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We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce
a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from
a topologically trivial phase. Their topological properties manifest in a topological invariant defined based on
effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and
gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized,
while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent
Born approximation to show that the induced topological phase arises from disorder renormalized masses. We
finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological
phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order
topological Anderson insulators and their localization properties.
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I. INTRODUCTION

Traditional topological phases usually feature the bulk-
boundary correspondence that (n − 1)-dimensional gapless
boundary states exist for an n-dimensional topological sys-
tem. Recently, topological phases have been generalized to
the case where there exist (n − m)-dimensional [instead of
(n − 1)-dimensional] gapless boundary states with 1 < m � n
for an n-dimensional system [1–3]. In the past few years,
the higher-order topological phenomena have drawn tremen-
dous attention, and various higher-order topological states
have been discovered [1–14], such as quadrupole topologi-
cal phases with zero-energy corner modes [1] and its type-II
cousin [13] and second-order topological insulators with chi-
ral hinge modes [7]. It has also been shown that higher-order
topological insulators (HOTIs) are robust against weak disor-
der [15–20].

Disorder plays an important role in quantum transport,
such as Anderson localization and metal-insulator transitions
[21]. In the context of first-order topological phases, it has
been shown that they are usually stable against weak symme-
try preserving disorder. But disorder is not always detrimental
to first-order topological phases. Reference [22] theoretically
predicted that disorder can drive a topological phase transition
from a metallic trivial phase to a quantum spin Hall insu-
lator; topological insulators induced by disorder are called
topological Anderson insulators (TAIs) [22,23]. Since their
discovery, there has been great interest and advancement in
the study of TAIs [24–29]. In addition, disorder can drive a
transition from a Weyl semimetal to a three-dimensional (3D)
quantum anomalous Hall state [30]. Remarkably, the TAI has
been experimentally observed in a photonic waveguide array
[31] and disordered cold atomic wire [32].
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Disorder, topology, and symmetry are closely connected,
which can be seen from classification theories. For example,
random matrix theories are classified based on three internal
symmetries, explaining universal transport properties of dis-
ordered physical systems [33–35]. Similarly, the classification
of topological phases is made according to these internal sym-
metries [36]. Among these symmetries, chiral symmetry plays
an important role in disordered systems and many peculiar
properties have been found, such as the divergence of den-
sity of states (DOS) and localization length at energy E = 0
[37–41]. In two dimensions, first-order topological phases are
not allowed in a system with only chiral symmetry. Yet, it
has been reported that a second-order topological phase can
exist in a two-dimensional (2D) system with chiral symme-
try [42,43] and thus provides an ideal platform to study the
interplay between disorder and topology.

Here we study the interplay between disorder and higher-
order topology in a 2D system with chiral symmetry. We prove
that the quantization of the quadrupole moment is maintained
by chiral symmetry irrespective of crystalline symmetries,
indicating that the quadrupole topological insulator can exist
in a system with chiral symmetry without the requirement
of any crystalline symmetry. This also gives us an opportu-
nity to explore the effects of off-diagonal disorder respecting
chiral symmetry. We theoretically predict the existence of
a disorder-induced HOTI [dubbed higher-order topologi-
cal Anderson insulator (HOTAI)] with zero-energy corner
modes, which arises through the localization-delocalization-
localization phase transition. We further apply the self-
consistent Born approximation (SCBA) to show that the
induced phase appears due to the disorder renormalized
masses. Besides, we find gapped and gapless HOTAIs and
a Griffiths regime. In the gapless regime, all the states are
localized, while in the Griffiths regime, the states at zero
energy become multifractal. In addition, we study the disorder
effects on a HOTI and show the existence of gapped and
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FIG. 1. (a) Schematics of our model (1). (b) The phase diagram
with respect to the disorder strength W mapped out based on the
topological invariant P, the quadrupole moments qxy, and the bulk
energy gap shown in Fig. 2(a). We observe distinct phases including
gapped and gapless HOTAI, Griffiths phase, and trivial I and II
phases, separated by vertical dashed lines. Here mx = my = 1.1.

gapless topological phases and a Griffiths regime. Finally, we
propose an experimental scheme using topoelectrical circuits
to realize and detect the HOTAI.

II. MODEL HAMILTONIAN

We start by considering the following higher-order Hamil-
tonian:

Ĥ =
∑

r

[ĉ†
rh0ĉr + (ĉ†

rhxĉr+ex + ĉ†
rhyĉr+ey + H.c.)], (1)

where ĉ†
r = (ĉ†

r1 ĉ†
r2 ĉ†

r3 ĉ†
r4) with ĉ†

rν (ĉrν) being a cre-
ation (annihilation) operator at the νth site in a unit cell
described by r = (x, y) with x and y being integers (suppose
that the lattice constants are equal to one), ex = (1, 0) and
ey = (0, 1). Here

h0 =

⎛
⎜⎜⎜⎝

0 −imy
r −imx

r 0

imy
r 0 0 im̄x

r

imx
r 0 0 −im̄y

r

0 −im̄x
r im̄y

r 0

⎞
⎟⎟⎟⎠ (2)

depicts the intracell hopping, and

hx =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

t x
r 0 0 0

0 −t̄ x
r 0 0

⎞
⎟⎟⎟⎠and hy =

⎛
⎜⎜⎜⎝

0 0 0 0

t y
r 0 0 0

0 0 0 0

0 0 t̄ y
r 0

⎞
⎟⎟⎟⎠

(3)
describe the intercell hopping along x and y, respectively
[also see Fig. 1(a) for the hopping parameters]. The sys-
tem parameters mx

r , m̄x
r , my

r, m̄y
r, t x

r , t̄ x
r , t y

r , and t̄ y
r all take

real values. For simplicity without loss of generality, we
take the intercell hopping magnitude as energy units so that
t x
r = t̄ x

r = t y
r = t̄ y

r = 1. In this case, hx = σ− ⊗ σz and hy =
σ0 ⊗ σ− with σ− = [0 0; 1 0] and σ0 being a 2 × 2 identity
matrix. For a clean system with mx

r = m̄x
r = my

r = m̄y
r = m,

the system respects a generalized C4 symmetry as detailed in
Appendix A.

To show that Hamiltonian (1) describes a higher-order
phase supporting zero-energy corner modes in the clean case
with mx

r = m̄x
r = mx and my

r = m̄y
r = my, we write the Hamil-

tonian in momentum space as

Ĥ =
∑

k

ĉ†
kH0(k)ĉk. (4)

Here

H0(k) = Hx(kx, mx ) ⊗ σz + σ0 ⊗ Hy(ky, my), (5)

where Hν (kν, mν ) = cos kνσx + (mν + sin kν )σy (ν = x, y)
with σν (ν = x, y, z) being the Pauli matrices and σ0 being
a 2 × 2 identity matrix. To see the presence of zero-energy
corner modes in the system, we recast Hamiltonian (5) to a
form in continuous real space by replacing sin kν by −i∂ν

and cos kν by 1 + ∂2
ν /2 (ν = x, y) so that Hν (kν ) → H̄ν . Con-

sidering semi-infinite boundaries along x and y, if |ux〉 and
|uy〉 are zero-energy edge modes of H̄x and H̄y, respec-
tively, |ux〉 ⊗ |uy〉 is a zero-energy mode of H̄0 localized
at a corner.

Since the system contains only the nearest-neighbor hop-
ping, it respects chiral symmetry, i.e., �H�−1 = −H , where
H is the first-quantization Hamiltonian and � is a unitary
matrix. But this system breaks the time-reversal symmetry
and thus the particle-hole symmetry, because h0 is complex.
In contrast, if we generalize the Benalcazar-Bernevig-Hughes
(BBH) model [1] to the disordered case, it still respects the
time-reversal, particle-hole, and chiral symmetries. However,
these two models are connected through a local transfor-
mation and thus have similar topological and localization
properties as proved in Appendix B. The equivalence also
tells us that our system supports zero-energy corner modes
and has quantized quadrupole moments [44,45] protected by
reflection symmetries. But with disorder breaking the re-
flection symmetry, one may wonder whether the quadrupole
moment is still quantized. Here we prove the quantization
of the quadrupole moment maintained by chiral symme-
try (see Appendix C), indicating that chiral symmetry can
protect a quadrupole topological insulator. We remark that
in three dimensions chiral symmetry maintains the quanti-
zation of the octupole moment as proved in Appendix C,
indicating that chiral symmetry can protect the third-order
topological insulator with zero-energy corner modes in three
dimensions.

To study the disorder effects, we consider the disorder in
the intracell hopping, that is, mν

r = mν + W νV ν
r and m̄ν

r =
mν + W̄ νV̄ ν

r with ν = x, y, where V ν
r and V̄ ν

r are uniformly
randomly distributed in [−0.5, 0.5] without correlation. Here
W ν and W̄ ν represent the disorder strength. For simplicity,
we take W x = W̄ x = W y = W̄ y = W . Because of the random
character, we perform the average over 200 to 2000 sample
configurations for numerical calculation.

III. HIGHER-ORDER TOPOLOGICAL ANDERSON
INSULATORS

We map out the phase diagram in Fig. 1(b), showing
remarkably the presence of a disorder-induced higher-order
topological phase transition. To characterize the phase transi-
tion, we evaluate the polarization px (py) of effective boundary
Hamiltonians at a y-normal (x-normal) boundary at half fill-
ing. In one dimension, the polarization is equivalent to the
Berry phase in a translation-invariant system, which can be
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used as a topological invariant [46]. In fact, the polarization
as a topological invariant can be evaluated in real space for
a system without translational symmetries based on Resta’s
formula [27,46]. For the quadrupole topological phase, we
define a topological invariant based on px and py as

P = 4|px py|. (6)

When P = 1, the system is in a higher-order topologically
nontrivial phase, and when P = 0, it is in a trivial phase (see
Appendix D for its justification for a clean system).

We now generalize it to the disordered case. Specifi-
cally, we evaluate the average polarization of the effective
boundary Hamiltonian at the y-normal boundary (similarly
for x-normal one) by px = 1

Ni

∑Ni
n=1 |px,n|, where px,n =

Im log〈�n|e2π ix̂/Lx |�n〉/(2π ) [46] with x̂ = ∑
x xn̂x, n̂x being

the particle number operator at the site x, and Lx being the
length of the system along x (we also deduct the atomic posi-
tive charge contribution). Here |�n〉 is the ground state at half
filling of the boundary Hamiltonian Hn = −G2n(E = 0)−1

with G2n being the 2nth boundary Green’s function obtained
by [47,48]

Gn = (E − hn − Vn−1Gn−1V
†

n−1)−1, (7)

where hn is the Hamiltonian for the nth layer and Vn−1 is the
coupling between the (n − 1)th and nth layers. We note that
px,n is quantized to be either zero or 0.5 for each iteration since
Hn also preserves chiral symmetry. The polarization is evalu-
ated at even steps of Green’s function given that there are two
different layers in the clean limit. In the disordered case, the
intracell hopping parts in hn and Vn are randomly generated
for each iteration (see Appendix D). The topological invariant
P is finally determined.

In Fig. 1(b), we plot the topological invariant P as
the disorder magnitude increases. We see that P sud-
denly jumps to 1 when W ≈ 2.1, indicating the occur-
rence of a topological phase transition. P remains quan-
tized to be 1 until W > 3.5, where it begins decreas-
ing continuously. This regime corresponds to the Grif-
fiths phase where topologically trivial and nontrivial sam-
ple configurations coexist (see Appendix E). When W >

6, P vanishes, showing that the system reenters into a
trivial phase.

To further identify that the induced topological phase is
a quadrupole topological phase, we calculate the quadrupole
moment, which can be used as a topological invariant since
its quantization is protected by chiral symmetry (see Ap-
pendix C). Figure 1(b) shows that the quadrupole moment
qualitatively agrees with the results of P. Yet, conspicuous
discrepancy can be observed. The quadrupole moment qxy

over many samples is not quantized to 0.5 in the regime
where P = 1 [qxy = 0.5 for most disorder configurations and
qxy = 0 for other configurations (see Fig. 9 in Appendix C)]
and the Griffiths regime is much larger. We attribute this to the
finite-size effects, given that for the quadrupole moment, we
can only perform a computation for a system with its size up
to 80, while to determine P, we consider a system with its size
up to 500 and iterations up to 103. To be more quantitative, we
plot 0.5 − qxy as the system size L increases when W = 2.6 in
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FIG. 2. (a) The bulk energy gap versus W . (b) The quadrupole
moment (red circles) versus the system size L when W = 2.6, which
is fitted by a power-law function plotted as the black line. The zero-
energy local density of states (LDOS) obtained under open boundary
conditions for (c) W = 2.6 and (d) W = 3.4. The zoomed-in view of
the LDOS around one corner is shown in the insets. Here mx = my =
1.1.

Fig. 2(b), showing a power-law decay and thus suggesting that
qxy approaches 0.5 in the thermodynamic limit.

The higher-order topological phase transition occurs as the
bulk energy gap closes at W ≈ 2.1 and reopens, as shown in
Fig. 2(a). In fact, the transition is associated with the diver-
gence of the localization length at W ≈ 2.1 [see Fig. 3(a)].
When W is further increased, the energy gap closes again and
remains closed due to the strong disorder scattering, leading to
the gapless HOTAI. Even in the gapless regime, the topologi-
cal invariant P can still be quantized as shown in Fig. 1(b). In
fact, in this phase, all the states are localized, corresponding
to an Anderson insulator (see the following discussion).

To further confirm that the TAI is a higher-order topo-
logical state, in Figs. 2(c) and 2(d) we display the local
density of states (LDOS) at E = 0 for two typical values of W
corresponding to a gapped and gapless topological phase, re-
spectively, clearly showing the presence of zero-energy states
localized at corners. The evidence above definitely suggests
the existence of HOTAIs.

IV. LOCALIZATION PROPERTIES

We now study the localization properties of energy bands
in different phases by evaluating their localization length,
adjacent level-spacing ratio (LSR), inverse participation ratio
(IPR), and fractal dimensions. The LSR is defined as

r(E ) =
[

1

NE − 2

∑
i

min(δi, δi+1)/ max(δi, δi+1)

]
, (8)

where δi = Ei − Ei−1 with Ei being the ith eigenenergy sorted
in an ascending order and

∑
i denotes the sum over an energy

bin around the energy E with NE energy levels counted. For
localized states, r ≈ 0.386 corresponds to the Poisson statis-
tics, and for extended states of symmetric real Hamiltonians,
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0.386

0.53

FIG. 3. (a) The normalized localization length 	x at E = 0 ver-
sus W for several distinct Ly. The scaling of 	x at different energies
for (b) W = 3.2 and (c) W = 4.6. (d) The level-spacing ratio (LSR)
and inverse participation ratio (IPR) versus W for the eigenstates
around zero energy in a system with size L = 500. (e) The fractal
dimension D2 with respect to W for the eigenstates around zero
energy. The vertical dashed lines separate different phases. (f) The
topological invariant P in the (W, m0 ) plane with m0 = mx = my. The
red dotted line indicates the topological phase boundary determined
by the SCBA. In [(a)–(e)], mx = my = 1.1.

r ≈ 0.53 corresponds to the Gaussian orthogonal ensemble
(GOE) [49].

The localization property can also be characterized by the
real-space IPR defined as

I (E ) =
⎡
⎣ 1

NE

∑
i

∑
r

(
4∑

ν=1

|�Ei,rν |2
)2

⎤
⎦. (9)

This quantity evaluates how much a state in an energy bin
around energy E is spatially localized. For an extended state in
two dimensions, I ∝ 1/L2 with L being the size of a system,
which goes to zero in the thermodynamic limit; for a state
localized in a single unit cell, it is one. It is well known
that at the critical point between localized and delocalized
phases, the state exhibits multifractal behavior with fractal di-
mensions D2 defined through I ∝ 1/LD2 [50]. Clearly, D2 = 2
and D2 = 0 indicate that a state is extended and localized,
respectively, in the thermodynamic limit; intermediate values
of D2 suggests the multifractal state.

In Fig. 3(a), we plot the normalized localization length
	x = λx/Ly (similarly for λy/Lx) with respect to the disorder

strength W at E = 0 for distinct Ly, where λν (ν = x, y) is the
localization length along ν calculated by the transfer matrix
method [51]. In the gapless HOTAI and trivial-II phases, we
see the decrease of 	x as Ly is increased, suggesting that the
states at E = 0 are localized. The decline can also be clearly
seen in Fig. 3(b) where 	x versus Ly is plotted for W = 3.2 for
distinct energies. In fact, all states are localized in these two
phases as detailed in the following discussion. This shows that
even in the higher-order case, the topology can be carried by
localized bulk states. Being localized for the states in these
regimes is also evidenced by their relatively large IPR and
the LSR approaching 0.386 [see Fig. 3(d)]. In these regimes,
the fractal dimension D2 becomes negative or approaches zero
[see Fig. 3(e)], further indicating that the states around zero
energy are localized. We note that the negative D2 arises from
finite-size effects. It indicates that the IPR rises with increas-
ing the system size, suggesting that the states are localized
(see Appendix F for the finite-size analysis).

Figure 3(a) also demonstrates the existence of a regime
(corresponding to the Griffiths regime) where 	x at E = 0
remains almost unchanged as Ly increases, suggesting a mul-
tifractal phase in this regime. The multifractal phase resides
between two localized phases, which is very different from
the conventional wisdom that a multifractal phase lives at the
critical point between delocalized and localized phases. In
fact, only the states at or very near E = 0 become multifractal,
and all other states remain localized [see Fig. 3(c)]. The mul-
tifractal properties are also evidenced by the fractal dimension
of the states around zero energy as shown in Fig. 3(e).

In the gapped regime, there are trivial-I and gapped HOTAI
phases. In the trivial phase, the states at the band edge around
zero energy exhibit the LSR close to 0.386 [see Fig. 3(d)],
suggesting the localized property of these states. The localized
property is also evidenced by the negative D2 (in the region
around W = 1) [see Fig. 3(e)]. We note that near the phase-
transition points of W = 0 and W = 2.1, the states exhibit
delocalized properties due to the large localization length.
In the gapped HOTAI, Figs. 3(d) and 3(e) illustrate that the
LSR experiences a drop from around 0.53 to 0.386 and D2

drops from 1.72 to negative values, suggesting that the states
at the band edge undergo a phase transition from delocalized
to localized ones.

The above results indicate that, for strong disorder, all
states are localized in the gapless HOTAI and the trivial-II
phase. Yet in the Griffiths phase, all states are localized ex-
cept at E = 0 where the states become multifractal. For weak
disorder, all states can be localized in the topological regime.
In the trivial-I phase, the states at the band edge around zero
energy are localized.

In the following, we provide more evidence on localization
properties. Figure 4 shows the LSR as a function of energy for
five different disorder amplitudes. For small W correspond-
ing to the trivial-I phase [Fig. 4(a) and its inset], the LSR
remains around 0.53 except at the lower band edge where
it exhibits a sudden drop towards 0.386, indicating that the
states at the band edge are localized. But we cannot claim the
existence of mobility edges in the trivial-I phase given that
it is very possible that the delocalized behavior is caused by
the finite-size effects, which is very difficult to identify since
the localization length is huge for the weak disorder. In the
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FIG. 4. The LSR versus energy E for (a) W = 1, (b) W = 2.8, (c) W = 3.2, and (d) W = 4.6 in the trivial-I, gapped HOTAI, gapless
HOTAI, and Griffiths phases, respectively. The blue, red, and yellow lines describe results for the system size Lx = Ly = L = 300, 400, and
500, respectively. The inset in (a) displays the LSR as a function of E for W = 1.5. The inset in (b) shows the normalized localization length
	x with respect to Ly at different energies. Here mx = my = 1.1.

gapped HOTAI, while we cannot conclusively determine that
all states are localized when W is near the transition point,
we show that this occurs when W is larger. For instance,
when W = 2.8, Fig. 4(b) illustrates that the LSR decreases
towards 0.386 with the increase of the system size. We also
plot the normalized localization length with respect to Ly for
different energies, the fall of which clearly suggests that the
states are localized. These indicators show that all the states
are localized. Similarly, Fig. 4(c) indicates that all the states
are localized in the gapless HOTAI phase. But in the Griffiths
regime, all the states are localized except at E = 0 where the
LSR remains unchanged as the system size is increased [see
Fig. 4(d)].

We also compute the DOS at E = 0 with respect to the
disorder strength W as shown in Fig. 5(a). The DOS is
defined as ρ(E ) = ∑

r ρ(E , r)/(4LxLy), which is normal-
ized to one, i.e.,

∫
dEρ(E ) = 1. Here ρ(E , r) = [

∑
j δ(E −

Ej )
∑4

ν=1 |�Ej ,rν |2] describes the LDOS, where �Ei,rν de-
notes the spatial eigenstate of the system with periodic
boundaries corresponding to the eigenenergy Ei, and [· · · ]
denotes the average over different samples. The DOS rises
to the maximum in the multifractal phase and then falls in
the trivial-II phase. Specifically, we see the development of
a very narrow peak of the DOS at E = 0 in this regime
[Fig. 5(b)].
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FIG. 5. (a) The DOS at zero energy ρ(0) versus the disorder
strength W calculated by the kernel polynomial method (KPM) for
the system size L = 100 and the expansion order Nc = 213. (b) The
DOS ρ(E ) versus E for different W with the zoomed-in view around
zero energy in the inset. The vertical dashed lines separate different
phases. Here mx = my = 1.1.

V. SELF-CONSISTENT BORN APPROXIMATION

We now explain the disorder-induced quadrupole topologi-
cal insulator based on the SCBA [23]. As introduced in Sec. II,
we consider a disordered system by adding the following
random intracell hopping terms at each unit cell r:

V (r) = W

⎛
⎜⎝

0 −iV3(r) −iV1(r) 0
iV3(r) 0 0 iV2(r)
iV1(r) 0 0 −iV4(r)

0 −iV2(r) iV4(r) 0

⎞
⎟⎠

= W [V ′
1 (r)U1 + V ′

2 (r)U2 + V ′
3 (r)U3 + V ′

4 (r)U4], (10)

where V ′
1 = (V1 + V2)/2, V ′

2 = (V1 − V2)/2, V ′
3 = (V3 +

V4)/2, V ′
4 = (V3 − V4)/2, and U1 = σy ⊗ σz, U2 = σy ⊗ σ0,

U3 = σ0 ⊗ σy, U4 = σz ⊗ σy. Here we have changed the
notation in Sec. II by V x → V1, V̄ x → V2, V y → V3, and
V̄ y → V4 for convenience. Since we are interested in disorder
without correlations, we require

〈V ′
i (R)〉 = 0, (11)

〈V ′
i (R1)V ′

j (R2)〉 = 1

24
δi jδR1R2 , (12)

for i, j = 1, 2, 3, 4 with 〈· · · 〉 denoting the average over dis-
order ensembles.

Based on the self-consistent Born approximation, the ef-
fective Hamiltonian at E = 0 is given by Heff(k) = H0(k) +
�(E = 0) where the self-energy � in the presence of disorder
can be calculated through the following self-consistent equa-
tion:

�(E ) = W 2

96π2

∫
BZ

d2k
4∑

n=1

UnGUn, (13)

where G = [(E + i0+)I − H0(k) − �(E )]−1. At energy E =
0, we find numerically that the self-energy can be expanded as

� = i�0I + �xσy ⊗ σz + �yσ0 ⊗ σy, (14)

with �0, �x, �y being real numbers. It is clear to see that
the topological masses mx and my associated with topological
properties are renormalized by disorder to new values

m′
x = mx + �x, (15)
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FIG. 6. (a) The phase diagram with respect to W , where P and the quadrupole moments are displayed. Here the gapped and gapless HOTI,
the Griffiths phase, and the trivial-II phase are observed. (b) 	x at E = 0 versus W for different Ly. (c) The LSR and IPR versus W for the
eigenstates around zero energy of a system with L = 200. The vertical dashed lines separate different phases. Here mx = my = 0.5.

m′
y = my + �y. (16)

Based on Eq. (13), we first approximate the self-energy
� by taking � = 0 in the right-hand side of the equation,
yielding

�ν = − W 2

48π2

∫∫
BZ

dkIν, (17)

where

Iν = mν + sin(kν )

F (k)
, (18)

F (k) = 2 +
∑
ν=x,y

[
m2

ν + 2mν sin(kν )
]
, (19)

with ν = x, y. When mx > 1 and my > 1, both �x and �y

are negative due to the positive integrands, leading to a
topological phase transition when the disorder strength W is
sufficiently large so that m′

x < 1 and m′
y < 1. We also numer-

ically solve Eq. (13) self-consistently to determine �x and �y

and plot the results in Fig. 3(f). For weak disorder, the results
agree very well with the numerical phase boundary.

VI. DISORDER EFFECTS ON HOTIS

In this section, we study the effects of disorder on HOTIs.
Specifically, we consider mx = my = 0.5 corresponding to a
HOTI in the clean limit. We find that the topological phase
is stable against weak disorder as evidenced by the quan-
tized topological invariant P in Fig. 6(a). When the disorder
strength becomes sufficiently strong, it enters into a Griffiths
regime with fractional P and finally becomes a trivial phase.
The strong disorder also closes the energy gap when W > 2.6.
In the gapless HOTI and trivial-II phases, all states are local-
ized, as evidenced by the normalized localization length, LSR,
and IPR [see Figs. 6(b) and 6(c)]. In the Griffiths regime,
the states at E = 0 are multifractal and all other states are
localized [see Fig. 6(b)]. In the disordered gapped HOTI, we
find that for weak disorder, the states near the band edge are
localized as shown by the LSR around 0.386 in Fig. 6(c). For
larger disorder, all the states become localized in this phase.

Figure 7 further plots the LSR with respect to E for four
different disorder strengths. When the disorder is weak, e.g.,

W = 1, the LSR shows that the states near the band edge are
localized in the gapped HOTI [Fig. 7(a)]. Yet, when W = 2,
the LSR of all the states decreases towards 0.386 with the
increase of the system size, reflecting that all the states are
localized. The localized property is also signaled by the de-
cline of the normalized localization length with increasing
Ly [Fig. 7(b)]. Similarly, in the gapless HOTI, all the states
are localized as shown in Fig. 7(c). In this case, the LSR
at E = −1 decreases towards 0.386 as the system size is
increased, providing further evidence for localization. In the
Griffiths regime, the LSR becomes smaller for larger system
sizes except at E = 0 where it remains unchanged, suggesting
that the states at E = 0 are multifractal and all other states are
localized. The multifractal property is also reflected by the
unchanged property of the normalized localization length as
Ly is increased [Fig. 7(d)].

VII. EXPERIMENTAL REALIZATION

The BBH model has been experimentally realized in sev-
eral metamaterials, such as microwave, phononic, photonic,
and topoelectrical circuit systems [52–55]. In fact, some sys-
tems, such as silicon ring resonators [55], have demonstrated
the robustness of zero-energy corner modes to certain dis-
orders. The HOTAI can be easily realized in these systems
when the off-diagonal hopping disorder is considered in the
experimentally realized BBH model. The BBH model has also
been implemented in topoelectrical circuits, and zero-energy
corner modes are probed by measuring two-point impedances
[54]. One can involve disorder in the system by tuning the ca-
pacitance of capacitors and inductance of inductors to realize
the HOTAI, as we have proved that this model is equiva-
lent to our model in topological and localization properties
(see Appendix B). In the following, we discuss in detail an
experimental scheme to realize the Hamiltonian (1) using
topoelectrical circuits and show that the HOTAI phase can be
detected by two-point impedance measurements.

Let us consider an electric network composed of different
nodes and electric element connecting nodes, as shown in
Fig. 8(a). We denote the input current and voltage of each
node a by Ia and Va, respectively. According to Kirchhoff’s
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law, the circuit at a frequency of ω should satisfy the relation

Ia(ω) =
∑

b

Rab(Va(ω) − Vb(ω)) + RaVa(ω), (20)

where Rab is the admittance of the corresponding electric
element between the node a and b, and Ra is the admittance of
the electric element between the node a and the ground. We
can rewrite the above equation into a compact form as

I(ω) = J (ω)V(ω), (21)

where I and V are N-component column vectors with compo-
nents Ia and Va for N nodes, respectively. Here the matrix J is
the circuit Laplacian. Then we can simulate our Hamiltonian
H with the Laplacian J (ω) at a proper frequency ω through

J (ω) = iH. (22)

Each node in the circuit represents one lattice site in our
Hamiltonian, and each electric element linking two nodes rep-
resents the corresponding hopping between the sites, which
can be a capacitor, or an inductor, or a negative impedance
converter with current inversion (INIC). For two nodes in

the circuit, the electric element between them is determined
according to the corresponding matrix element Hab between
the site a and b in our Hamiltonian, as illustrated in Fig. 8(a).
Specifically, for two neighboring sites in our Hamiltonian, if
Hab is a positive (negative) real number, the electric element
between a and b should be an inductor (a capacitor) with
inductance (capacitance) 1

ωHab
(−Hab

ω
). For the case that Hab is

an imaginary number, we should connect the two nodes using
an INIC with resistance 1

|Hab| and proper direction. In addi-
tion, we connect every node with the ground by appropriate
electric elements to eliminate the extra diagonal terms in the
Laplacian.

Similar to the experimental work [54], we utilize the two-
point impedance measurement in the circuit to characterize
the zero-energy corner modes in the HOTAI phase. The two-
point impedance between node a and b is defined as

Zab =
∑

n

|ψn,a − ψn,b|2
jn

, (23)

where ψn,a is the component for node a of the nth eigenvector
of J with eigenvalue jn. We define the impedance of each

(a) (b) (c)

FIG. 8. (a) Schematics of an electric network for realizing our Hamiltonian (1). Here each node in the circuit represents one lattice site in
the Hamiltonian, and four nodes form a unit cell as shown in the blue dashed box. The hopping between two neighboring sites Hab is simulated
by the admittance Rab of the electric element connecting them. The different values of Hab correspond to different electric elements, including
capacitors, inductors, or negative impedance converters with current inversion (INICs) whose structure is shown in the red box. Each node
a should be grounded through an electric element with an appropriate admittance Ra. [(b),(c)] The averaged magnitude of the impedance
|Z (x, y)| of each unit cell under open boundary conditions for W = 2.6 and W = 3.4, respectively. The insets show the zoomed-in view of
|Z (x, y)| around one corner. Here mx = my = 1.1.
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unit cell, Z (x, y), as the average two-point impedance between
nearest-neighbor nodes within each unit cell,

Z (x, y) = Z12(x, y) + Z24(x, y) + Z43(x, y) + Z31(x, y)

4
,

(24)
where Zi j (x, y) denotes the two-point impedance between the
ith node and jth node of the unit cell (x, y). Figures 8(b)
and 8(c) plot the magnitude of Z (x, y) averaged over 400
random samples under open boundary conditions for two
values of W within the HOTAI regime for mx = my = 1.1,
which clearly shows the impedance resonance near the corners
corresponding to the presence of zero-energy corner modes of
the Hamiltonian.

VIII. CONCLUSION

In summary, we have discovered the HOTAI in a 2D disor-
dered system with chiral symmetry. Specifically, we show that
a topologically trivial phase can transition into a quadrupole
topological phase when disorder is added. We find gapped
and gapless HOTAIs and a Griffiths regime. In the gapless
HOTAI, all the states are localized, while in the Griffiths
regime, the states at zero energy are multifractal and other
states are localized. The Griffiths regime corresponds to a crit-
ical regime between two localized phases: a gapless HOTAI
and a trivial phase. We also propose an experimental scheme
with topoelectrical circuits to realize the HOTAI. Our results
demonstrate that disorder can induce quadrupole topological
insulators with peculiar localization properties from a trivial
phase and thus opens an avenue for studying the role of
disorder in higher-order topological phases.

Note added. Recently, we became aware of two related
works [56,57].
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APPENDIX A: GENERALIZED C4 SYMMETRY

In the clean case, when mx = my and tx = ty, Hamiltonian
(1) in the main text respects a generalized C4 symmetry,

UC4 ĤU −1
C4

= Ĥ , (A1)

where

UC4 ĉrU
−1

C4
= Srĉgr, UC4 ĉ†

rU −1
C4

= ĉ†
grST

r , (A2)

with

Sr =

⎛
⎜⎝

0 0 (−1)y 0
−(−1)y 0 0 0

0 0 0 (−1)y

0 (−1)y 0 0

⎞
⎟⎠ (A3)

and g being a C4 rotation operator such that gr = (−y, x).
In momentum space, let us write Ĥ = ∑

k ĉ†
kH (k)ĉk with

ĉ†
k = (ĉ†

k1 ĉ†
k2 ĉ†

k3 ĉ†
k4). The generalized C4 symmetry

takes the following form:

S†
1H (k)S1 = H (gk′), (A4)

where k′ = (kx, ky − π ) and

S1 =

⎛
⎜⎝

0 0 1 0
−1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎠. (A5)

APPENDIX B: EQUIVALENCE BETWEEN OUR MODEL
AND THE DISORDERED BBH MODEL

In this Appendix, we will prove that our model is equiv-
alent to the BBH model in topological and localization
properties. The BBH model reads

ˆ̃H =
∑

r

[ĉ†
r h̃0ĉr + (ĉ†

rhxĉr+ex + ĉ†
rhyĉr+ey + H.c.)], (B1)

where h̃0 is a real matrix expressed as

h̃0 =

⎛
⎜⎜⎜⎝

0 my
r mx

r 0

my
r 0 0 −m̄x

r

mx
r 0 0 m̄y

r

0 −m̄x
r m̄y

r 0

⎞
⎟⎟⎟⎠. (B2)

This model respects the time-reversal, particle-hole, and chiral
symmetries.

While the two Hamiltonians have different symme-
tries, they are closely related by a local transformation
Ur = diag(ix+y−1, ix+y, ix+y, ix+y+1), that is, U †

r h0Ur = h̃0,
U †

r hxUr+ex = hx, and U †
r hyUr+ey = hy. Specifically, one can

transform Ĥ in Eq. (1) to ˆ̃H by the transformation ĉr → Urĉr.
In other words, if �Ei,rν is a spatial eigenstate of H , then
�̃Ei,rν = (−i) frν �Ei,rν with fr1 = x + y − 1, fr2 = fr3 = x +
y, and fr4 = x + y + 1 is an eigenstate of H̃ corresponding to
the same energy Ei. Here H and H̃ are the first-quantization
Hamiltonians of Ĥ and ˆ̃H , respectively. Therefore, Ĥ and
ˆ̃H have the same energy spectrum and density profiles, in-

dicating identical localization properties that they possess.
In addition, this local phase transformation does not change
the topological property, and thus the two Hamiltonians have
the same topology. Under open boundary conditions, the two
models are connected by the transformation irrelevant of the
system size. Yet, under periodic boundary conditions, the
transformation works well only when Lx and Ly are integer
multiples of 4. For the topological property, the two models
should be equivalent irrelevant of a system size given that
the topology does not depend on a specific system size. For
the localization property, we have also calculated the IPR and
LSR of the two Hamiltonians with their sizes being odd and
find similar results, showing that their localization properties
are irrelevant of the parity of a system size.
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APPENDIX C: QUANTIZATION OF QUADRUPOLE
MOMENTS BY CHIRAL SYMMETRY

In this Appendix, we will prove that the quadrupole
moment is protected to be quantized by chiral symmetry
and thus can be used as a topological invariant. Note that
the quadrupole moment may not characterize the physical
quadrupole moment; we here are only interested in the for-
mula as a topological invariant. We consider the quadrupole
moment defined by [44,45]

qxy ≡ [
q̃xy − q(0)

xy

]
mod 1

=
[

1

2π
Im log〈�G|e2π iQ̂xy |�G〉 − q(0)

xy

]
mod 1, (C1)

where Q̂xy = ∑nc
j=1 x̂ j ŷ j/(LxLy) with x̂ j (ŷ j) denoting the x-

position (y-position) operator for electron j with nc = 2LxLy

(the number of occupied states in our model) at half filling,
and |�G〉 is the many-body ground state of electrons in the
system. Here q̃xy = 1

2π
Im[log〈�G|e2π iQ̂xy |�G〉] is the contri-

bution from occupied electrons, and

q(0)
xy = 1

2

na∑
j=1

x jy j/(LxLy) (C2)

is the contribution from the background positive charge dis-
tribution where (x j, y j ) denotes the position of the jth atomic
orbital. Here, na is the total number of atomic orbitals so that
the single-particle Hamiltonian is an na × na matrix. At half
filling, na = 2nc.

Let us write the many-body wave function of occupied
electrons in real-space representation as

�G(r1ν1, r2ν2, · · · , rncνnc )

= 1√
nc!

∣∣∣∣∣∣∣∣
ψ1(r1ν1) ψ2(r1ν1) · · · ψnc (r1ν1)
ψ1(r2ν2) ψ2(r2ν2) · · · ψnc (r2ν2)

...
...

. . .
...

ψ1(rncνnc ) ψ2(rncνnc ) · · · ψnc (rncνnc )

∣∣∣∣∣∣∣∣
,

(C3)

where ψn represents the nth occupied eigenstate of a first-
quantization Hamiltonian. Then, the quadrupole moment of
occupied electrons, q̃xy, can be evaluated through

q̃xy = 1

2π
Im log〈�G|�̃G〉, (C4)

where

〈�G|�̃G〉 =

∣∣∣∣∣∣∣∣
〈ψ1|ψ̃1〉 〈ψ1|ψ̃2〉 · · · 〈ψ1|ψ̃nc〉
〈ψ2|ψ̃1〉 〈ψ2|ψ̃2〉 · · · 〈ψ2|ψ̃nc〉

...
...

. . .
...

〈ψnc |ψ̃1〉 〈ψnc |ψ̃2〉 · · · 〈ψnc |ψ̃2〉

∣∣∣∣∣∣∣∣
, (C5)

ψ̃n(rν) = ei2πxy/(LxLy )ψn(rν), and 〈ψm|ψ̃n〉 =∑
rα ψ∗

m(rα)ψ̃n(rα). Let us define Uo =
(|ψ1〉, |ψ2〉, . . . , |ψnc〉) which is an na × nc matrix
representing the occupied states of electrons. Then we
can express the quadrupole moment of occupied electrons as

q̃xy = 1

2π
Im log det(U †

o D̂Uo), (C6)

where we define an na × na diagonal matrix D̂ =
diag{e2π ix j y j/(LxLy )}na

j=1 with (x j, y j ) denoting the position
of the jth atomic orbital.

For a generic Hamiltonian in real space, H , with chi-
ral (sublattice) symmetry, �H�−1 = −H , if |ψn〉 is an
eigenstate of H corresponding to energy En, �|ψn〉 is also
an eigenstate of H with energy −En, corresponding to an
unoccupied state. The set {�|ψ1〉,�|ψ2〉, . . . , �|ψnc〉} there-
fore constitutes the unoccupied states. We then define Uu =
(�|ψ1〉,�|ψ2〉, . . . ,�|ψnc〉) = �Uo representing the unoc-
cupied states of electrons. The quadrupole moment q̃u

xy for the
unoccupied states is

q̃u
xy = 1

2π
Im log det(U †

u D̂Uu) (C7)

= 1

2π
Im log det(U †

o �†D̂�Uo). (C8)

Clearly, D̂ commutes with the chiral (sublattice) symmetry
transformation �, i.e., [D̂,�] = 0,

q̃u
xy = 1

2π
Im log det(U †

o D̂Uo) = q̃xy. (C9)

Let us define qu
xy ≡ [q̃u

xy − q(0)
xy ] mod 1. Then we will have

qu
xy = [

q̃xy − q(0)
xy

]
mod 1 = qxy. (C10)

Next we will prove that qxy + qu
xy = 0 mod 1, i.e., q̃xy +

q̃u
xy − 2q(0)

xy = 0 mod 1.
Proof. We define a unitary matrix Ut = (Uo,Uu). It can be

easily seen that

2q(0)
xy =

na∑
j=1

x jy j/(LxLy) (C11)

= 1

2π
Im log det D̂ mod 1 (C12)

= 1

2π
Im log det(U †

t D̂Ut ) mod 1. (C13)

Then we have the following relations:

2π
( − q̃xy − q̃u

xy + 2q(0)
xy

)
= −Im log det(U †

o D̂Uo) − Im log det(U †
u D̂Uu)

+Im log det(U †
t D̂Ut )

= Im log det(U †
o D̂†Uo) + Im log det(U †

u D̂†Uu)

+Im log det

(
U †

o DUo U †
o D̂Uu

U †
u DUo U †

u D̂Uu

)

= Im log det

(
U †

o D̂†Uo U †
o D̂†Uu

0 U †
u D̂†Uu

)

+Im log det

(
U †

o D̂Uo U †
o D̂Uu

U †
u D̂Uo U †

u D̂Uu

)

= Im log det

[(
U †

o D̂†Uo U †
o D̂†Uu

0 U †
u D̂†Uu

)(
U †

o D̂Uo U †
o D̂Uu

U †
u D̂Uo U †

u D̂Uu

)]

= Im log det

(
1 0

U †
u D̂†UuU †

u D̂Uo U †
u D̂†UuU †

u D̂Uu

)
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= Im log det(U †
u D̂†UuU

†
u D̂Uu)

= Im log det(U †
u D̂Uu)† + Im log det(U †

u D̂Uu)

= 0 mod 2π. (C14)

In the derivation, we have utilized the orthonormal properties
U †

o Uo = U †
u Uu = 1, U †

o Uu = 0, and UoU †
o + UuU †

u = 1. �
Therefore, we have the following relation:

qxy + qu
xy = 0 mod 1. (C15)

Combined with the relation that qu
xy = qxy, we get the conclu-

sion that 2qxy = 0 mod 1, namely, qxy is quantized to zero
or 0.5 up to an integer. The result is consistent with our
numerical results where all disorder configurations exhibit
quantized quadrupole moments. We note that this proof re-
mains valid when we replace Q̂xy and q(0)

xy in the definition

of qxy with Q̂ f = ∑nc
j=1 f (x̂ j, ŷ j ) and q(0)

f = 1
2

∑na
j=1 f (x j, y j ),

respectively, where f (x, y) is a general real function, so that
the newly defined quantity is also quantized by chiral sym-
metry like the quadrupole moment. In addition, one can use
the same procedure to prove the quantization of the octupole
moment in three dimensions protected by chiral symmetry.

We note that while we have proved that the quadrupole
moment is quantized to either zero or 0.5 for each disorder
configuration protected by chiral symmetry, for a disorder sys-
tem, we need to consider many distinct samples and perform
the average of the quadrupole moment over these samples.
In this case, the averaged quadrupole moment may not be
quantized since for some samples the quadruple moments are
equal to 0.5 and for others they are equal to zero when a
system size is not large as shown in Fig. 9.

It is worth mentioning that Ref. [19] has found that
quadrupole topological insulators with quantized quadrupole
moments can still exist even in amorphous systems without
crystalline symmetries. We now can understand that the quan-
tized quadrupole moment found in Ref. [19] is protected by
chiral symmetry.

0 200 400 600
Sample index

0

0.1

0.2

0.3

0.4

0.5

q xy

FIG. 9. The quadrupole moment qxy for different disorder con-
figurations when W = 2.6, showing that qxy = 0.5 for most disorder
samples and qxy = 0 for others. Here Lx = Ly = 80 and mx = my =
1.1.

APPENDIX D: EFFECTIVE BOUNDARY HAMILTONIAN

In this section, we follow the transfer matrix method
introduced in Ref. [48] to derive the effective boundary
Hamiltonian of our system in the clean case. We will show
that the effective boundary Hamiltonian at the y-normal (x-
normal) edges is proportional to Hx(kx, mx ) [Hy(ky, my)] up to
a nonzero factor, implying that the higher-order topology can
be characterized by the topological invariant P introduced in
the main text.

Specifically, let us write the Hamiltonian as Ĥ = ĉ†Hĉ
where ĉ† = (ĉ†

1 ĉ†
2 · · · ĉ†

Ly
) with the index j denoting

the jth layer consisting of sites along x and H reads

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 V †
1 0 0 0 · · · 0

V1 h2 V †
2 0 0 · · · 0

0 V2 h3 V †
3 0 · · · 0

0 0 V3 h4 V †
4 · · · 0

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · V2Ly−2 h2Ly−1 V †
2Ly−1

0 0 0 · · · 0 V2Ly−1 h2Ly

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(D1)

with Vn denoting the coupling between the nth and (n + 1)th
layer. In disordered systems, the parameters in hn and V2n−1

describing the intracell hopping are randomly generated.
In the clean case, the system has the translational in-

variance of period 2 and thus there are two different layers
described by the Hamiltonian, h1 and h2, respectively. If we
view these two layers as a unit cell, we use V1 and V2 to de-
scribe the intracell and intercell layer coupling, respectively.
Now H can be simplified as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 V †
1 0 0 0 · · · 0

V1 h2 V †
2 0 0 · · · 0

0 V2 h1 V †
1 0 · · · 0

0 0 V1 h2 V †
2 · · · 0

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · V2 h1 V †
1

0 0 0 · · · 0 V1 h2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D2)

Considering the periodic boundaries along x, we write h1,
h2, V1, and V2 in momentum space as h1 = −h2 = Hx(kx, mx ),
V1 = imyσ0, and V2 = σ0. When my = 0, it is clear to see that
the effective boundary Hamiltonian is Hx(kx, mx ). When my �=
0, we obtain the following two transfer matrices at energy E :

M1(E ) =
(

i(Eσ0 − h1)/my −iσ0/my

σ0 02×2

)
,

M2(E ) =
(

(Eσ0 − h2) −imyσ0

σ0 02×2

)
,

(D3)

where the transfer matrices connect the eigenstate in neigh-
boring layers through(

�2n

�2n−1

)
= M1

(
�2n−1

�2n−2

)
,

(
�2n+1

�2n

)
= M2

(
�2n

�2n−1

)
,

(D4)
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with n � 1 and �n is the component in the nth layer of an
eigenstate with the energy E .

We now define the total transfer matrix at zero energy as

T = M2(E = 0)M1(E = 0) = − i

my

(
A(kx )σ0 h1

h1 σ0

)
, (D5)

where A(kx ) = 1 + m2
x + m2

y + 2mx sin kx. This matrix can be
reduced to a diagonal block form through an elementary inter-
change transformation,

S24T S24 = − i

my

(
H1 02×2

02×2 H2

)
, (D6)

where

S24 =

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠,

H1 =
(

A(kx ) −imx + e−ikx

imx + eikx 1

)
,

H2 =
(

1 −imx + e−ikx

imx + eikx A(kx )

)
.

(D7)

Evidently, H1 and H2 have the same eigenvalues. Since T
is a symplectic matrix, its eigenvalues show up in pairs as
(λ, 1/λ∗). Suppose that λ1my (|λ1| > 1) is an eigenvalue of
H1; then

TU = T

(
U11 U12

U21 U22

)

= −i

(
U11 U12

U21 U22

)(
λ1σ0 02×2

02×2 σ0/λ
∗
1

)
, (D8)

where U is made up of eigenvectors of H1 and H2. Then, the
fixed-point boundary Green’s function is given by

G(E = 0) = lim
N→∞

GN (E = 0) = U21(U11)−1(V †
0 )−1, (D9)

where V0 can be chosen as any invertible matrix. By cal-
culating eigenvectors of H1 and H2, we obtain the effective
boundary Hamiltonian along x,

Heff (kx ) = −G(E = 0)−1 = g(kx )

f (kx )
Hx(kx, mx ), (D10)

where g(kx ) = −(myλ1 − 1) and f (kx ) = 1 + m2
x +

2mx sin kx � (1 − |mx|)2 > 0 (mx = 1 is not considered
as it corresponds to a phase boundary). Let us further
prove that g(kx ) < 0 for all kx. Suppose my > 0; then

λ1 = 1
2my

[A(kx ) + 1 +
√

(A(kx ) + 1)2 − 4m2
y ], and we have

2g(kx ) = −A(kx ) + 1 −
√

(A(kx ) + 1)2 − 4m2
y

� −(m2
y + m2

x − 2|mx|)

−
√

[1 + m2
y + (1 − mx )2] − 4m2

y

< −(
m2

y + m2
x − 2|mx|

)
−∣∣1 − m2

y + (1 − |mx|)2
∣∣, (D11)

where we have used A(kx ) � (1 − |mx|)2 + m2
y . If 1 − m2

y +
(1 − |mx|)2 > 0, then g(kx ) < −(1 − |mx|)2 < 0; otherwise,
we have m2

y + m2
x − 2mx > 2(1 − |mx|)2 > 0, giving g(kx ) <

0. Similarly,

Heff (ky) = ḡ(ky)

f̄ (ky)
Hy(ky, my), (D12)

where ḡ(ky) = −(mxλ2 + 1) and f̄ (ky) = 1 +
m2

y + 2my sin ky with λ2 = − 1
2mx

[B(ky) + 1 +√
(B(ky) + 1)2 − 4m2

x ] and B(ky) = 1 + m2
x + m2

y +
2my sin ky.

Evidently, the higher-order topological phase arises when
these effective boundary Hamiltonians become topological
and thus can be characterized by the topological invariant P.

APPENDIX E: GRIFFITHS REGIME

In the main text, we have shown the existence of a Griffiths
phase where topologically nontrivial and trivial samples coex-
ist, leading to the topological invariant P that is not quantized.
In Fig. 10, we plot the polarizations in 200 different itera-
tion steps corresponding to different sample configurations.
We see that, in the Griffiths regime, some results show the
polarization of 0.5 and others zero.

0 1 2 3 4 5 6 7 8 9
W

0

0.5

p x

0 1 2 3 4 5 6 7 8 9
W

0

0.5

p y

0 1 2 3 4 5 6 7 8 9
W

0

0.5

p x

0 1 2 3 4 5 6 7 8 9
W

0

0.5

p y

(a) (b) (c) (d)

FIG. 10. The polarizations [(a),(c)] px and [(b),(d)] py for the 801st to 1000th iterations corresponding to different disorder configurations.
The region between two vertical lines correspond to the Griffiths regime. [(a),(b)] mx = my = 1.1 and [(c),(d)] mx = my = 0.5. Here Lx =
Ly = 500.
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FIG. 11. (a) The LSR with respect to the system size L for W =
1 and (b) the IPR with respect to the system size L for W = 3.2
for different energy levels around zero energy. The inset shows the
fractal dimension D2 averaged over these energy levels as a function
of L. Here mx = my = 1.1.

APPENDIX F: THE FINITE-SIZE ANALYSIS OF THE LSR
AND IPR

In the main text, we have shown that the LSR at the band
edge around zero energy in the region around W = 1 is close
to 0.386, indicating that the states are localized. Here we
further plot the LSR for W = 1 with respect to the system
size in Fig. 11(a), illustrating that the LSR approaches 0.386
as the system size increases. We have also shown in the main
text that for the localized states, the fractal dimension D2 can
take negative values due to finite-size effects. Here we plot
the IPR with respect to the system size in Fig. 11(b), showing
the increase of the IPR with respect to the system size for a
system with moderate sizes. Such an increase gives a negative
fractal dimension. Yet, the increased slope declines as the
system size is raised, indicating that D2 approaches zero in
the thermodynamic limit.
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