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Few-cycle optical-field-induced photoemission from biased surfaces: An exact quantum theory
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Photoemission driven by ultrafast optical fields enables spatiotemporal control of electron motion with
extremely high precision. Here, we present a quantum model for ultrafast photoelectron emission from a
dc-biased surface induced by laser pulses of arbitrary duration, ranging from subcycle to continuous wave, by
solving the time-dependent Schrödinger equation exactly. The single formulation is valid from photon-driven
electron emission in low intensity optical fields to field-driven emission in high intensity optical fields. We find
the emitted charge per pulse oscillatorily increases with pulse repetition rate, due to varying coherent interaction
of neighboring laser pulses. For a well-separated single pulse, our results recover the experimentally observed
vanishing carrier-envelope phase sensitivity in the optical-field regime. We also find that applying a large dc
field to the photoemitter is able to greatly enhance the photoemission current and in the meantime substantially
shorten the current pulse.
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I. INTRODUCTION

Photoelectron emission from metallic nanostructures due
to ultrafast laser fields enables the spatiotemporal control of
electron motion within femtosecond and nanometer scales
[1–6], making it attractive to fundamental research and ap-
plications in ultrafast electron microscopy [7,8], diffraction
[9,10], attosecond electronics [3,11,12], strong-field nano-
optics [13], and nanoscale vacuum devices [14–16]. The pho-
toemission process has been extensively studied [1,3,17–36],
including multiphoton emission [1,18,30,32–36], optical-field
emission [6,19,37], photoassisted tunneling emission [24,25],
carrier-envelope phase (CEP) sensitivity [3,23,38,39], and
modulation effect of two-color lasers [26–28]. Significant re-
search efforts have been made to probe the nonlinear coherent
response of metals [32–36].

A variety of models have been developed to understand
the underlying emission mechanisms, such as perturbative
theory [19,40,41], Floquet models [40,42], Fowler-Nordheim
tunneling approximation [17,39], and directly solving the
time-dependent Schrödinger equation (TDSE) [1,3,24,40,43–
45]. A comprehensive study on the theoretical approaches
of strong-field photoemission from surfaces is given in [40].
While there have been recent efforts to develop analyti-
cal quantum models for continuous-wave laser excitation
[24,27,28,46], numerical simulations are typically imple-
mented to study photoemission due to ultrashort pulse lasers
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[3,40,44]. Fowler-Nordheim based models are widely used to
calculate the photoemission rate [17,38,39], but it is only ap-
plicable in the strong optical-field regime. To explicitly reveal
the interplay of various emission processes under different
regimes and to systematically characterize the parametric
scalings of photoemission characteristics, an exact quantum
model under ultrashort pulsed condition is highly desirable.

In this paper, we construct a quantum analytical solution
for ultrafast photoelectron emission from a dc-biased surface
illuminated by few-cycle laser pulses (Fig. 1), by exactly solv-
ing the TDSE. Our solution is valid from the photon-driven
regime to the optical-field-driven regime, and is applicable
for arbitrary laser parameters (i.e., intensity, pulse duration,
carrier frequency, and CEP), dc bias, and metal properties
(i.e., work function and Fermi level). The model is applicable
to a train of laser pulses with arbitrary pulse repetition rate.
Using the analytical formulation, we examine the photoemis-
sion properties (i.e., energy spectra, photocurrent, or emission
charge density) with various combinations of laser parameters
and dc bias, exhibiting good agreement with the experimental
observations [3,23,39]. This work offers clear insights into the
photoelectron energy distribution and spatiotemporal dynam-
ics of electron emission under different driving electric fields.

II. FORMULATION

Our one-dimensional (1D) model considers electrons with
the initial energy ε emitted from the metal-vacuum interface
at x = 0, under a dc electric field F0, and an optical electric
field (Fig. 1) of a Gaussian laser pulse train with a time period
T = 2L of the form,

F (t ) = F1e−t2/σ 2
cos(ωt + φ),

(2l−1)L < t � (2l + 1)L with l = 0,±1,±2, . . . , (1)
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FIG. 1. (a) Sketch of photoelectron emission from a biased emit-
ter under the illumination of a laser pulse train with a time period T.
(b) A single laser pulse with carrier-envelope phase (CEP) φ and full
width at half maximum (FWHM) of the field envelope τp. The red
curve and black dotted lines denote the time evolution of the laser
electric field and laser pulse envelope, respectively.

where F1 is the peak of optical-field strength, σ =
τp/(2

√
ln2) ∼= τp/1.665 with τp being the full width at half

maximum (FWHM) of the field envelope, ω is the angular
frequency of the carrier wave, and φ is the CEP. All the laser
pulses are CEP stabilized with ω = mπ/L = mωE , with m
being a positive integer and ωE the pulse repetition frequency
[47]. When L/τp � 1, the temporal interaction between con-
secutive laser pulses becomes negligible and F (t ) can be used
to study photoemission due to a single laser pulse. By taking
the Fourier series, the laser field in Eq. (1) can be expressed
as,

F (t ) = F1a0 cos φ +
+∞∑

n=−∞
n �=0

F1an cos(nωEt + φ), (2)

where a0 = 1
L

∫ L
0 e−t2/σ 2

cos(mωEt )dt , and an =
1
L

∫ L
0 e−t2/σ 2

cos[(n−m)ωEt]dt . From Eq. (2), it is clear
that the incident laser pulse train is a superposition of sine
waves with frequencies separated by ωE . We assume the laser
electric field is spatially uniform and perpendicular to the
metal surface; thus the time-dependent potential barrier near
the meatal-vacuum interface is [24,27,28,46,48],

�(x, t ) =
{

0, x < 0

EF + Weff − eF0x − eF (t )x, x � 0
, (3)

where EF is the Fermi energy of the metal cathode; Weff =
W − 2

√
e3F0/16πε0 is the effective work function with

Schottky effect [24,28], with W being the nominal work
function; e is the elementary charge; ε0 is the free space
permittivity; and F (t ) is given by Eq. (2).

To get the electron emission probability, we solve the
TDSE,

ih̄
∂ψ (x, t )

∂t
= − h̄2

2me

∂2ψ (x, t )

∂x2
+ �(x, t )ψ (x, t ), (4)

where h̄ is the reduced Plank constant, ψ (x, t ) is the electron
wave function, me is the electron mass, and �(x, t ) is the
potential energy given in Eq. (3). For x � 0 (in the vacuum),
the exact solution of the electron wave function is found to be
(see the Appendixes for details),

ψ (x, t ) =
∞∑

l=−∞
Tl [Ai(−ηl ) − iBi(−ηl )] × exp

(
−i

ε

h̄
t − ilωEt

)

× exp

(
ieF1

h̄
Gx + ie2F 2

1

8h̄me
M − ie2(F0 + F1a0cosφ)F1

h̄me
N − ie2F 2

1

4h̄meω
2
E

R

)
, x � 0, (5)

where ε is the electron initial energy, G = ∑+∞
n=−∞,n �=0

ansin(nωE t+φ)
nωE

; M = ∑+∞
n=−∞,n �=0

a2
n sin(2nωE t+2φ)+ana−n sin(2nωE t )

n3ω3
E

;

N = ∑+∞
n=−∞,n �=0

ansin(nωE t+φ)
n3ω3

E
; R = ∑+∞

n=−∞,n �=0

∑+∞
m=−∞,m �=0,n,−n

aman
mn { sin[(n−m)ωE t]

(n−m)ωE
− sin[(n+m)ωE t+2φ]

(n+m)ωE
}; ηl = [ El

e(F0+F1a0cosφ) + x +∑+∞
n=−∞,n �=0

eF1an cos(nωE t+φ)
n2ω2

E me
][ 2eme(F0+F1a0cosφ)

h̄2 ]1/3; the drift kinetic energy El = ε + l h̄ωE − EF − Weff − Up; the ponderomotive

energy Up = ∑+∞
n=−∞,n �=0

e2F 2
1 [a2

n+ana−n cos(2φ)]
4men2ω2

E
; Ai and Bi are the Airy functions of the first kind and second kind, respectively,

showing an outgoing wave traveling towards the +x direction [24,49,50]; and Tl represents the transmission coefficient.
For x < 0 (inside the cathode), the exact solution of Eq. (4) is,

ψ (x, t ) = exp

(
− iεt

h̄
+ ik0x

)
+

∞∑
l=−∞

Rl exp

(
−i

ε + l h̄ωE

h̄
t − iklx

)
, x < 0, (6)

which shows the superposition of an incident plane wave with
initial energy ε and a set of reflected plane waves with re-
flection coefficient Rl and energies ε + l h̄ωE , where the wave
numbers k0 =

√
2meε/h̄2 and kl =

√
2me(ε + l h̄ωE )/h̄2.

Following the probability current density J (x, t ) =
(ih̄/2me) (ψ∂ψ∗/∂x − ψ∗ ∂ψ/∂x) = (ih̄ / 2me)

∑∞
n = −∞∑∞

l=−∞(ψn∂ψ∗
l /∂x−ψ∗

n ∂ψl/∂x), the normalized emission

current density is defined as the ratio of the transmitted
probability current density over the incident probability
current density, w(ε, x, t ) = Jt (ε, x, t )/Ji(ε, x, t ).
Thus, we obtain, in nondimensional quantities [24,27,28],
ε̄ = ε/Weff , ω̄E = ωE h̄/Weff , t̄ = tWeff/h̄, ĒF = EF /Weff ,
x̄ = x/λ0, λ0 =

√
h̄2/2meWeff , F̄0 = F0eλ0/Weff , F̄1 =

F1eλ0/Weff , Ūp = Up/Weff , and the normalized instantaneous
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photoemission current density is

w(ε̄, x̄, t̄ ) = 1√
ε̄

∞∑
n=−∞

∞∑
l=−∞

Im[ei(l−n)ω̄E t̄ TnT ∗
l (C̄ + iD̄)],

(7)
where C̄ = F̄1[Ai(−η̄l )Bi(−η̄n) − Ai(−η̄n)Bi(−η̄l )]Ḡ +
(F̄0 + F̄1a0cosφ)1/3 [Ai(−η̄n)Ai′ (−η̄l ) + Bi(−η̄n)Bi′(−η̄l )],
D̄ = F̄1 [Ai (−η̄n) Ai (−η̄l ) + Bi (−η̄n) Bi(−η̄l )]Ḡ + (F̄0 +
F̄1a0cosφ)1/3[Ai(−η̄n)Bi′(−η̄l ) − Bi(−η̄n)Ai′(−η̄l )], Ḡ =∑+∞

n=−∞,n �=0
ansin(nω̄E t̄+φ)

nω̄E
, and η̄n = (F̄0 + F̄1a0cosφ)1/3 ×

[ ε̄+nω̄E −ĒF −Ūp−1
F̄0+F̄1a0cosφ + ∑+∞

l=−∞,l �=0
2F̄1al cos(lω̄E t̄+φ)

l2ω̄2
E

+ x̄]. The nor-
malized time-averaged photoemission current density over
one laser pulse is defined as the ratio of the total emission
charge density Q due to a single laser pulse and the length τp,

〈w(ε̄)〉 = Q

τp
=

∞∑
n=−∞

〈wn(ε̄)〉,
(8)

〈wn(ε̄)〉 = |Tn|2 (F̄0 + F̄1a0cosφ)1/3

π
√

ε̄

2L

τp
,

where 〈wn(ε̄)〉 denotes the time-averaged emission current
density through the nth channel, with emitted electron energy
ε + nh̄ωE . The transmission coefficient Tn (and reflection co-
efficient Rn) can be obtained from boundary conditions that
both the electron wave function ψ (x, t ) and its derivative
∂ψ (x, t )/∂x are continuous at x = 0 (see the Appendixes for
details).

For the special case of dc field F0 = 0 and CEP
φ = π/2, the electron wave function for x � 0 is re-
vised by displacing [Ai(−ηl ) − iBi(−ηl )] in Eq. (5) with
exp{i[x + ∑+∞

n=−∞,n �=0
eF1an cos(nωE t+φ)

n2ω2
E me

]
√

2meEl/h̄}. The nor-
malized photoemission current density becomes,

w(ε̄, x̄, t̄ ) = 1√
ε̄

∞∑
n=−∞

∞∑
l=−∞

Im[iei(l−n)ω̄E t̄ TnT ∗
l ĀeiB̄], (9)

〈w(ε̄)〉 =
∞∑

n=−∞
〈wn(ε̄)〉, 〈wn(ε̄)〉 = Re

(|Tn|2
√

Ēn
)

√
ε̄

2L

τp
,

(10)

with Ā = (
√

Ēl )∗ + ∑+∞
m=−∞,m �=0

F̄1amsin(mω̄E t̄+φ)
mω̄E

and B̄ =
[
√

Ēn − (
√

Ēl )
∗
](x̄ + ∑+∞

m=−∞,m �=0
2F̄1am cos(mω̄E t̄+φ)

m2ω̄2
E

(see the
Appendixes for details for the calculation of Tn).

III. RESULTS

Based on the analytical formulation presented above, we
provide an analysis of the photoelectron emission with differ-
ent laser and dc fields. Unless specified otherwise, the default
value of the laser wavelength is 800 nm (or laser period Tω of
2.67 fs); the cathode metal is assumed to be gold [19,24,40],
with Fermi energy EF = 5.53 eV and work function W =
5.1 eV; the pulse width τp = 8.8 fs (i.e., ∼3 cycles); the laser
pulse repetition period T = 267 fs (�τp to isolate a single
laser pulse and avoid temporal interaction between adjacent
laser pulses); the CEP φ = 0; the dc field F0 = 1 × 104 V/m;
and the peak laser field F1 = 1 × 109 V/m. Since most of the

FIG. 2. Effects of time separation T between adjacent laser
pulses on photoelectron energy spectra and total emission charge
density Q. (a) Laser electric field for different T . From top to bottom,
T = 13, 29, 160, and 267 fs, corresponding to T/Tω = 5, 11, 60,
and 100, respectively. (b) Energy spectra for different T . nω denotes
the laser photon order (with single photon energy h̄ω = 1.55 eV).
(c) Q as a function of T/Tω. The inset shows the magnification of (c)
between T/Tω = 9 and 30, where A–D denote T/Tω = 9, 11, 13, and
15, respectively. (d) Photoelectron energy spectra near the maximum
at A–D in the inset of (c).

electrons are emitted with initial energies near the Fermi level
[24,40,50,51], we choose the electron initial energy ε = EF

for simplicity.
In Fig. 2, we show the photoelectron energy spectra and

total emission charge density Q(= 〈w〉τp) for various time
intervals T between adjacent laser pulses. It is found that as T
decreases, photoelectron emission is gradually confined to a
smaller number of emission channels but with more electron
yield, because of the decreasing frequency ratio between laser
carrier ω and pulse repetition frequency ωE [Fig. 2(b)]. The
interaction of consecutive laser pulses leads to the smearing
of multiphoton absorption peaks (with respect to laser pho-
ton energy h̄ω) in the photoelectron energy spectra envelope
with decreasing T . Figure 2(c) shows that when T/Tω < 9
the closely spaced laser pulse train induces a total emission
charge Q per pulse that is significantly higher than that due
to a well-separated single laser pulse. When T increases, Q
decreases and eventually becomes independent of T when
T/Tω > 60, indicating the laser pulses are well separated and
the results may be regarded as being from a single laser pulse.
It is interesting to note the oscillatory feature of Q in the range
of 9 < T/Tω < 60 [enlarged in the inset of Fig. 2(c)], due to
the varying coherent interaction between neighboring pulses.
Figure 2(d) compares the photoelectron energy spectra with
different T in this oscillation regime [cf. A–D in the inset of
Fig. 2(c)], where both the peak electron emission yield and the
dominant emission channel vary with T.

We evaluate the effect of CEP φ on the photoelectron
energy spectra and total emission current density 〈w〉 for
different pulse durations τp in Fig. 3. For small τp (e.g., 4.4
fs, or 1.7 optical cycles), the spectral features are sinusoidally
modulated with φ [Fig. 3(b)]. This is consistent with the
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FIG. 3. CEP modulation in energy spectra with different pulse duration τp. (a) Laser electric field for different τp when CEP φ = 0
and π . (b) Energy spectra as a function of φ for different τp. (c) Extracted energy spectra of φ = 0 and π from (b). (d) Linear plot
of energy spectrum for τp = 4.4 fs in (c). (e) Normalized current modulation magnitude  = (〈w〉–〈w〉ave )/〈w〉ave as a function of φ

for different τp. Here, 〈w〉ave = (〈w〉max + 〈w〉min )/2 denotes the averaged value of 〈w〉 with respect to φ. (f) Current modulation depth
� = (〈w〉max–〈w〉min )/(〈w〉max + 〈w〉min ) as a function of τp.

experimental observation of CEP modulation in photoemis-
sion spectra with a few-cycle laser pulse [3,23]. As pulse
width τp increases, the CEP modulation on spectra becomes
less pronounced, and the multiphoton peaks in the spectra
become narrower [Fig. 3(c)], gradually approaching those
from continuous-wave excitation [24]. The energy spectra for
small τp(= 4.4 fs) are enlarged in Fig. 3(d), showing a higher
electron yield and broader spectrum for φ = 0 than for φ = π .
Figures 3(e) and 3(f) show that CEP modulation is important
for a short laser pulse up to τp/Tω ∼ 4 and the modulation of
total photoemission current with φ decreases for longer pulse
width τp.

We next examine the CEP sensitivity of photoelectron
emission charge Q under different laser fields F1. As shown
in Figs. 4(a) and 4(b), in general, the CEP modulation on
Q increases as F1 increases. Also, the position of φ for the
maximum (or minimum) Q shifts when the laser field F1

increases for a fixed pulse duration τp [see the dashed lines
in Figs. 4(a) and 4(b)]. To investigate the CEP sensitivity
more closely, in Fig. 4(c), we plot the difference between the
maximum and minimum values of Q in the curves of Figs. 4(a)
and 4(b) as a function of F1. Following [39], by fitting the Q vs
φ curves with a sinusoidal function of cos(φ + ∠Q), we can
identify the phase shift of the maximum Q with F1, as shown
in Fig. 4(d). We see a pronounced dip in Qmax–Qmin at large
laser field F1 = 9 V/nm for both cases of τp = 4.7 and 8.8 fs,

and for τp = 8.8 fs another dip appearing at F1 = 5 V/nm [cf.
Fig. 4(c)]. From Fig. 4(d), phase shifts of π in φ are found near
these dips. These behaviors agree very well with the vanishing
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)
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)

FIG. 4. CEP sensitivity of total emission charge density Q un-
der different laser fields F1. (a), (b) Difference between Q and
its averaged value Qave as a function of φ for different F1 with
pulse duration (a) τp = 4.7 fs and (b) τp = 8.8 fs. For a given F1,
Qave = (Qmax + Qmin )/2. Dashed lines indicate the shift of the phase
for the CEP modulation. (c) Difference between the maximum and
minimum values of charge Qmax–Qmin in the curves of (a) and (b), as
a function of F1 for different τp. Points A–C denote F1 = 7, 9, and 10
V/nm, respectively. (d) Photoemission charge phase ∠Q as a func-
tion of F1 for different τp. ∠Q is obtained by using Bcos(φ + ∠Q) to
fit the curves in (a), (b), with B = Qmax–Qmin.
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FIG. 5. Time-dependent emission current density w(t) at the surface (x̄ = 0, with surface oscillatory current excluded) as a function of
time t for pulse duration τp = 4.7 fs at CEP φ when Qmax (top row) or Qmin (bottom row) occurs, under different laser fields at (a), (b) F1 = 7
V/nm; (c), (d) F1 = 9 V/nm; and (e), (f) F1 = 10 V/nm. The values of laser field F1 correspond to cases A–C in Fig. 4(c), respectively. The
value of CEP φ in each panel corresponds to the occurrence of Qmax (top row) or Qmin (top row) in Fig. 4(a). The blue lines are for emission
current density, red lines for laser field, and black dotted lines for laser pulse envelope. The optical half cycles of the laser field in (a), (b), (e),
(f) are numbered as 0, ±1, ±2, and ±3, with “0” being the center cycle with the highest peak. Only positive optical half cycles are shown.

CEP sensitivity of photoemission accompanied by a π phase
shift in the optical-field regime observed in recent experiments
[39].

To uncover the physical origin of the vanishing CEP sensi-
tivity behavior and the CEP phase shift in the photoemission
charge, we plot the time-dependent electron emission current
density w(t) at the surface (x̄ = 0) as a function of time, under
different laser fields F1 and CEP φ for τp = 4.7 fs, as shown
in Fig. 5. The laser field strengths of 7, 9, and 10 V/nm used
in Fig. 5 correspond to cases A–C in Fig. 4(c), respectively.
By observing these time-dependent current pulses, it is clear
that electron emission starts at the beginning of each positive
half cycle in a given laser field pulse. When F1 = 7 V/nm
[case A before the dip in CEP sensitivity in Fig. 4(c)], even-
numbered positive optical half cycles [Fig. 5(a)] drive more
photoelectron emission than odd-numbered positive optical
half cycles [Fig. 5(b)]. However, as the laser field F1 is in-
creased to 10 V/nm [case C after the dip in CEP sensitivity
in Fig. 4(c)], odd-numbered positive half cycles trigger more
electron emission than even-numbered cycles [cf. Figs. 5(e)
and 5(f)]. This indicates that in the strong field regime there
exists a competition between even and odd positive half-
cycle contributions to photoelectron emission, and thus a π

phase shift in φ as shown in Fig. 4(d), with varying CEP.
At F1 = 9 V/nm [case B at the dip in CEP sensitivity in
Fig. 4(c)], Qmax–Qmin becomes minimal, where Qmax and Qmin

occur at φ = 1.6π and 0.4π , respectively. The competition
between electron emission from different positive optical half

cycles also leads to the dips in CEP sensitivity and phase
shifts at F1 = 5 and 9 V/nm for τp = 8.8 fs in Figs. 4(c)
and 4(d).

It is important to note that, for clarity, we plot in Fig. 5 only
the emitted current density that eventually escapes from the
surface, whereas the local strong oscillatory current density
near the surface typically associated with photoemission (e.g.,
see Figs. 6(a) and 6(b) below, and also Refs. [22,24,27,40,52])
is filtered out. This is possible in our exact analytical calcula-
tion using Eq. (9) by excluding the high n-order (and l-order)
terms, which is verified to give the strong oscillatory surface
currents only. This is also consistent with previous study
showing the high energy regime in the photoelectron spectra
is due to surface oscillations and rescattering (cf. Fig. 4 in
Ref. [22]).

It is also noteworthy that, though electron emission starts at
the beginning of every positive optical half cycle in the laser
pulse, there is typically a time delay between the peak of the
positive optical half cycle and the peak of the emission current
pulse, as seen in Fig. 5. Furthermore, a stronger positive
optical half cycle does not necessarily lead to a higher cur-
rent pulse emission, which, however, depends strongly on the
emission from neighboring half cycles in a laser pulse. These
observations indicate that further examination is needed on the
validity of the widely used Fowler-Nordheim rate equations,
in which current emission follows closely the optical positive
half cycles, to study the CEP sensitive, time-dependent strong-
field photoemission [39].
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FIG. 6. Total time-dependent emission current density w(x̄, t )
under the dc field F0 = 1 × 104 and 1 × 109 V/m. (a), (b) w(x̄, t )
including surface oscillation currents as a function of the space x̄
and time t . Solid white lines show the corresponding classical trajec-
tories. Dotted white lines show the positive half cycles of the laser
electric field. (c), (d) Emission current density w(t) at x̄ = 50 and
100, as a function of time t . The time-dependent current in all figures
is normalized in terms of the time-averaged emission current density
〈w〉. Here, the laser pulse duration τp = 8.8 fs and the peak laser field
F1 = 1 V/nm. When F0 = 1 × 104 V/m, 〈w〉 = 2.5 × 10−11; when
F0 = 1 × 109 V/m, 〈w〉 = 2.1 × 10−7.

In Fig. 6, we plot the total time-dependent photoemission
current density w(x̄, t ), including oscillatory surface currents,
as a function of the space x̄ and time t under different dc
bias. The strong oscillatory surface currents are confined to
the very limited region near the surface only. It is found
that increasing the dc field from F0 = 1 × 104 to 1 × 109

V/m increases the time-averaged emission current density
from 〈w〉 = 2.5 × 10−11 to 2.1 × 10−7. More importantly, the
emission current pulse is significantly shortened [from 19.7 to
4.8 fs of full width at half maximum (FWHM) at x̄ = 50].
Also, due to the strong acceleration of the larger F0, the shape
of the pulse is retained (without consideration of space charge
effect) as the current pulse travels further from the surface
[Fig. 6(d)]. This may provide a practical way to shorten the
photoemission current pulse by simply adding a large dc bias.
The solid white lines are the corresponding classical trajecto-
ries [40], showing good agreement with the electron dynamics
from our quantum model. Note because of the relatively small
optical field used, the trajectories of the emitted photoelec-
trons in Fig. 6(a) show fewer oscillatory features compared to
those cases with strong laser fields (cf. Fig. 3 of Ref. [52]).
This is due to the weaker backpropagation and acceleration
processes of emitted electrons (i.e., smaller quiver motion)
under weak laser electric fields. When adding a strong dc bias,
most of the electrons are able to escape from the metal surface

with negligible quiver motion, as shown in Fig. 6(b), similar
to the dc field emission process. The classical trajectories
in Figs. 6(a) and 6(b) suggest that, in Fig. 6(c), the narrow
current peak is due to electron emission by the left-to-center
and the center positive optical half cycles, and the broad peak
is driven by the right-to-center positive optical half cycle. In
Fig. 6(d), the single dominant current peak is mainly driven
by the center positive optical half cycle of the laser field under
strong dc bias.

IV. CONCLUSION

In summary, we present a quantum analytical solution for
few-cycle photoelectron emission from a dc-biased surface
induced by Gaussian laser pulses, by solving the time-
dependent Schrödinger equation. Our calculations show the
emitted charge per pulse oscillatorily increases as the laser
pulse separation decreases due to varying coherence interac-
tion of neighboring laser pulses. Our calculations recover the
experimentally measured features of sinusoidal CEP modula-
tion to photoelectron emission and vanishing CEP sensitivity
with a π phase shift in the optical-field regime under strong
optical fields. Moreover, we find adding a large dc field greatly
enhances the photoelectron current and shortens the current
pulse. Future work will consider the effects of emitter tip
geometry, surface roughness and defects, semiconductor or
two-dimensional cathode material, nonequilibrium electron
distribution due to laser heating, space charge effects, and the
effects of dephasing of coherent polarizations in photoelectron
emission.
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APPENDIX A: EXACT SOLUTION OF ELECTRON
WAVE FUNCTION

Following Truscott [24,53], the time-dependent potential
for x � 0 may be written as �(x, t ) = V (x) − x f (t ),
with V (x) = EF + Weff − e(F0 + F1a0 cos φ)x, and
f (t ) = e

∑+∞
n=−∞,n �=0 F1an cos( nπ

L t + φ) [cf. Eqs. (2) and
(3) in the main text]. Thus, Eq. (4) in the main text can be
transformed to the coordinate system ξ , t , where ξ = x−q(t ),
the displacement q(t ) = (1/me)

∫ t p(t ′)dt ′, and p(t ) =∫ t f (t ′)dt ′, by assuming that ψ (x, t ) = φ(ξ, t )χ (x, t ), with
χ (x, t ) = exp[−iEt/h̄ + ixp(t )/h̄ − (i/2h̄me)

∫ t p2(t ′)dt ′],
and E is a constant. Then, putting the transformed potential
energy U (ξ, t ) = EF + Weff − e(F0 + F1a0 cos φ)[ξ + q(t )]
and wave function ψ (x, t ) = φ(ξ, t )χ (x, t ) into the
time-dependent Schrödinger equation yields,

ih̄
∂φ(ξ, t )

∂t
=

[
− h̄2

2me

∂2

∂ξ 2
+ U (ξ, t ) − E

]
φ(ξ, t ).

(A1)
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By separation of variables, Eq. (A1) can be solved to give

φ(ξ, t ) = g(ξ )exp

[ +∞∑
n=−∞,n �=0

e2anF1(F0 + F1a0 cos φ)sin(nωEt + φ)

ih̄men3ω3
E

]
, (A2)

where g(ξ ) = Ai(−η) − iBi(−η) is the solu-
tion of the equation −(h̄2/2me)∂2g(ξ )/∂ξ 2 +
[EF + Weff − E−e(F0 + F1a0 cos φ)ξ ]g(ξ ) = 0, with
η = [2eme(F0 + F1a0 cos φ)/h̄2]1/3[(E − EF − Weff )/e(F0 +
F1a0 cos φ) + ξ ] [49,50,54]. From ψ (x, t ) = φ(ξ, t )χ (x, t ),
we obtain Eq. (5) in the main text, which is the exact
solution to Eq. (4) upon using E = ε + l h̄ωE − Up, with

Up = ∑+∞
n=−∞,n �=0

e2F 2
1 [a2

n+ana−n cos(2φ)]
4men2ω2

E
.

For the special case of dc field F0 = 0 and carrier-envelope
phase φ = (2n + 1)π/2, with n being an integer, the solution
of ψ (x, t ) is revised by merely displacing g(ξ ) in Eq. (A2)
with exp[iξ

√
2meE/h̄].

APPENDIX B: EVALUATION OF TRANSMISSION
COEFFICIENT

By imposing the boundary conditions that both the elec-
tron wave function ψ (x, t ) and its derivative ∂ψ (x, t )/∂x
are continuous at x = 0 and taking the Fourier trans-
form, we obtain, in nondimensional quantities [24,27,28],
ε̄ = ε/Weff , ω̄E = ωE h̄/Weff , t̄ = tWeff/h̄, ĒF = EF /Weff , x̄ =
x/λ0, λ0 =

√
h̄2/2meWeff , F̄0 = F0eλ0/Weff , F̄1 = F1eλ0/Weff ,

Ūp = Up/Weff ,

2
√

ε̄δ(k) =
∞∑

l=−∞
Tl [

√
ε̄ + kω̄E Pl (l−k) + Ql (l−k)],

(B1)

where δ(k), Pl (l−k), and Ql (l−k) are

δ(k) =
{

1, k = 0
0, k �= 0 , (B2a)

Pnl = 1

2π

∫ 2π

0
pn(ω̄E t̄ )e−ilω̄E t̄ d (ω̄E t̄ ),

(B2b)

Qnl = 1

2π

∫ 2π

0
qn(ω̄E t̄ )e−ilω̄E t̄ d (ω̄E t̄ ),

pn(ω̄E t̄ ) = φ(ω̄E t̄ )[Ai(αn) − iBi(αn)], (B2c)

qn(ω̄E t̄ ) = φ(ω̄E t̄ )zn(ω̄E t̄ ), (B2d)

φ(ω̄E t̄ ) = e
i

F̄2
1
4 M̄−2i(F̄0+F̄1a0cosφ)F̄1N̄−i

F̄2
1

2ω̄2
E

R̄
, (B2e)

zn(ω̄E t̄ ) = F̄1[Ai(αn) − iBi(αn)]Ḡ + (F̄0 + F̄1a0cosφ)1/3

× [iAi′(αn) + Bi′(αn)], (B2f)

where Ḡ = ∑+∞
n=−∞,n �=0

ansin(nω̄E t̄+φ)
nω̄E

, M̄ = ∑+∞
n=−∞,n �=0

a2
n sin(2nω̄E t̄+2φ)+ana−n sin(2nω̄E t̄ )

n3ω̄3
E

, N̄ = ∑+∞
n=−∞,n �=0

ansin(nω̄E t̄+φ)
n3ω̄3

E
,

R̄ = ∑+∞
n=−∞,n �=0

∑+∞
m=−∞,m �=0,n,−n

aman
mn { sin[(n−m)ω̄E t̄]

(n−m)ω̄E
−

sin[(n+m)ω̄E t̄+2φ]
(n−m)ω̄E

}, αn = −(F̄0 + F̄1a0cosφ)1/3[ Ēn

F̄0+F̄1a0cosφ +∑+∞
l=−∞,l �=0

2F̄1al cos(lω̄E t̄+φ)
l2ω̄2

E
], and Ēn = ε̄ + nω̄E − ĒF − Ūp −

1. Here, pn(ω̄E t̄ ) and qn(ω̄E t̄ ) in Eqs. (B2c) and (B2d) denote
the phase factor of the nth-state wave function and of its
spatial derivative at x̄ = 0, respectively. Pnl and Qnl are the
lth Fourier coefficient of pn(ω̄E t̄ ) and qn(ω̄E t̄ ), respectively.
Thus, Eq. (B1) can be written as the following matrix
operation,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

2
√

ε̄
...

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢

A(−N )[−N−(−N )] A(−N+1)[−N+1−(−N )] · · · A(N−1)[N−1−(−N )] AN[N−(−N )]

A(−N )[−N−(−N+1)] A(−N+1)[−N+1−(−N+1)] · · · A(N−1)[N−1−(−N+1)] AN[N−(−N+1)]
...

...
. . .

...
...

A(−N )[−N−(N−1)] A(−N+1)[−N+1−(N−1)] · · · A(N−1)[N−1−(N−1)] AN[N−(N−1)]

A(−N )(−N−N ) A(−N+1)(−N+1−N ) · · · A(N−1)(N−1−N ) A(N )(N−N )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T−N

T−N+1
...

T0
...

TN−1

TN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where A(l )(l−k) = √
ε̄ + kω̄E Pl (l−k) + Ql (l−k). If N is large enough, we are able to get the converged value of the transmission

coefficient Tn (and therefore the reflection coefficient Rn) by solving the above matrix.
For the special case of dc field F0 = 0 and carrier-envelope phase φ = (2n + 1)π/2, with n being an integer,

the transmission coefficient Tn is still calculated from Eq. (B1) with Pnl and Qnl unchanged, but with pn(ω̄E t̄ ) =
φ(ω̄E t̄ )exp[i

√
Ēn

∑+∞
l=−∞,l �=0

2F̄1al cos(lω̄E t̄+φ)
l2ω̄2

E
] and qn(ω̄E t̄ ) = pn(ω̄E t̄ )[

√
Ēn + ∑+∞

l=−∞,l �=0
F̄1al sin(lω̄E t̄+φ)

lω̄E
].
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[42] F. H. M. Faisal, J. Z. Kamiński, and E. Saczuk, Photoemission
and high-order harmonic generation from solid surfaces in in-
tense laser fields, Phys. Rev. A 72, 023412 (2005).

[43] M. Pant and L. K. Ang, Ultrafast laser-induced electron emis-
sion from multiphoton to optical tunneling, Phys. Rev. B 86,
045423 (2012).

[44] S. V. Yalunin, G. Herink, D. R. Solli, M. Krüger, P.
Hommelhoff, M. Diehn, A. Munk, and C. Ropers, Field lo-
calization and rescattering in tip-enhanced photoemission, Ann
Phys. 525, L12 (2013).

[45] J. Li and U. Thumm, Semiclassical approach for solving
the time-dependent Schrödinger equation in spatially inhomo-

geneous electromagnetic pulses, Phys. Rev. A 101, 013411
(2020).

[46] Y. Zhou and P. Zhang, A quantum model for photoemission
from metal surfaces and its comparison with the three-step
model and fowler–DuBridge model, J. Appl. Phys. 127, 164903
(2020).

[47] S. Schilt and T. Südmeyer, Carrier-envelope offset stabilized
ultrafast diode-pumped solid-state lasers, Appl. Sci. 5, 787
(2015).

[48] Y. Luo, J. Luginsland, and P. Zhang, Interference modu-
lation of photoemission from biased metal cathodes driven
by two lasers of the same frequency, AIP Adv. 10, 075301
(2020).

[49] R. H. Fowler and L. Nordheim, Electron emission in in-
tense electric fields, Proc. R. Soc. London, Ser. A 119, 173
(1928).

[50] J. W. Gadzuk and E. W. Plummer, Field emission energy distri-
bution (FEED), Rev. Mod. Phys. 45, 487 (1973).

[51] P. Zhang, Scaling for quantum tunneling current in nano- and
subnano-scale plasmonic junctions, Sci. Rep. 5, 9826 (2015).

[52] U. De Giovannini, D. Varsano, M. A. L. Marques, H.
Appel, E. K. U. Gross, and A. Rubio, Ab initio angle-
and energy-resolved photoelectron spectroscopy with time-
dependent density-functional theory, Phys. Rev. A 85, 062515
(2012).

[53] W. S. Truscott, Wave Functions in the Presence of a Time-
Dependent Field: Exact Solutions and Their Application to
Tunneling, Phys. Rev. Lett. 70, 1900 (1993).

[54] Y. Zhou and P. Zhang, Theory of field emission from dielectric
coated surfaces, Phys. Rev. Research 2, 043439 (2020).

085410-9

https://doi.org/10.1103/PhysRevB.81.115429
https://doi.org/10.1038/nphys3978
https://doi.org/10.1038/s41567-019-0613-6
https://doi.org/10.1103/PhysRevB.84.195426
https://doi.org/10.1103/PhysRevA.22.1786
https://doi.org/10.1103/PhysRevA.72.023412
https://doi.org/10.1103/PhysRevB.86.045423
https://doi.org/10.1002/andp.201200224
https://doi.org/10.1103/PhysRevA.101.013411
https://doi.org/10.1063/5.0004140
https://doi.org/10.3390/app5040787
https://doi.org/10.1063/5.0010792
https://doi.org/10.1098/rspa.1928.0091
https://doi.org/10.1103/RevModPhys.45.487
https://doi.org/10.1038/srep09826
https://doi.org/10.1103/PhysRevA.85.062515
https://doi.org/10.1103/PhysRevLett.70.1900
https://doi.org/10.1103/PhysRevResearch.2.043439

