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Effect of quantum resonances on local temperature in nonequilibrium open systems
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Measuring local temperatures of open systems out of equilibrium is emerging as a novel approach to study
the local thermodynamic properties of nanosystems. An operational protocol has been proposed to determine
the local temperature by coupling a probe to the system and then minimizing the perturbation to a certain local
observable of the probed system. In this paper, we first show that such a local temperature is unique for a single
quantum impurity and the given local observable. We then extend this protocol to open systems consisting of
multiple quantum impurities by proposing a local minimal perturbation condition (LMPC). The influence of
quantum resonances on the local temperature is elucidated by both analytic and numerical results. In particular,
we demonstrate that quantum resonances may give rise to strong oscillations of the local temperature along a
multi-impurity chain under a thermal bias.
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I. INTRODUCTION

Local temperatures of systems out of equilibrium [1]
are of fundamental importance in many sub-fields of mod-
ern science, including physics [2–5], chemistry [6–8] and
biology [9–11]. With the development of high-resolution ther-
mometric techniques [4,12,13], the measurement of local
temperature distributions in nonequilibrium nanoscopic sys-
tems has been realized, such as in graphene-metal contacts
[14], aluminum nanowires [13], and two-dimensional metallic
films [15].

A nonequilibrium system under an external driving source,
such as a bias voltage or a thermal gradient, often possesses
a local temperature somewhat higher than the background
temperature [16]. Such a local heating effect usually origi-
nates from the electronic and phononic excitations occurring
in the system and has significant influence on some physical
properties [17] and processes [18–23].

Theoretically, the concept of temperature has been ex-
tended from equilibrium systems to local subregions of
nonequilibrium systems [1,24–41]. Ideally, the definition of
local temperature should be universal (so that it can be applied
to as many nonequilibrium situations as possible), unique
(so that it yields one and only one value of temperature),
operationally feasible (so that it can be measured experimen-
tally), and has the correct asymptotic limit (so that it retrieves
the thermodynamic temperature as the system approaches an
equilibrium state) [1].

For instance, Engquist and Anderson have proposed a pro-
cedure for measuring the local temperature and local chemical
potential of nonequilibrium systems [42]. In their definition,
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the local temperature and local chemical potential are mea-
sured, respectively, by a thermometer in thermal equilibrium
with the system of interest and a potentiometer in electrical
equilibrium with the system. Later, Bergfield and Stafford
et al. pointed out that the above definition implicitly ig-
nores thermoelectric effects and is nonunique [43–45]. They
have proposed a definition in which the local temperature
and local chemical potential of a nonequilibrium system are
determined simultaneously [43,45–47]. In their definition, a
probe which plays the roles of both potentiometer and ther-
mometer is weakly coupled to the nonequilibrium system
of interest. By varying the temperature (Tp) and chemical
potential (μp) of the probe until both the electric (Ip) and
heat currents (Jp) flowing through the probe vanish, the local
temperature (T ∗) and local chemical potential (μ∗) of the
system are determined as T ∗ = Tp and μ∗ = μp, respectively.
Such a condition is referred to as the zero current condition
(ZCC) [1].

The ZCC-based definition has been used to investigate
local temperature [44,48–51] and local electrochemical po-
tential distribution [52–54] in nanosystems out of equilibrium
[55–57]. It was found that the local temperature (T ∗,ZCC)
exhibits an oscillatory behavior in nanowires [56], conjugated
organic molecules [43], and graphene sheets [46]. Such oscil-
lations originate from the emergence of quantum coherence
as the size of the system reduces to be comparable to or even
smaller than the mean free path of electrons [58]. Conse-
quently, the classical Fourier’s law is strongly violated [1,59–
62]. Although it has been demonstrated [5,43,46,48,55,56,58]
that quantum coherence and quantum interference effects
could be captured by T ∗,ZCC, it was also shown that T ∗,ZCC

of a quantum dot experiences little change as the dot is tuned
from an off-resonance region into a resonance region [63].
Therefore, it remains unclear whether T ∗,ZCC could reflect the
emergence of sharp quantum resonances.
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The ZCC-based definition has the advantage of yielding
a unique value of local temperature for any nonequilibrium
system [47], and it is applicable even in situations where local
equilibrium states do not exist [48]. However, its experimental
realization is rather challenging because of the difficulty in
measuring the heat current through a nanosized sample with-
out knowing its priori local temperature [1]. Recently, Shastry
and co-workers have modified the ZCC-based protocol [45],
and the new protocol does not require the measurement of
heat current if the system obeys the Wiedemann-Franz law.
However, the Wiedemann-Franz law is known to be violated
by systems involving strong many-body interactions [64] or
low-energy quantum resonant states [65].

Alternatively, an operational protocol to determine the
local temperature has been proposed based on a minimal-
perturbation condition (MPC) [58,63,66], with which the local
temperature (T ∗,MPC) is determined by tuning Tp and μp of
a weakly coupled probe until the perturbation caused by the
probe to the system gets minimized.

Ideally, if the perturbation caused by the probe to the sys-
tem can be nullified, any dissipation between the system and
the probe, particularly the energy and particle flows, would
vanish. In such cases, the MPC can be deemed as a general-
ization of the zeroth law, and it naturally leads to the ZCC;
see the formal proof in Appendix. Meanwhile, as a result of
zero dissipation, any observable of the system preserves its in-
trinsic value as in the absence of the probe. However, in some
occasions, such as when quantum resonances come into play
[63], the influence of the probe cannot be fully suppressed. In
the latter case, the MPC stands as an empirical principle which
minimizes the dissipation between the system and the probe,
while its thermodynamic meaning is less transparent. Because
of the difficulty in measuring the heat current directly, in
practice the dissipation is characterized by the particle current
as well as the change of a certain system observable. The
resulting MPC-based protocol has been applied to investigate
local temperatures of strongly correlated quantum impurity
systems [63,66].

Despite the effectiveness and feasibility of the MPC-based
definition, there are still issues that remain unclear. Some of
them are as follows: (i) Does the MPC predict a unique value
of T ∗? (ii) Why and how does T ∗,MPC differ from T ∗,ZCC in
systems involving quantum resonances? (iii) So far the appli-
cation of the MPC has been restricted to systems containing
a single impurity. How do we extend the definition of T ∗,MPC

to multi-impurity systems? (iv) Do quantum resonances lead
to any discernible feature in the distribution of local tempera-
tures along a quantum wire?

This work aims at elucidating the above issues through
theoretical analysis and numerical calculations. In particu-
lar, to address the last two questions, we propose a local
minimal-perturbation condition (LMPC) by imposing explic-
itly the nonequilibrium-equilibrium correspondence relation.
As a direct extension of the original MPC, the LMPC enables
the determination of the local temperature and local chemical
potential of each impurity in a multi-impurity system out of
equilibrium.

The remainder of this paper is organized as follows. In
Sec. II, we revisit the MPC protocol and discuss how to
reach a unique prediction of the local temperature of a single

quantum impurity. In Sec. III, we propose the LMPC-based
definition of local temperature. As a numerical example we
calculate the distribution of local temperatures along a quan-
tum wire consisting of four impurities. Concluding remarks
are given in Sec. IV.

II. EFFECT OF QUANTUM RESONANCES ON LOCAL
TEMPERATURES OF SINGLE IMPURITY SYSTEMS

A. Quantum impurity systems

In the following, the Anderson impurity models (AIMs)
[67] are adopted to describe the open systems. The total
Hamiltonian of the system plus environment is

Ĥ = Ĥimp + Ĥlead + Ĥcoup, (1)

where the three terms on the right-hand side (RHS) represent
the Hamiltonian of the impurities, the Hamiltonian of the
leads which serve as the electron reservoirs and heat baths,
and the Hamiltonian of the impurity-lead couplings, respec-
tively.

We consider first a single impurity described by Ĥimp =
εd n̂ + Un̂↑ n̂↓. Here, n̂ = ∑

s n̂s = ∑
s â†

s âs, with â†
s (âs) cre-

ating (annihilating) an electron of spin s on the impurity level
εd , and U is the Coulomb interaction energy between the
spin-up and spin-down electrons. Ĥlead = ∑

αks εαk d̂†
αks d̂αks

and Ĥcoup = ∑
αks tαk â†

s d̂αks + H.c. describe the noninteract-
ing leads and the impurity-lead coupling, respectively. Here,
d̂†

αks(d̂αks) creates (annihilates) a spin-s electron on the kth
orbital of the αth lead, and tαk is the coupling strength between
the impurity level and the kth lead orbital.

To investigate the properties of the impurity, the hier-
archical equations of motion (HEOM) approach [68–73] is
employed, which takes the reduced density matrix of the
impurity and a hierarchical set of auxiliary density operators
as the basic variables. The HEOM theory is, in principle,
formally exact, and its numerical outcomes are guaranteed to
be quantitatively accurate if the results converge with respect
to the truncation tier of the hierarchy (L) [74,75]. For nonin-
teracting impurities (U = 0), the HEOM theory is formally
equivalent to the nonequilibrium Green’s function (NEGF)
formalism [69], and a low truncation tier of L = 2 suffices
to yield exact single-electron properties. For interacting AIMs
(U �= 0), while the analysis with the NEGF method is difficult
because the self-energies due to electron-electron interaction
cannot be expressed analytically, the HEOM approach can
still yield accurate numerical results (usually with a truncation
tier of L > 2) [63,65,66,76–81].

In the framework of the HEOM, the influence of the
noninteracting leads on the impurity is fully captured by
the hybridization functions, �α (ω) ≡ π

∑
k |tαk|2δ(ω − εαk ).

For numerical convenience, a Lorentzian form of �α (ω) =
�αW 2

α

(ω−	α )2+W 2
α

is adopted, where �α is the effective coupling
strength between the impurity and the αth lead, and 	α and
Wα are the band center and width of the αth lead, respectively.
We further set the band center at the chemical potential of the
lead, i.e., 	α = μα . The chemical potential of the equilibrium
composite system is set to the zero energy, i.e., μeq = 0.

In the following, �p (the subscript p denotes the probe) is
taken to be at least two orders of magnitude smaller than all
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the other �α , and further reducing its value does not influence
the resulting T ∗ and μ∗ [66]. Hereafter, we adopt the atomic
units e = h̄ = kB ≡ 1, and � = ∑

α �=p �α is taken as the unit
of energy.

B. Minimal-perturbation condition

The MPC-based protocol is generally applicable to any
quantum impurity system regardless of the specific form of
the system Hamiltonian. Here, we consider the scenario that a
single impurity is coupled to the left (L) and right (R) leads,
whose background temperatures (chemical potentials) are TL

and TR (μL and μR), respectively. By coupling an external
probe to the impurity, the local observable O = 〈Ô〉 = tr(Ôρ)
is subject to a perturbation of

δOp = Op(Tp, μp) − Oref . (2)

Here, Op(Tp, μp) is the value of O measured by setting the
temperature and chemical potential of the coupled probe to
Tp and μp, respectively. Oref is the minimally perturbed value
of O which serves as reference for Op. For a single-impurity
system, Oref is determined by

Oref = ζLOp(TL, μL ) + ζROp(TR, μR), (3)

where the coefficients ζα (α = L and R) are acquired as [66]

ζα = 1 −
∣∣∣∣ Ip(Tα, μα )

Ip(TL, μL ) − Ip(TR, μR)

∣∣∣∣. (4)

Here, Ip(Tp, μp) is the electric current flowing into the probe
with its temperature and chemical potential set to Tp and μp,
respectively. For AIMs, ζα = �α

�L+�R
.

The local temperature T ∗ and local chemical potential μ∗
of the impurity are determined by

Ip(T ∗, μ∗) = 0

(T ∗, μ∗) = arg min
(Tp,μp)

|δOp(Tp, μp)|. (5)

In particular, if δOp = 0 is achievable by tuning Tp and μp, the
MPC actually becomes the zero perturbation condition (ZPC).
The definition of Eq. (5) does not involve the troublesome heat
current, and all the involving quantities (e.g., Ip and Op) can be
measured directly in experiments. Therefore, Eq. (5) provides
an operational protocol for the determination of T ∗ and μ∗. In
practice, such a protocol for the system under a bias voltage
may be further simplified with a preset μ∗ as follows,

μ∗ ≈ ζLμL + ζRμR

T ∗ = arg min
Tp

|δOp(Tp, μ
∗)|. (6)

For a convenient and accurate measurement of T ∗, the
local observable O should vary sensitively with Tp. In our
previous works [63,66], the local magnetic and charge sus-
ceptibilities of the impurity, χm = ∂〈m̂z〉

∂Hz
|Hz→0 and χ c = − ∂〈n̂〉

∂εd
,

respectively, have been chosen as the local observables. Here,
m̂z = 1

2 gμB (n̂↑ − n̂↓) is the impurity magnetization operator,
with Hz being the local magnetic field, g the electron gyromag-
netic ratio, and μB the Bohr magneton. It has been shown that
while T ∗,MPC(χm) and T ∗,MPC(χ c) agree closely with each
other in most cases, they do exhibit small discrepancy in the
near-resonance (NR) region [63].

FIG. 1. δχm
p /χm

ref as a function of Tp for a single-impurity system
under an antisymmetric bias voltage of μR = −μL = V/2. T ∗

c and T ∗
h

are two temperatures which satisfy the ZPC of δχm
p = 0, as indicated

by the horizontal line. The energetic parameters of the system are (in
units of �): TL = TR = 0.67, εd = −3.33, �L = �R = 0.5, U = 2.5,
and WL = WR = 6.67. The inset depicts the energy distribution of the
heat current flowing into the probe [ j1

p(ω)] at Tp = T ∗
c and Tp = T ∗

h

under the zero bias, respectively. The detailed expression of j1
p(ω)

has been given in Ref. [66], and Jp = ∫
j1
p(ω)dω.

In the following, we explore the uniqueness/
nonuniqueness of the T ∗,MPC. First, we show that the MPC
of Eq. (5) or Eq. (6) may give rise to multiple values of T ∗
with a certain O. Figure 1 depicts the relative perturbation
of local magnetic susceptibility, δχm

p /χm
ref , as a function of

Tp for a single-impurity system under an antisymmetric bias
voltage. From the first line of Eq. (6) we have μ∗ = 0 since
�L = �R. Meanwhile, it is intriguing to find that there are
two temperatures that could satisfy the ZPC of δχm

p = 0,
which are designated as T ∗

c and T ∗
h (T ∗

c < T ∗
h ). Thus, the

local temperature T ∗,MPC appears to be nonunique. However,
it is important to note that as the bias voltage is reduced the
whole system should evolve towards an equilibrium state.
In particular, in the limit of V → 0, T ∗,MPC should recover
the thermodynamic temperature of the equilibrium system,
i.e., T ∗,MPC = TL = TR. In particular, as indicated by the inset
of Fig. 1, the heat current through the probe (Jp) vanishes
only at Tp = T ∗

h = TL = TR, while it retains an appreciable
value at Tp = T ∗

c . It is thus evident that only T ∗
h achieves

the correct asymptotic limit under the zero bias and recovers
the zeroth law. Therefore, although the MPC of Eq. (6) has
multiple solutions, because it does not explicitly examine the
heat current, the T ∗,MPC can still be uniquely determined for a
given local observable O by considering the asymptotic limit
of the global equilibrium state.

C. Effect of quantum resonances on local temperature

We then explore the uniqueness/nonuniqueness of
T ∗,MPC associated with different local observables in the
off-resonance, near-resonance, and resonance regions. To this
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FIG. 2. T ∗,MPC(n), T ∗,MPC(χ c ), and T ∗,ZCC versus εd for a nonin-
teracting single-impurity system under an antisymmetric bias voltage
of μR = −μL = V/2 = 0.2�. The energetic parameters of the sys-
tem are (in units of �): TL = TR = 1, U = 0, �L = �R = 0.5, and
WL = WR = 50. The shaded areas represent the NR regions.

end, we consider a noninteracting single-impurity system
under an antisymmetric bias voltage. Figure 2 depicts the
variation of T ∗,MPC determined by Eq. (6) with the change
of εd . The displayed T ∗,MPC are associated with the electron
occupation number on the impurity n = 〈n̂〉 or with the local
charge susceptibility χ c. In both cases, we have μ∗,MPC = 0
since �L = �R. For comparison, the T ∗,ZCC versus εd are
also shown in Fig. 2.

From Fig. 2, it is clear that T ∗,ZCC and T ∗,MPC(n) vary
smoothly and coincide closely with each other over the whole
range of εd . In contrast, while the T ∗,MPC(χ c) agree well with
the other two local temperatures in the off-resonance regions
(|εd | is far away from the chemical potentials of leads), they
exhibit strong oscillations in the NR regions. Such oscillations
reflect the emergence of nonlocal excitations as a quantum
resonant state begins to establish in the system [63].

To understand the quantitative agreement between
T ∗,MPC(n) and T ∗,ZCC in Fig. 2, we carry out some theoretical
analysis by using the NEGF method. In the wide-band limit
(W → ∞), the spin-s component of the steady-state electric
current flowing into the probe is

Ips = − i

π

∫
dω �p(ω)

{
G<

s (ω) + 2i fTp,μp (ω) Im
[
Gr

s (ω)
]}

= 2�p�

� + �p

∫
dω As(ω)

[
ζL fTL,μL (ω)

+ ζR fTR,μR (ω) − fTp,μp(ω)
]
, (7)

and the electron occupation number on the impurity is

n =
∑

s

ns =
∑

s

1

2π i

∫
dω G<

s (ω)

=
∑

α

�α

� + �p

∫
dω A(ω) fTα,μα

(ω). (8)

Here, Gr
s (ω) and G<

s (ω) are the retarded and lesser single-
electron Green’s functions of the impurity, respectively;

A(ω) = ∑
s As(ω) = − 1

π

∑
s Im[Gr

s (ω)] is the spectral func-
tion of the impurity, and fTα,μα

(ω) is the Fermi distribution
function.

The ZPC for the local observable n = 〈n̂〉 is expressed as

δnp = np(Tp, μp) − nref

= �p

� + �p

∫
dω A(ω)

{
fTp,μp (ω)

− [
ζL fTL,μL (ω) + ζR fTR,μR (ω)

]}
= 0. (9)

By comparing Eqs. (7) and (9), it is immediately recognized
that the ZPC for the observable n is exactly equivalent to the
ZCC of Ip = ∑

s Ips = 0.
On the other hand, unlike the presumed μ∗,MPC(n) = 0, the

ZCC also requires zero heat current, Jp = 0, which often gives
rise to a nonzero μ∗,ZCC. Such a minor difference in μ∗ in turn
leads to the slightly different T ∗. Consequently, as shown in
Fig. 2, the resulting T ∗,ZCC are very close but not exactly equal
to T ∗,MPC(n).

We now elaborate on the quantitative agreement be-
tween T ∗,MPC(n) and T ∗,MPC(χ c) apart from the NR regions.
In the NEGF formalism the local charge susceptibility is
expressed as

χ c = −
∑

α

�α

� + �p

∫
dω

∂A(ω)

∂εd
fTα,μα

(ω), (10)

and its perturbation by the coupled probe is

δχ c
p = χ c

p(Tp, μp) − χ c
ref

= − �p

� + �p

∫
dω

∂A(ω)

∂εd

{
fTp,μp (ω)

− [
ζL fTL,μL (ω) + ζR fTR,μR (ω)

]}
. (11)

From Eqs. (9) and (11) it is clear that the probe-induced per-
turbation to any local observable O can be cast into a general
form of

δOp =
∫

dω g1(ω, Tp) gO
2 (ω, εd ), (12)

with

g1(ω, Tp) = fTp,μp (ω) − [ζL fTL,μL (ω) + ζR fTR,μR (ω)]

= 1

1 + eω/Tp
− 1

2[1 + e(ω+V/2)/TL ]

− 1

2[1 + e(ω−V/2)/TR ]
(13)

being a window function determined only by the thermody-
namic properties of the leads. Here, the second equality holds
because we have ζL = ζR = 1

2 and μp = μ∗ = 0 in the case of
�L = �R and μR = −μL = V

2 .
In Eq. (12), the form of the function gO

2 (ω, εd ) depends on
the definition of the local observable O. Specifically, since the
spectral function of a noninteracting impurity in the presence
of a weakly coupled probe is

A(ω) = 2

π

� + �p

(ω − εd )2 + (� + �p)2
, (14)
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FIG. 3. The lineshapes of (a) g1(ω, Tp) at various Tp and
(b) gχ

2 (ω, εd ) at various εd for a noninteracting single-impurity sys-
tem. The energetic parameters of the system are the same as those
adopted in Fig. 2. The region bounded by the two vertical dashed
lines represents an activation energy window, (μL − ωL, μR + ωR),
which is determined by the Fermi distribution function for the leads:
fTα,μα

(ω) = 1/[e(ω−μα )/Tα + 1] [63]. Here, ωα is the full width at half
maximum of ∂

∂ω
fTα,μα

(ω). Under a finite bias voltage, most of the
electronic excitations are expected to occur within such an energy
window.

we have

gn
2(ω, εd ) = 2�p

π

1

(ω − εd )2 + (� + �p)2
, (15)

gχ

2 (ω, εd ) = −∂gn
2

∂εd
= −4�p

π

ω − εd

[(ω − εd )2 + (� + �p)2]2
.

(16)

By combining Eqs. (6) and (12), the T ∗,MPC(O) is deter-
mined by tuning Tp until the following ZPC is met:

δOp =
∫

dω g1(ω, Tp) gO
2 (ω, εd ) = 0. (17)

With TL = TR, g1(ω, Tp) is an odd function of ω, and its
significant values appear exclusively within an activation en-
ergy window [63] centered at ω = 0; see Fig. 3(a). If the
ZPC is satisfied, the determined T ∗,MPC(O) carries an unam-

biguous thermodynamic meaning, which is manifested by a
correspondence relation [63], i.e., the local observable O of
the measured nonequilibrium system is identical to that of
an equilibrium reference system with the temperature being
T ∗,MPC(O).

How far the system is from a quantum resonance re-
gion can be assessed by analyzing the overlap between the
functions g1(ω, Tp) and gχ

2 (ω, εd ). For instance, Fig. 3(b)
depicts the lineshapes of gχ

2 (ω, εd ) at various εd for the single-
impurity system studied in Fig. 2. Apparently, when εd is
close to zero, the function gχ

2 (ω, εd ) falls mainly within the
activation window and thus overlaps largely with g1(ω, Tp),
and the system is considered to be in-resonance. With the
εd being shifted away from zero, the main part of gχ

2 (ω, εd )
gradually leaves the activation window and thus overlaps less
with g1(ω, Tp), which implies that the system moves towards
the off-resonance region. For the system explored in Figs. 2
and 3, the resonance and off-resonance regions are |εd | < �

and |εd | > 3�, and the interstitial regions are the NR regions.
A similar analysis can be carried out for a generic quantum
impurity system.

1. Off-resonance

The impurity system is in the off-resonance region if the
impurity energy level εd is far away from the activation win-
dow defined by g1(ω, Tp). In such a case, it is the tail of gO

2 that
overlaps the main body of g1. Since gO

2 (ω, εd ) varies rather
smoothly with ω in the nonequilibrium activation window, we
may use the Taylor expansion and rewrite the ZPC of Eq. (17)
as

δOp =
∫

dω g1(ω, Tp)

[
gO

2 (0, εd ) + ∂ωgO
2 (0, εd ) ω

+ 1

2
∂2
ωgO

2 (ξ, εd ) ω2

]

= ∂ωgO
2 (0, εd )

∫
dω g1(ω, Tp) ω

= 0. (18)

Here, ∂ω ≡ ∂
∂ω

and ∂2
ω ≡ ∂2

∂ω2 , and ∂2
ωgO

2 (ξ, εd ) with ξ ∈ (0, ω)
is the Lagrange remainder. The first equality uses the fact that
g1(ω, Tp) is an odd function of ω. It is thus evident that, for
the single-impurity system under study, the ZPC holds univer-
sally for any local observable in the off-resonance region, i.e.,
T ∗,MPC(n) = T ∗,MPC(χ c) = T ∗,MPC(O) for any O.

2. In-resonance

In contrast, the impurity system is in the resonance region
if εd is close to the lead chemical potential and thus lies within
the nonequilibrium activation window. In this case, the value
of T ∗,MPC(O) may vary with the specific choice of O, since
different local observables may respond differently to nonlo-
cal excitations. Instead, we still see T ∗,MPC(n) ≈ T ∗,MPC(χ c)
in Fig. 2. This is because of the following relation resulting
from the Taylor expansion and the first equality of Eq. (16),

gn
2(ω, εd ) = gn

2(ω, 0) − εd gχ

2 (ω, ξ1)

= gn
2(ω, 0) − εd gχ

2 (ω, εd )

− εd (ξ1 − εd ) ∂εd gχ

2 (ω, ξ2). (19)
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Here, ξ1 ∈ (0, εd ) and ξ2 ∈ (ξ1, εd ). gn
2(ω, 0) is an even func-

tion of ω and its overlap integral with g1(ω, Tp) is zero. The
last term on the RHS of Eq. (19) is negligibly small since
εd (ξ1 − εd ) ∼ O(ε2

d ) and ∂εd gχ

2 (ω, ξ2) is nearly an even func-
tion of ω. Therefore, by combining Eqs. (17) and (19), we find
that the ZPC for n is approximately equivalent to the ZPC for
χ c, and hence T ∗,MPC(n) ≈ T ∗,MPC(χ c).

3. Near-resonance

In the NR region, the product of g1(ω, Tp) and gO
2 (ω, εd )

depends sensitively on the nature of O, and so is the value of
T ∗,MPC; see Fig. 2. From the above theoretical analysis we can
conclude that the choice of local observable has little influence
on T ∗,MPC in the off-resonance regions. In contrast, in the
resonance or NR region, the value of T ∗,MPC depends on how
significantly the local observable is affected by the emerging
nonlocal excitations and how sensitively it varies with Tp.
When quantum resonances come into play, the T ∗,MPC mea-
sured by monitoring a suitable local observable, such as the
T ∗,MPC(χ c) depicted in Fig. 2, is still capable of identifying
and quantifying the magnitude of the nonlocal excitations.

III. EFFECT OF QUANTUM RESONANCES ON LOCAL
TEMPERATURES OF MULTI-IMPURITY SYSTEMS

A. Local minimal-perturbation condition

We now extend the MPC to the systems consisting of more
than one impurity. For numerical convenience, a serially cou-
pled noninteracting N-impurity system is considered, which
is described by an AIM with

Ĥimp =
N∑

i=1

εi n̂i +
N−1∑
i=1

[t (â†
i↑âi+1↑ + â†

i↓âi+1↓) + H.c.],

(20)

where εi is the onsite energy of the ith impurity, and t is
the coupling strength between two adjacent impurities. As
illustrated in Fig. 4(a), the N-impurity system forms a linear
chain, in which the left (right) lead is coupled only to the first
(N th) impurity with the coupling strength being �L (�R).

In principle the MPC of Eq. (5) can be formally extended to
determine the local temperature and local chemical potential
of each individual impurity as follows,

Ip,i(T
∗

i , μ∗
i ) = 0,

(T ∗
i , μ∗

i ) = arg min
(Tp,μp)

|δOp,i(Tp, μp)|. (21)

Here, the probe is weakly coupled to the ith impurity. As
a natural extension of the MPC, Eq. (21) is referred to as
the local MPC (LMPC). However, in practice the extension
from MPC to LMPC is not always straightforward. This is
because it is often difficult to acquire the minimally perturbed
value of a particular local observable Oref,i. To circumvent this
problem, we can choose a local observable whose reference
value is known by the intrinsic symmetry of the system.

For instance, if the investigated multi-impurity system is
spin unpolarized, i.e, all the energetic parameters in Eq. (20)

FIG. 4. (a) Schematic illustration of a serially coupled N-
impurity system. The first (N th) impurity is coupled to the left
(right) lead. The probe is weakly coupled to the ith impurity under
study, and the spin-specific electric current flowing into the probe
Ip,is is monitored. (b) Schematic illustration of the correspondence
relation which states that the local magnetic susceptibility of the ith
impurity in a nonequilibrium system is equal to that in an equilibrium
system, provided that they have the same local temperature and local
chemical potential.

are spin independent, by coupling a probe to an impurity, the
electric current through the probe should also be spin unpolar-
ized. In other words, if the local observable O is chosen to be
the magnetic susceptibility of the electric current through the
coupled probe, χ I

p,i ≡ ∂Ipz,i

∂Hz
|Hz→0 with Ipz,i = 1

2 (Ip,i↑ − Ip,i↓),

its minimally perturbed value is just χ I
ref,i = 0, if the ith im-

purity is spin unpolarized in the presence of the probe. Note
that for the measurement of (T ∗

i , μ∗
i ) the magnetic field Hz

is applied exclusively on the ith impurity. In contrast, it is
much harder to determine the value of χm

ref,i directly for the
ith impurity.

For a single-impurity system, the thermodynamic meaning
of T ∗,MPC has been elucidated via a correspondence condition
between the nonequilibrium system under study and a refer-
ence system in thermal equilibrium, i.e., Oneq = Oeq, provided
that the T ∗,MPC(O) and μ∗,MPC(O) of the nonequilibrium sys-
tem coincide with the equilibrium temperature and chemical
potential of the reference system [63].

In the following, we demonstrate that a correspondence
relation can also be established for a multi-impurity system
with the χ I

p,i chosen as the local observable.
To facilitate the theoretical analysis, we consider a serially

coupled noninteracting double-impurity system. By applying
a local magnetic field Hz to the ith impurity, the impurity
level is subject to a Zeeman splitting which is assumed to
be linearly proportional to Hz. Consequently, for the spin-
unpolarized system under study, we have χ I

p,i = C ∂Ip,i↑
∂εi

with
C being a constant. Without loss of generality, the probe is
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coupled to the first impurity. In the wide-band limit, the probe-
induced perturbation to χ I

p,1 is expressed as

δχ I
p,1 = −C i

π

∫
dω �p(ω) ∂ε1

{
G<

↑,11(ω)

+ 2i fTp,μp (ω) Im[Gr
↑,11(ω)]

}

= C 2�p

π

∫
dω

{
�L

[
(ω − ε2)2 + �2

R

]

× [
fTL,μL (ω) − fTp,μp (ω)

] + t2�R

× [
fTR,μR (ω) − fTp,μp (ω)

]}
∂ε1 |Bp1(ω)|2, (22)

where

Bp1(ω) = 1

[ω − ε1 + i(�L + �p)](ω − ε2 + i�R) − t2
.

(23)

Similarly, for a spin-unpolarized system, the local mag-
netic susceptibility of the ith impurity can be rewritten as
χm

i = C ′ ∂ni↑
∂εi

, with C ′ being a constant different from C. In
the nonequilibrium steady state characterized by the temper-
atures and chemical potentials of the left and right leads,
(TL, μL, TR, μR), the value of χm

1 in the absence of the
probe is

χm
neq,1 = C ′ 1

2π i

∫
dω ∂ε1 [G<

↑,11(ω)]

= C ′ 1

π

∫
dω

{
�L

[
(ω − ε2)2 + �2

R

]
fTL,μL (ω)

+ t2�R fTR,μR (ω)
}
∂ε1 |B(ω)|2, (24)

where B(ω) = Bp1(ω)|�p=0. For the reference system in a
thermal equilibrium state characterized by the background
temperature T ∗

1 and chemical potential μ∗
1, the correspond-

ing χm
1 is expressed in a form similar to Eq. (24) but with

(TL, μL, TR, μR) replaced by (T ∗
1 , μ∗

1, T ∗
1 , μ∗

1 ). Therefore, the
difference between χm

neq,1 and χm
eq,1 is

χm
neq,1(TL, μL, TR, μR) − χm

eq,1(T ∗
1 , μ∗

1, T ∗
1 , μ∗

1 )

= C ′

π

∫
dω

{
�L

[
(ω − ε2)2 + �2

R

][
fTL,μL (ω) − fT ∗

1 ,μ∗
1
(ω)

]

+ t2�R
[

fTR,μR (ω) − fT ∗
1 ,μ∗

1
(ω)

]}
∂ε1 |B(ω)|2.

(25)

By comparing Eq. (22) and Eq. (25), it is easy to recognize
that the relation

χm
neq,1(TL, μL, TR, μR) = χm

eq,1(T ∗
1 , μ∗

1, T ∗
1 , μ∗

1 ) (26)

holds provided that

δχ I
p,1(T ∗

1 , μ∗
1 )

�p

∣∣∣∣
�p→0

= 0. (27)

A similar relation can be established for the second impurity
of the double-impurity system, or any impurity of a generic
multi-impurity system; see Fig. 4(b).

Equation (27) is the local ZPC for the local observable χ I
p,1,

and the thermodynamic meaning of the resulting (T ∗
1 , μ∗

1) is

FIG. 5. (a) T ∗ determined by the ZCC, MPC (with O = χm),
and LMPC (with O = χ I

p) as functions of εd for a noninteracting
single-impurity system under an antisymmetric bias voltage of μR =
−μL = V/2 = 0.2�. (b) The relative deviation from the correspon-
dence relation, �χm = χm

eq/χ
m
neq − 1, versus εd . (c) T ∗ determined

by the ZCC, MPC, and LMPC as functions of U for an interacting
single-impurity system with εd = −2� under the same antisymmet-
ric bias voltage. (d) The relative deviation �χm versus U . Other
energetic parameters adopted are (in units of �): TL = TR = 0.1,
�L = �R = 0.5, and WL = WR = 20. The shaded areas represent the
NR regions.

unambiguously given by Eq. (26). When the local ZPC of
Eq. (27) cannot be reached, such as in the NR region, the
LMPC of Eq. (21) with Oi = χ I

p,i still yields a unique T ∗
i

which could characterize the emergence of quantum reso-
nance effects; see Secs. III B and III C for details.

B. Validity of LMPC for single impurity systems

Before applying the LMPC-based protocol to multi-
impurity systems, we first examine its consistency with the
MPC-based protocol for single-impurity systems. In principle,
the LMPC-based protocol with χ I

p as the local observable is
equivalent to the MPC-based definition with O = χm. This
is because they both lead to the correspondence relation
χm

neq(TL, μL, TR, μR) = χm
eq(T ∗, μ∗, T ∗, μ∗), provided that the

ZPC for the local observable can be achieved. Nevertheless,
for a real system the equality in the above relation is subject to
a small error due to the finite band width of the leads, which
could affect the two local observables somewhat differently.
Consequently, in Fig. 5 the resulting T ∗,MPC and T ∗,LMPC

exhibit some minor deviation.
Figure 5(a) shows the T ∗ of a noninteracting single-

impurity system under an antisymmetric bias voltage as a
function of εd . It is found that, while the T ∗,LMPC agree closely
with the T ∗,MPC outside the NR region, they display an appre-
ciable difference in the NR region despite the overall similar
lineshape.

In the NR region, if the value of the monitored local
observable (such as χ I

p and χm) is strongly affected by the
emergence of quantum resonances, it could be difficult to
reach the ZPC by simply tuning the Tp. In such a case, T ∗ has
to be determined by searching for the Tp that yields a minimal
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nonzero perturbation to O (δOp). Thus, the resulting T ∗,LMPC

or T ∗,MPC may exhibit large oscillations and deviate from each
other because the minimal δOp tends to vary sensitively with
the nonlocal excitations introduced by the emerging quantum
resonance.

Figure 5(b) depicts the relative deviation of χm of the
nonequilibrium impurity system from that of the reference
equilibrium system, �χm = χm

eq/χ
m
neq − 1. Evidently, while

�χm almost vanishes with either T ∗,MPC or T ∗,LMPC, it re-
mains of a finite magnitude in the NR region where the ZPC
cannot be reached. In contrast, the T ∗,ZCC are almost constant
in the whole range of εd with a considerably larger �χm, and
they show no sign of quantum resonances at all.

Figures 5(c) and 5(d) depict the T ∗ and �χm of an in-
teracting single-impurity system under an antisymmetric bias
voltage as a function of U , respectively. Similar to the case
of a noninteracting impurity, as long as the ZPC can be sat-
isfied, the T ∗,LMPC and T ∗,MPC agree closely with each other,
otherwise they display a minor difference. It is worth pointing
out that the low background temperature enables the forma-
tion of Kondo states [82], which provide resonant channels
for electrons to transport across the impurity. Therefore, the
system remains in the resonance region with a sufficiently
large U (U > −εd ). Again, the T ∗,ZCC vary rather smoothly
and do not reflect the formation of quantum resonant states
at all. The above results clearly verify that the newly pro-
posed LMPC is generally consistent with the original MPC
for single-impurity systems.

C. Local temperatures of multi-impurity systems
and the effect of quantum resonances

We now employ the LMPC-based protocol to investigate
the distribution of local temperatures in a double-impurity
system under an antisymmetric bias voltage. Here, the two
impurities are presumed to have the same onsite energy, i.e.,
εi = εd .

Figure 6 depicts the evolution of (T ∗
i , μ∗

i ) of the two im-
purities with the variation of εd . In analogy with the case of
single-impurity systems, while the T ∗,LMPC

i agree well with
the T ∗,ZCC

i in the absence of resonance, they are distinctly
different in the two NR regions.

It is worth noting that T ∗
1 < T ∗

2 at almost any εd < 0, which
can be explained as follows. With εd < 0 the total spectral
function, A(ω), of the two impurities has a distribution more
on the negative energy side, and this means that the double-
impurity system has a positive Seebeck coefficient S [65,83].
Consequently, the voltage-generated heat current between the
two impurities follows the opposite direction of the electric
current, i.e., from left to right. Such a heat current thus creates
an internal thermal gradient across the two impurities with
T ∗

1 < T ∗
2 .

At εd = 0, A(ω) becomes an even function of ω. As a
result we have S = 0, and hence the voltage-generated internal
thermal gradient also becomes zero, i.e., T ∗

1 = T ∗
2 . This is

indeed confirmed by our calculation results shown in Fig. 6(a).
Furthermore, it is also inferred that T ∗

1 > T ∗
2 at εd > 0 (data

not shown).
It is also interesting to observe that, while the left (right)

lead has a lower (higher) chemical potential, the μ∗
i of

FIG. 6. Evolution of (a) T ∗
i and (b) μ∗

i determined by the ZCC
and the LMPC with the variation of εi = εd for a noninteracting
double-impurity system under an antisymmetric bias voltage of
μR = −μL = V/2 = 0.2�. Other energetic parameters adopted are
(in units of �): TL = TR = 0.1, U = 0, t = 1, �L = �R = 0.5, and
WL = WR = 20. The shaded areas in the main panels represent the
NR regions. The inset of (b) depicts the total spectral function of the
two impurities A(ω) at different εd , where the shaded area indicates
the nonequilibrium activation window.

the neighboring impurity is not necessarily lower (higher);
see Fig. 6(b). The fluctuation of μ∗

i manifests the quantum
coherence nature of the electron transport driven by the bias
voltage. In particular, μ∗

1 = μ∗
2 = 0 at εd = −0.9�, where a

resonant state resides right at the center of the nonequilibrium
activation window; see the A(ω) in the inset of Fig. 6(b). The
uniformity of μ∗

i indicates that the voltage-driven excitations
are predominantly nonlocal as they occur via the resonant
state which involves both impurities.

In Fig. 6, it is again apparent that the (T ∗
i , μ∗

i ) predicted
by the ZCC vary smoothly with εd and completely neglect the
existence of nonlocal excitations, whereas those determined
by the LMPC exhibit large oscillations in the NR regions,
which clearly accentuates the emergence of a quantum res-
onance. We proceed to study a linear chain comprised of
four noninteracting impurities subject to a thermal bias, i.e.,
TL < TR. The local chemical potential on each impurity μ∗

i is
nearly zero due to the absence of bias voltage. Figure 7 depicts
the distribution of T ∗

i along the chain determined by the ZCC
and the LMPC for various values of t and �α (α = L, R).
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FIG. 7. Local temperature profile T ∗
i determined by the ZCC

and the LMPC for a noninteracting four-impurity chain under a
thermal bias with (a) a strong impurity-lead coupling of �α = 0.5�

(α = L, R) and (b) a weak impurity-lead coupling of �α = 0.0125�.
Other energetic parameters adopted are (in units of �): εi = εd = 0,
U = 0, μL = μR = 0, TL = 0.25, TR = 0.5, and WL = WR = 5. The
inset depicts the system spectral function A(ω) at different t and �α .

As shown in Fig. 7(a), when the terminal impurities
are coupled strongly to the leads, both the ZCC and the
LMPC predict the T ∗

i vary almost linearly with i, i.e., the
distribution of local temperature along the chain obeys the
classical Fourier’s law [1]. Note that here the restoration of
the Fourier’s law is not because of disorder [84] or dephasing
caused by an external source [85], which are absent from the
AIM under study. Instead, the linear profile of T ∗

i is associated
with the substantial broadening of the spectral peaks in A(ω)
[5]. This means that the thermal transport process involves
electronic states in a wide range of energies. The phases of
these states are averaged out when T ∗

i are measured, which
leads to a classical-like behavior. As the inset of Fig. 7 shows,
the impurity-lead coupling �α (α = L or R) affects signifi-
cantly the sharpness of the peaks, while the coupling strength
t between two adjacent impurities has important influence on
the distance of neighboring peaks in a system.

In contrast, Fig. 7(b) concerns another scenario in which
the impurity-lead coupling is extremely weak, so that the
thermal transport occurs almost exclusively via the quantum
resonant states formed on the chain. In such a scenario, the
ZCC and the LMPC yield very different predictions on the

distribution of T ∗
i . Specifically, the T ∗,ZCC

i of all four impu-
rities is close to a certain value between TL and TR, while
the T ∗,LMPC

i exhibit large oscillations along the chain, which
clearly violates the Fourier’s law.

Inui et al. [5] have reported strong oscillations of temper-
ature distribution in a graphene flake weakly coupled to the
electrodes under a thermal bias due to quantum interference.
But in their study the local temperatures T ∗,ZCC

i still remain
constant on a relatively small scale in the weak-coupling
regime, similar to the curve of T ∗,ZCC

i in Fig. 7(b). Note
that the chain in our work is very short, so that even with
weak impurity-lead couplings the ZCC-defined T ∗

i cannot
reveal prominent oscillations. In contrast, the LMPC-defined
T ∗,LMCP

i oscillations in our work are much more significant.
In the strong-coupling regime, the temperature profile for the
graphene flake is much closer to that predicted by classical
Fourier’s law [5], which is consistent with our results in
Fig. 7(a).

IV. CONCLUDING REMARKS

In conclusion, our study has demonstrated that, while the
MPC could yield a unique local temperature for a given local
observable Ô, the value of T ∗,MPC may vary with the specific
choice of Ô, particularly in the NR region where both the local
and nonlocal excitations could take place inside a quantum
impurity system. It is also noticed that, while T ∗,MPC agrees
quantitatively to T ∗,ZCC away from the in-resonance region,
their difference is appreciable in the NR region. This indicates
that, when quantum resonant states emerge in the system, it
is difficult to fully eliminate the influence of the probe on
the local observable O by tuning Tp and μp, because of the
presence of nonlocal excitations.

We have also proposed an operational protocol based on
the LMPC, which extends the operational principle of MPC
to multi-impurity systems. Using the LMPC, we studied the
effect of quantum resonances on the local temperatures of
noninteracting multi-impurity systems. We found that the
T ∗,LMPC

i of double-impurity systems under an antisymmetric
bias voltage agree well with the T ∗,ZCC

i in the absence of
resonances. On the other hand, they are distinctly different in
the two NR regions, which is analogous to the case of single-
impurity systems. Applying the LMPC to a linear chain of
four impurities, we found that the strong quantum resonance
effects lead to prominent oscillations in the local temperature,
which are not observed with the ZCC-based definition.

It is important to point out that the practical imple-
mentation of the MPC- and LMPC-based protocols is very
straightforward, as they do not require the direct measure-
ment of heat currents. Moreover, in the existing experimental
and theoretical works, the measured local temperature is
often associated with concrete physical properties, such as
thermoelectricity [86,87], electrical resistance [88,89], ther-
mal expansion [90], fluorescence [91], energy reactance
[92,93], etc. In the present work, the local temperature de-
termined by the MPC- or LMPC-based protocol is closely
related to the monitored local observable. The measured local
temperature can be unambiguously interpreted by the corre-
spondence relation, i.e., the monitored local observable of the
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nonequilibrium system under study is identical to that of an
equilibrium reference system, provided that the perturbation
induced by the probe can be completely suppressed by tuning
Tp and μp.
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APPENDIX: MPC ZERO PERTURBATION IMPLIES ZERO
ENERGY AND PARTICLE FLOWS: A FORMAL PROOF

Consider a system interacting with several environments α.
The total Hamiltonian is ĤT = ĤS + ∑

α (Ĥα + Ĥsα ), where
ĤS represents the primary system of interest, Ĥα represents
the αth environment (α = p labels the probe), and Ĥsα is
the system-environment interaction. The density matrix of the
total system ρT satisfies the equation

ρ̇T = −i[ĤT , ρT ]. (A1)

We define ρ ≡ trB (ρT ) as the reduced density matrix of the
primary system, with trB denoting a trace over all the environ-
ment degrees of freedom. A quantum master equation (QME)
for ρ can be formally written as

ρ̇ = −i[ĤS , ρ] +
∑

α

Rα[ρ], (A2)

where Rα[ρ] represents the dissipation term between the sys-
tem and the αth environment.

In the following, we give a formal proof showing that
Rα[ρ] = 0 implies Iα = 0 and JE

α = 0 for the αth reservoir
environment coupled to an open system at a stationary state,
where Iα and JE

α are the electrical and energy currents between
the system and the αth reservoir, respectively. By referring to
Eq. (A1), the dissipation term Rα[ρ] in Eq. (A2) originates
from the following expression

Rα[ρ] = −i trB{[Ĥsα + Ĥα, ρT ]}. (A3)

Consider first the electric current between the system and
the αth reservoir, which is defined by

Iα ≡ Ṅα (t ) = trT{N̂αρ̇T} = −i 〈[N̂α, Hsα]〉. (A4)

Here, 〈· · · 〉 ≡ trT{· · · ρT}, and we have used the fact that the
number of particles operator N̂α commutes with ĤS and Ĥα′ .
On the other hand, the QME for ρ gives rise to a formula for
the conservation of particles, ṄS (t ) = trS{N̂S ρ̇} = −∑

α Ĩα ,
where

Ĩα ≡ −trS{N̂SRα[ρ]} = i 〈[N̂S , Hsα]〉. (A5)

The last equality of Eq. (A5) uses the fact that N̂S commutes
with Ĥα . By comparing Eqs. (A4) and (A5), we have

Iα = Ĩα − i 〈[N̂α + N̂S , Hsα]〉. (A6)

If every term in the interaction Hamiltonian Ĥsα conserves
the number of particles within the system and the αth envi-
ronment (e.g., in the Anderson impurity model Ĥsα causes
electron transfer only between the impurity and the αth
reservoir), we have [N̂α + N̂S , Ĥsα] = 0. Thus, Rα[ρ] = 0 im-
mediately leads to Iα = Ĩα = 0.

Consider then the energy flow between the system and the
αth environment, which is defined by

JE
α ≡ Ėα (t ) = −i 〈[Ĥα, Ĥsα]〉. (A7)

Similarly, the QME for ρ gives rise to a formula for the
conservation of energy, ĖS (t ) = trS{ĤS ρ̇} = −∑

α J̃E
α , where

J̃E
α ≡ −trS{ĤSRα[ρ]} = i 〈[ĤS , Ĥsα]〉. (A8)

Here, we have used the fact that ĤS commutes with Ĥα . By
comparing Eq. (A7) with Eq. (A8), we have

JE
α = J̃E

α − i 〈[ĤT , Ĥsα]〉 − i
∑
α′ �=α

trT{[Ĥsα, Ĥsα′ ] ρT}

= −trS{ĤSRα[ρ]} − trT{Ĥsαρ̇T} − i
∑
α′ �=α

〈[Ĥsα, Hsα′ ]〉.

(A9)

Note that
∑

α

∑
α′ �=α[Ĥsα, Ĥsα′ ] = 0.

Clearly, Rα[ρ] = 0 alone does not guarantee JE
α = 0. Fur-

ther consideration is needed for the two other terms on the
right-hand side of Eq. (A9). First, we have [Ĥsα, Ĥsα′ ] = 0 if
Ĥsα and Ĥsα′ involve the system’s different degrees of free-
dom; otherwise, 〈ĤsαĤsα′ 〉 represents the covariance between
a stochastic variable of the αth environment and a stochastic
variable of the α′th environment. Such a covariance is usually
zero because the two environments are statistically indepen-
dent. Moreover, the term trT{Ĥsαρ̇T} can be interpreted as
the rate at which the interaction energy between the system
and the αth environment [Esα (t )] varies with time. Such a
rate is zero when the total system reaches a stationary state,
(cf. Fig. 1 of Ref. [94]). We thus conclude that Rα[ρ] = 0
leads to JE

α = 0 for the system at a stationary state. Finally,
the heat current between the system and the αth reservoir is
also zero, i.e., JH

α = JE
α − μαIα = 0.
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