pristine NW (b), SD NW (c), and Re NW (d). The cross-section
width of all NWs is 4.34 nm and the height of the pillars is 2.17 nm.
The lattice parameter a = 5.43 Å in (b) and (c), and a = 32.6 Å in
(d).

which is defined as [16,56,57]

P3(ωλ) = 1

N2
k N3

b

∑
λ′,λ′′

δ[ωλ ± ωλ′ − ωλ′′ ], (3)

where Nk and Nb are the numbers of k points and phonon
branches, respectively. The phase space is known to have
a strong negative correlation with TC [56], and its value is
between 0 and 1. The actual values are normally several
orders of magnitude smaller than 1. Figure 5(a) illustrates
the calculated phase space of the four structures calculated
according to Eq. (3). In general, the phase space of all four
structures decreases with frequency with a small peak around
10 THz. As reported in the figure, the phase space of SD
NW is almost identical to that of the pristine structure. This
is a consequence of the fact that dislocations do not alter
significantly phonon dispersion relations, except for breaking
the degeneracy of some branches, e.g., the flexural acoustic
branch [Fig. 5(c)]. The unaltered phase space reveals that the
relaxation time reduction, originated from dislocations, arises
from the increased absolute value of the scattering matrix
elements V (3)

± , which indicates that bonds become more an-
harmonic. The similarity observed in the dispersion relations
of dislocated and pristine NWs reveals that the harmonic
properties are almost not affected by the dislocation, indi-
cating the same spatial overlap between different modes.
As a result, the reduced values of the scattering matrix ele-
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ments should come from the enhancement of phonon-phonon
coupling constants. The unaltered harmonic properties might
be due to the fact that the bond length variations with the
inclusion of a dislocation are small. Consequently, the sec-
ond derivative of potential energy, which arises mostly from
the two-body interactions in the Stillinger-Weber potential,
will not change. However, the shear displacement induced
by the SD can change the bond angles more significantly
than the bond length, which finally causes the change in
anharmonicity.

Different from dislocations, the phase space for phonon
scattering of Re NWs is largely enhanced at all frequencies
compared to that of the pristine structure, indicating that the
scattering channels are greatly increased by resonators. In
fact, when looking at the phonon dispersion relations, the
flat resonant bands crossing the entire Brillouin zone can
make the momentum and energy conservation much more
probable during the scattering process. For example, taking
three phonon frequencies with the energy conservation rule
ω1 + ω2 = ω3 (absorption process), where ω2 refers to the
resonant frequency, it can always satisfy momentum conser-
vation by adjusting the wave vector of the second mode since
the resonant mode dispersion relation is flat [Fig. 5(d)]. In
contrast, in pristine or dislocated structures the possibility of
finding a mode to satisfy energy and momentum conservation
is much lower, as there are only a few discrete modes at the
three frequencies [Fig. 5(c)]. The results also show that the
relaxation time at high frequencies is only slightly reduced by
the presence of resonators, as illustrated in Fig. 3(b), while
the phase space is enhanced dramatically at all frequencies.
This phenomenon is attributed to the spatial separation be-
tween resonant and propagating modes. As analyzed above, to
enable the scattering, the participating modes need to spatially
overlap. However, at high frequencies the modes are relatively
localized compared to the low-frequency ones. Since the res-
onant modes are mostly localized on pillars, it is difficult for
the propagating optical modes to couple with the resonant
ones. As a result, most of the scattering matrix elements are
essentially zero for the channels related to the resonant modes,
while the spatial distribution of low-frequency acoustic modes
normally extends to all atoms with pillars included [8]. Thus
they can always overlap with resonant modes. Consequently,
the resonances have a significant impact on the relaxation time
of low-frequency modes as almost all the increased scattering
channels can contribute to an effective scattering. In summary,
our analysis shows that in resonant NWs, the high-frequency
phonons are mostly modified via group velocity reduction,
while the low-frequency modes are engineered via relaxation
time reduction.

The distribution of the resonant modes could be estimated
by considering the isolated pillars (unconnected to the main
structure) as indicated in Ref. [11] by Honarvar et al. It has
been demonstrated that pillars with a larger cross-section pos-
sess wider distributions of resonant modes than taller pillars
of the same volume. On the other hand, the resonant modes
produced by the pillars are similar to the well-known closed
organ-pipe modes, the frequency of which can be estimated as
(2n+1)vg

4L , where n and vg are an integer and the group velocity
of the mode forming the corresponding resonances, respec-
tively. L is the length confining the resonant modes. For the

first resonant frequency, the two pillars on the opposite sides
contribute to the vibrations [8], thus L = 2Lh + Lw = 8.6 nm
in this case is the height of the two pillars plus the side length
of the main NW. The resonant coupling for the first flat band
occurs between longitudinal modes. By using lattice dynam-
ics, we calculated the longitudinal phonon group velocity in a
NW with a cross-section of 1.09 × 1.09 nm2 as 4.6 km/s. As
a result, the estimated resonant frequency is around 0.13 THz,
which is close to the observed resonant frequency of
0.12 THz.

In general, defects scatter phonons directly and can ef-
fectively impede the high-frequency (e.g., above 2 THz
for alloying) phonon transport by shortening their relax-
ation times. Due to the longer wavelengths of low-frequency
phonons, they get less scattered by lattice defects. In contrast
with other scattering sources, our previous work demonstrated
that dislocations do not scatter phonons directly; instead,
they hinder phonon transport by increasing the lattice an-
harmonicity [24]. However, it is still unclear how strongly
the anharmonicity is enhanced at all frequencies. Here, as
illustrated by the obtained relaxation time, we find that the
helical dislocation reduces relaxation time not only at high fre-
quencies, but also at low frequencies, which is the advantage
of dislocations over other scattering sources in manipulating
phonon transport. At frequencies below 4 THz, the relaxation
time can be reduced approximately by one order of magni-
tude. We ascribe this phenomenon to the nonhomogeneous
stress field produced by screw dislocations. It is well known
that screw dislocations can produce strong shear stress [58],
and in the core region the atoms even suffer plastic defor-
mation. To check the distribution of stress in SD NWs, we
calculated the lateral atomic shear stress profile at 300 K with
Lw = 4.34 nm according to the equation

σ =
√

σ 2
xz + σ 2

yz, (4)

where σxz and σyz are the shear stress along the z direction in
the xz and yz plane, respectively. They are components of the
atomic stress tensor [59]:

σ = 1

Vi

{
−mivi ⊗ vi + 1

2

∑
j

ri j ⊗ f i j

}
, (5)

where Vi, mi, and vi are the volume, mass, and velocity of
atom i, respectively. ri j and f i j are the position vector and
force between atoms i and j. The corresponding results are
depicted in Fig. 6(a). All the illustrated stress profiles are
averaged over 1 ns with one calculation every 10 fs. The stress
profile produced by SD reveals an azimuthal invariance and a
maximum value at the circle defined by a critical radius rc,
below which the stress is small due to the plastic deformation.
The shear stress decreases with the increase of radius above
rc. We can also observe that the surface stress exists due to
dangling bonds. To have a better idea of the radius-dependent
stress distributions, we plot the shear stress as a function of
radius in Fig. 6(b). According to this latter figure, the radius
corresponding to the maximum stress is about rc = 0.54 nm
(the dashed vertical line), which is very close to the magnitude
of the Burgers vector. As a result, the plastic deformation area
caused by a SD has a radius set by the Burgers vector. This
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FIG. 6. (a) The lateral shear stress profile and (b) the radius-
dependent stress for SD NW with Lw = 4.34 nm. The inset of
(b) illustrates a schematized shell for stress calculation correspond-
ing to radius r.

statement is also valid for larger Burgers vectors, as shown in
Appendix B. Beyond rc, the stress decreases with an increase
in the radius, and it can be well fitted by an r−1 dependence,
which is in good accordance with the dislocation theory [58].

The stress oscillations at a larger radius are due to the influ-
ence of surface stress. In our calculations, the stress of each
radius is averaged over all atoms in the corresponding shell,
as illustrated by the inset of Fig. 6(b). Since the surface atoms
contain dangling bonds, the velocity and position variations
of these atoms are larger than those of inner atoms, which
eventually lead to the stress fluctuation at a large radius.

To better understand the effect of nonhomogeneous stress
on phonon transport in SD NWs, we also perform the cor-
responding radius decomposition on the phonon density of
states (DOS) [60] for pristine and SD NWs. As shown in
Fig. 7(a), the DOS is identical for the shells without any sur-
face atoms (r � 1.63 nm) in pristine NWs, while the surface
atoms will induce the shift of DOS peaks to lower frequencies,
corresponding to the softening of phonons. In a SD NW, the
peaks of DOS for atoms located in the NW core regions are
slightly shifted toward lower frequencies with a more pro-
nounced effect at high frequencies, which means that SD can
lead to a slight phonon softening [61]. However, this effect is
relatively small compared to that induced by surface atoms.
The weak radius-dependent DOS (except the surface region)
in the SD NW indicates that the vibrational frequencies will
not be altered by SD, which is in agreement with our disper-
sion and group velocity analysis.

The increase in temperature can enhance the scattering
of phonons by increasing the anharmonicity. To check how
temperature can affect the thermal transport in our resonant
and screw dislocated systems, we perform TC calculations
at different temperatures as reported in Fig. 8. Note that we
did not present the TC of NWs with resonant structures at
550 and 600 K as the thin pillars are unstable at such high
temperatures. In the current study, the cross-section of the
pillars is only 1.09 × 1.09 nm2 and the surface-to-volume
ratio is too large (2.5 nm−1). As a result, the large surface
energy due to the dangling bonds makes the pillars melt at
lower temperatures [62,63]. However, when the cross-section
is increased to 1.63 × 1.63 nm2, the pillars become stable at
600 K. When temperature increases, the TC of all structures
decreases in general except those of SD NWs at 550 and
600 K, at which the TC is increased compared to that at
lower temperatures. This abnormal phenomenon arises from

FIG. 7. Radial decomposition of DOS for pristine (a) and SD (b) NWs with the cross-section width Lw = 4.34 nm. The insets are the
corresponding zoom in the plot for the frequency range between 15.5 and 17 THz.
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FIG. 8. Temperature-dependent thermal conductivity for pristine
NWs, SD NWs, Re NWs, and SDRe NWs with the NW cross-section
width Lw = 3.26 nm. At temperature higher than 500 K, the small
surface resonator structures are unstable, hence the corresponding
thermal conductivities are not presented.

the dislocation recovery at high temperatures, which will be
explained later. For the pristine NW, the TC can be well fitted
by the 1/T relation, a signature of anharmonic scattering.
For many scattering resources such as alloying, the result-
ing TC is usually temperature-independent due to the strong
scattering of high-frequency phonons by defects [8,64–66],
which makes the anharmonic effect negligible even at high
temperatures since the temperature-induced anharmonicity is
only noticeable at high frequencies. However, for the screw
dislocated and resonant structures, we find that the TC can still
be decreased with the elevation of temperature, meaning that
the hindrance of high-frequency phonons by dislocation and
resonance is not as strong as that generated by temperature.
At 500 K, the TC can be reduced by a factor of 2 induced by
dislocations or resonances, which reveals the ability to tune
the TC at high temperature by the two sources. The combina-
tion of screw dislocations and resonators can further decrease
the TC of NWs at the studied temperatures, indicating that the
synergistic effect can be preserved at all temperatures. Even
for the SDRe structure, we can still observe the reduction
of TC with the increase of temperature, which means that
the high-frequency phonons still can contribute to thermal
transport at low temperature.

At 550 and 600 K, we note that there is an abnormal TC
increase for SD NWs. After a careful check of all conditions,
we find that these outliers are due to the partial recovery of
dislocations at these two temperatures. To have a clear idea
of the dislocation recovery, we plot the shear stress profile for
SD NWs at 500 and 550 K in Fig. 9. It can be clearly observed
that at 500 K, stress induced by screw dislocation is large. The
critical radius rc for the core region with plastic deformation
is still around the value of the Burgers vector. Beyond rc the
stress profile can be fitted by a 1/r0.9 relation. However, when
the temperature rises to 550 K, the dislocation-induced stress
completely disappears; only surface stress can be observed
in Fig. 9(c). In the middle region, the stress is almost the
same at different radii until surface atoms are involved, which

FIG. 9. The lateral shear stress profile and the radius-dependent
stress for SD NW with Lw = 3.26 nm at 500 K (a),(b) and 550 K
(c),(d).

reveals the recovery from the screw dislocation and leads to
the abnormal increase of TC with temperature. However, we
find that the TC did not recover back to the value of pristine
structures, which might be due to the incomplete recovery
from the dislocation. We have tried to relax the structures for
10 further nanoseconds and find that the TC is the same. So
we think this incomplete recovery is an intrinsic property of
screw dislocations.

IV. CONCLUSIONS

The thermal transport properties of Si NWs with screw
dislocation and surface resonators have been studied sys-
tematically by molecular dynamics simulations. We find that
both screw dislocations and surface resonators can reduce the
TC of NWs noticeably. The screw dislocation has almost no
effect on the harmonic properties, and the TC modification
is fully achieved by enhancing the anharmonicity of NWs.
Differing from other defects such as alloys, which scatter
high-frequency phonons only, screw dislocations can reduce
the relaxation time in the whole frequency range due to the
nonhomogeneous stress field. As for the resonator structure,
we uncover that it not only reduces the group velocities
of phonons through the resonant hybridization, but it also
can diminish the relaxation time strongly at low frequencies,
a mechanism unrecognized before. The strong shortening
of low-frequency phonon relaxation times is caused by the
increased number of scattering channels. As a result, the
resonant structures can modulate phonon transport through
the reduction of group velocities at high frequencies and
the reduction of relaxation time at low frequencies. The
strong hindrance of low- and high-frequency phonon trans-
ports by resonators and screw dislocations is eventually a very
promising combination to engineer phonon transport at all
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frequencies. We also uncover that the dislocations can recover
back at temperatures above 550 K, yielding an abnormal TC
increase with temperature at 550 K. Our theoretical results
not only provide insights into the TC reduction mechanisms
produced by screw dislocations and surface resonators, but
they also illustrate a paradigm for ultralow TC engineering
through the manipulation of the entire spectrum of phonons
contributing to energy transport.
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APPENDIX A: COMPARISON BETWEEN
THE STRESS FIELDS

As discussed in Sec. III, the SD can generate a nonho-
mogeneous strain. Here we provide a comparison on stress
distributions among the pristine, SD, Re, and SDRe NWs. The
cross-section of the main NW considered is Lw = 4.34 nm. It
can be clearly observed from Fig. 10 that the stress is small
in the NW except that there is a surface stress for the pristine
NW. For the Re NW, the stress distribution in the main NW
is similar to the case of the pristine structure. Due to the rela-
tively small cross-section (1.09 × 1.09 nm2) of our pillars, the
surface atom ratio is large, which makes the stress larger than
for the atoms inside the main NW. With the introduction of a
SD in the middle of the NW, a nonhomogeneous stress field

FIG. 10. The lateral shear stress profile of (a) pristine NW, (b) Re
NW, (c) SD NW, and (d) SDRe NW, the cross-section width Lw =
4.34 nm.

is generated in both SD and SDRe NWs. The stress field has
rotational symmetry with a maximum value at a critical radius.
Moreover, the critical radius for plastic-elastic deformation in
both SD and SDRe NWs is the same, corresponding to the size
of the Burgers vector, indicating that the resonant structure
will not affect the SD induced stress distribution.

APPENDIX B: BURGERS VECTOR AND TEMPERATURE
EFFECT ON DISLOCATION INDUCED STRESS

The nonhomogeneous stress field created by SD should be
dependent on the dislocation magnitude, especially for the
critical radius of the maximum stress. To check this point,
we calculated the radius-dependent stress distributions for SD
NWs with different Burgers vectors ranging from 1b to 3b.
Since the largest Burgers vector is 3b, we choose a NW with
a larger cross-section (Lw = 7.6 nm) to avoid the overlap
between the surface stress and stress produced by dislocation.
The obtained results are demonstrated in Fig. 11(a), which
reports that a critical radius corresponding to the maximum
stress indeed enlarges with the increase of the Burgers vector.
For all the Burgers vectors investigated, the stress within the
circle highlighting the critical radius is relatively small. This
region corresponds to the plastic deformation region. Beyond
the critical radius, the stress reduces with the radius gradually.
The stress beyond the critical radius can be well fitted by a
1/r relation for the three Burgers vectors, which is in good
accordance with the traditional dislocation theory [58]. It is
also interesting to observe that the critical radius between
plastic and elastic deformations corresponds very well to the
Burgers vector magnitude for all three cases, as shown by
the dashed vertical lines in Fig. 11(a). As a result, we can

FIG. 11. The radius-dependent stress for the NWs with Burg-
ers vectors of 1b, 2b, and 3b (a). The cross-section of the NWs
is 7.6 × 7.6 nm2. The radius-dependent stress of SD NWs with
Burgers vector of 1b at temperatures before and after screw dislo-
cation recovery with different cross-sections: (b) 3.26 × 3.26 nm2,
(c) 4.34 × 4.34 nm2, and (d) 5.43 × 5.43 nm2.
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conclude that the plastic deformation area induced by SD is
within the radius of the corresponding Burgers vector, beyond
which elastic deformation takes place.

In Fig. 9, we showed that the screw dislocation can par-
tially recover at elevated temperatures, which was quantified
by the stress field. To have a more detailed study on this SD re-
covery temperature, we performed the radius-dependent stress
calculations for SD NWs with different cross-sections and a
1b Burgers vector. The corresponding results are displayed in
Figs. 11(b)–11(d). For all the cross-sections, we can find that
there is a SD recovery temperature, below which the stress

is large, and the radius-dependent stress follows the dislo-
cation theory. However, at temperatures higher than the SD
recovery temperature, the stress is almost independent of
radius, indicating that the SD induced stress disappeared.
When the cross-section of the NW is 3.26 × 3.26 nm2, the
SD recovery temperature is between 500 and 550 K. This
recovery temperature increases to 750–800 K in the NW with
cross-section 4.34 × 4.34 nm2 and further increases to 900–
950 K when the cross-section is enlarged to 5.43 × 5.43 nm2.
In general, the SD recovery temperature increases with the
enlargement of the NW cross-section.
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