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Quantum system dynamics with a weakly nonlinear Josephson junction bath
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We investigate the influence of a weakly nonlinear Josephson bath consisting of a chain of Josephson junctions
on the dynamics of a small quantum system (LC oscillator). Focusing on the regime where the charging energy
is the largest energy scale, we perturbatively calculate the correlation function of the Josephson bath to the
leading order in the Josephson energy divided by the charging energy while keeping the cosine potential exactly.
When the variation of the charging energy along the chain ensures fast decay of the bath correlation function,
the dynamics of the LC oscillator that is weakly and capacitively coupled to the Josephson bath can be solved
through the Markovian master equation. We establish a duality relation for the Josephson bath between the
regimes of large charging and Josephson energies, respectively. The results can be applied to cases where
the charging energy either is nonuniformly engineered or disordered in the chain. Furthermore, we find that
the Josephson bath may become non-Markovian when the temperature is increased beyond the zero-temperature
limit in that the bath correlation function gets shifted by a constant and does not decay with time.
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I. INTRODUCTION

Realistic quantum systems are inevitably interacting with
their surrounding environment, which induces decoherence
and dissipation. In these situations, one is usually only in-
terested in the dynamics of the primary system. Therefore
some procedure that traces out the environmental degrees of
freedom is required. In the past years, numerous approaches
have been developed to reach this goal, including the Marko-
vian equation developed by Gorini–Kossakowski–Sudarshan
and Lindblad independently [1–4], stochastic Schrödinger
equations [5–9], the quantum Langevin equation [10], the
Feynman–Vernon influence functional techniques [11–15],
nonequilibrium Green’s functions initiated by Schwinger
[16], further developed by Keldysh [17] and Kadanoff–Baym
[18]. For a recent overview of the various approaches, see the
review article by de Vega and Alonso [19].

These sophisticated techniques, on which most of previ-
ous works have focused typically, assume either a harmonic
bath (see the discussion in Breuer and Petruccione’s well-
known textbook [4]) or an anharmonic bath whose baseline
is harmonic [20,21]. Situations where a harmonic bath is
coupled to a nonlinear quantum system have been widely
studied within this framework. It has been shown that cou-
pling to a nonlinear degree of freedom in the small quantum
system enabled to probe many-body effects. The advent
of circuit QED [22] has given rise to recent experimen-
tal efforts in this direction [23–39]. Typically, the nonlinear
small quantum system can be either represented by a two-
level quantum system [13,14,23,24,27–30,33–36,39], which
characterizes the low-energy effective physics of a particle
tunneling into a double-well potential or a Josephson junc-

tion [23,25,26,37,38], which is a naturally present source
of nonlinearity in circuit-QED based qubits. This type of
system has been studied extensively, ranging from the weak
coupling regime [23], where the junction parameters ob-
tain a small renormalization, to the strong coupling regime
[24,26,27,30,33–42], where an appreciable Lamb shift is
produced.

Conversely, the influence of an anharmonic environment
on a small quantum system has seldom been investigated.
However, the experimental study of open quantum systems
with exotic properties, beyond the usual assumption of a
harmonic bath, is nowadays possible owing to advances in
quantum bath engineering [43]. There are previously works
focuing on spin bath, summarized in the review article [44].
Here, we investigate another type of nonharmonic bath, which
consisiting of an array of Josephson junctions. Motivated by
further technological progress [45], we analyze in this article
the dynamics of quantum system coupled to a weakly non-
linear one-dimensional Josephson junction array (JJA). The
regime where the Josephson energy is the largest energy scale
in play can be treated within the harmonic approximation, and
the JJA then behaves as a set of harmonic oscillators to lead-
ing order. The next-to-leading-order nonlinear behavior can
be well-characterized by the λϕ4 type of nonlinearity in the
usual language of anharmonic oscillators [25,32,46,47], and
the Kerr effect associated to such a nonlinearity has already
been analyzed [32]. (Here ϕ denotes the Josephson junction
phase difference, one of the two quadratures of the oscillators
with the charge difference.) In this work, we will be focusing
on the opposite limit where the charging energy is much larger
the Josephson energy and the temperature so that the full
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nonlinearity of the cosine Josephson potential must be taken
into account.

Although the strong-coupling regime brings along inter-
esting physics, we will consider here that the JJA is weakly
coupled to the quantum system as a first step to probe the
nonlinear environment. We compute the JJA bath correlation
function to leading order in the regime of large charging en-
ergy using time-independent degenerate perturbation theory.
We show that, when the nonlinear term is present and the
distribution of the Josephson junction parameters is properly
engineered or presents sufficient disorder, the JJA correlation
function decays rapidly so that the chain behaves as a Marko-
vian bath. The Markovianity of the JJA bath provides a route
to find the dynamics of the primary quantum system within the
framework of the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) master equation. To leading order, we find that the
JJA bath correlation function mimics that of a harmonic bath
at zero temperature, with an effective spectral density which
depends on the distribution of the various junction parame-
ters. Since the harmonic bath can be emulated by the leading
order approximation of the JJA bath in the large Josephson
energy regime, we establish a duality relation for the JJA
in the large charging energy and the large Josephson energy
regimes, which yields exactly the same coarse-grained dy-
namics for the small system. However, when temperature is
increased beyond the zero temperature limit, we show that
the dynamics of the small system becomes non-Markovian as
the JJA correlation function acquires a time-independent shift
that we connect to the physics of the free rotors, modeling the
leading-order behavior of the JJA.

This paper is organized as follows: In Sec. II, we derive the
Hamiltonian of the JJA weakly coupled to an LC circuit from
the standard procedure of circuit quantization. In Sec. III,
we compute the correlation function of the JJA in the large
charging energy regime from time-independent perturbation
theory. This result can also be derived using the Matsubara
formalism as detailed in Appendix B 2. In Sec. IV, we discuss
the temperature driven non-Markovian effects. In Sec. V, we
compute the Lamb shift and decay rate of the damped LC
oscillator within the GKSL master equation framework using
the correlation function obtained in Sec. III. Furthermore,
we also discuss the bath duality relation between the large
charging energy and large Josephson energy regimes in the
zero-temperature limit. We give three specific examples in
Sec. VI. We summarize our findings and discuss future di-
rections in Sec. VII.

II. THE MODEL AND ITS PHYSICAL IMPLEMENTATION

A. General description of the model

Throughout this paper, we shall set h̄ = kB = 1. The
Hamiltonian of the JJA, which we will derive from first prin-
ciples shortly, is

HB =
∑

α

ECαN2
α −

∑
α

EJα cos ϕα, (1)

where ECα ≡ 2e2/Cα and EJα , respectively, are the charging
and Josephson energy for junction α, while ϕα and Nα are

canonically conjugated variables, i.e.,

[ϕα, Nβ ] = iδαβ. (2)

The JJA is capacitively coupled to the quantum system of
interest. The system Hamiltonian is denoted by HS, while the
coupling Hamiltonian is written as

HI = S
∑

α

gαNα. (3)

In principle, the system Hamiltonian HS and the system cou-
pling operator S can be chosen arbitrarily. We will now show
that when the system is an LC circuit capacitively coupled to
the JJA as shown in Fig. 1(a), then the Hamiltonian of the
system and interaction terms are

HS = Q
2

2C
+ �2

2L
, (4)

HI = Q
NJ∑

α=1

gαNα. (5)

Here C is the capacitance of the LC oscillator which is renor-
malized due to the coupling to the JJA, L is the inductance of
the LC oscillator and NJ is the number of junctions in the JJA,
while the operators Q and � correspond to the charge of the
capacitor and the magnetic flux of the inductor, respectively.
These operators are canonically conjugated,

[�,Q] = i. (6)

B. Derivation of the Hamiltonian

With the quantization procedure for mesoscopic circuits
reviewed by Devoret [50], one can write the Lagrangian Ltot

of the circuit in Fig. 1(a) as follows:

Ltot = 1

2

NJ∑
α=1

Cα�2
0(θ̇α − θ̇α+1)2 +

NJ∑
α=1

EJα cos (θα − θα+1)

+ 1

2
CI(�0θ̇1 − �̇)2 + 1

2
C�̇2 − 1

2L
�2, (7)

where θα is the phase at the superconducting island α and we
set the ground at the extremity of the chain such that θNJ+1 = 0
and �0 = 1/(2e) is the magnetic flux quantum. The charge
operator Ñα canonically conjugated to the phase operator θα

is for α = 1,

2eÑ1 ≡ 1

�0

∂Ltot

∂θ̇1
= C1�0(θ̇1 − θ̇2) + CI(�0θ̇1 − �̇), (8)

and for α > 1,

2eÑα ≡ 1

�0

∂Ltot

∂θ̇α

= Cα−1�0(θ̇α − θ̇α−1) + Cα�0(θ̇α − θ̇α+1).

(9)
Upon making the following change of variables,

ϕα = θα − θα+1, (10)
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FIG. 1. (a) An LC oscillator in the right-hand side and (b) a single Cooper-pair box in the right-hand side weakly coupled to a one-
dimensional JJA in the left-hand side of both figures. The charging and Josephson energies are assumed to vary across the chain in such a way
that the JJA bath correlation function decays rapidly. Here, the stray capacitances between the islands and the ground are neglected, different
from the extensively studied geometry of JJA in the literature [48,49], where the capacitances between neighboring islands are neglected but
the stray capacitances are kept nonzero.

the degrees of freedom for the JJA in the total Lagrangian in
Eq. (7) become noninteracting, i.e.,

Ltot = 1

2

NJ∑
α=1

Cα�2
0ϕ̇

2
α +

NJ∑
α=1

EJα cos ϕα

+ 1

2
CI(�0

NJ∑
α=1

ϕ̇α − �̇)2 + 1

2
C�̇2 − 1

2L
�2, (11)

where we have used the fact that θ1 = ∑NJ
α=1 ϕα . The charge

operator canonically conjugated to the phase operator ϕα is

2eNα ≡ 1

�0

∂Ltot

∂ϕ̇α

= Cα�0ϕ̇α + CI

(
�0

NJ∑
α=1

ϕ̇α − �̇

)
. (12)

According to Eqs. (8), (9), and (12), the charge operators
Ñα and Nα are related to each other through the following
relation:

Nα =
α∑

β=1

Ñβ. (13)

Clearly from this equation, Nα is a nonlocal charge operator,
i.e., the sum of all the charge operators from the preceding
islands. It is for this reason we shall call Nα and ϕα nonlocal
variables and Ñα and θα local variables. To gain some intuition
about Eq. (13), we can relate the eigenstates of Nα to Ñα . It
is clear that the eigenstate of the nonlocal charge operators
{Nα}, |n1, n2, · · · , nNJ〉 corresponds to the local charge state
|n1, n2 − n1, · · · , nNJ − nNJ−1〉loc, which is an eigenstate of
the local charge operators {Ñα}. Therefore, we observe that
a nonlocal charge excitation corresponds to a pair of local
charge excitations with charge quantum number +1 and −1,

respectively. In what follows, we shall work with the nonlocal
operators instead of the local ones since it will simplify the
calculation dramatically.

Hereafter, we will focus on the weak-coupling regime,
corresponding to situations situations where CI is small. In
such cases, it is natural to assume that the bath degrees of
freedom are only negligibly affected by the coupling to the
LC oscillator. This assumption is in the same spirit as the
celebrated Born approximation, widely used in the context of
open quantum systems, which we apply to this setup in Sec. V.
Therefore, the second term in the last equation of Eq. (12), due
to the coupling to the LC oscillator, is ignored, which yields

2eNα ≈ Cα�0ϕ̇α. (14)

As regards the dynamics of the LC oscillator, we find

Q ≡ ∂Ltot

∂�̇
= (C + CI )�̇ − CI�0

NJ∑
α=1

ϕ̇α. (15)

Then, we straightforwardly obtain

Htot = 2e
NJ∑

α=1

Nα�0ϕ̇α + Q�̇ − Ltot = HB + HI + HS, (16)

where HB, HI, and HS are defined in Eqs. (1), (3), and (4),
respectively, and

C = C + CI, (17)

gα = 2eCI

CCα

= εIECα

e
, (18)

where εI ≡ CI/C characterizes the coupling strength of the LC
oscillator to the JJA.
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According to Eq. (14), Qα�0 = Nα and ϕα are canonically
conjugated variables and therefore will satisfy Eq. (2) after
being promoted to operators. Similarly, Eq. (6) follows from
Eq. (15).

When the system is a qubit implemented by a Cooper
pair box, as shown in Fig. 1(b), one can show going through
a similar procedure that HS = εσx/2 + ω0σz/2 and HI =
σz

∑
α gαNα . In the Cooper pair box, σz represents the two-

charge states close to a degeneracy point, ω0 is controlled by
Vg and measures deviations from the resonance for the two
charge states, and ε is related to the Josephson energy EJ in
Fig. 1(b). In what follows, we shall focus on the case where
the system is an LC oscillator, as shown in Fig. 1(a)—except
when it comes to the derivation of the JJA bath correlation
function where the details of the primary system do not come
into play.

In the LC circuit case, using the canonical commutation
relation in Eq. (6), one can define the creation and annihilation
operators

b† =
√
Cω0

2

(
� − iQ

Cω0

)
, (19)

b =
√
Cω0

2

(
� + iQ

Cω0

)
, (20)

where

ω0 ≡ 1/
√
LC (21)

refers to the plasma frequency in the LC system. Hence,
Eqs. (4) and (5) become

HS = ω0

(
b†b + 1

2

)
, (22)

HI = −i

√
Cω0

2
(b − b†)

∑
α

gαNα. (23)

III. CORRELATION FUNCTION OF THE JJA BATH

A. The central role of the bath correlation function

It is widely known that the dynamics of a “small” quan-
tum system (an LC oscillator here) coupled to a large bath
(the Josephson junction chain here) can be resolved thanks
to the celebrated GKSL master equation [1–4], which has
been proven to yield the most general Markovian evolution
preserving the fundamental properties of the system density
matrix. This formalism can be applied to a wide variety of
situations, provided specific conditions are met by the system-
bath coupling. Namely, to ensure that the master equation
is Markovian, it is usually hypothesized that the coupling to
the primary system negligibly influences the bath dynamics,
which is typically the case when they are weakly coupled. In
this context, the total system-bath density matrix is assumed
to be factorized at all times, ρ(t ) = ρS(t ) ⊗ ρB, where the
(constant) bath density matrix ρB corresponds to the canonical
distribution with inverse temperature β,

ρB = e−βHB

Tre−βHB
. (24)

While the interaction between the system and the bath induces
correlations between the system and the bath, the evolution

of such ansatz is a good approximation of the system dy-
namics coarse-grained over a timescale much larger than the
correlation time of the bath, i.e., the timescale over which
the correlations between the system and the bath decay [3].
This coarse-graining time must also be smaller than the typ-
ical decay time for the system, which is only possible if the
correlation time is much smaller than this decay time. This
coarse-grained dynamics is captured by the GKSL master
equation. The existence of a finite, and small, correlation time
for the bath can be verified by considering the appropriate
correlation function of the bath, a central quantity for the
study of Markovian open quantum systems. The choice of
the relevant bath correlation function to analyze is dictated by
the reservoir observable involved in the coupling Hamiltonian,
which is the nonlocal charge operator Nα here. A brief deriva-
tion of the GKSL master equation highlighting the importance
of the reservoir correlation function is given in Appendix A
and the GKSL master equation is given by Eq. (79) with the
coefficients given by Eqs. (80), (81) and (82) .

Furthermore, the GKSL formalism can only be used in
situations where the coupling Hamiltonian satisfies [51]

TrB[ρBHI] = 0, (25)

where the trace is taken over the bath degrees of freedom only.
As such, since the coupling Hamiltonian HI acts on both the
system and bath, the right-hand side of Eq. (25) has to be
understood as an operator acting on the system Hilbert space.
When studying an LC oscillator coupled to a JJA, the coupling
Hamiltonian is given in Eq. (5), which yields

TrB[ρBHI] = Q
∑

α

gα 〈Nα〉 . (26)

Here 〈•〉 denotes the average over the thermal state ρB in
Eq. (24).

It turns out that the expectation value 〈Nα〉 vanishes as
a consequence of charge conjugation symmetry. This prop-
erty concerns single junctions so we can temporarily drop
the subscript α. Let us define the charge conjugation opera-
tor C such that C |n〉 = |−n〉. C is unitary and Hermitian:
C † = C −1 = C . It is straightforward to check that the num-
ber operator is odd under charge conjugation: C NC = −N .
However, because of the commutation relation [ϕ, N] =
i, one can easily show that e±iϕ |n〉 = |n ∓ 1〉 and there-
fore C (cos ϕ)C = cos ϕ. So we conclude that the junction
Hamiltonian H = ECN2 − EJ cos ϕ is invariant under this
transformation: C HC = H . We then have

〈N〉 = 1

Z
Tr(e−βH N ) = 1

Z
Tr(C e−βHC C NC ) = −〈N〉 .

(27)
It is then clear that 〈N〉 = 0, which proves that Eq. (25) is
satisfied here. The GKSL formalism can then be applied and
the relevant correlation function for the JJA bath is given by

�(t ) =
∑

α

g2
αGα (t ), (28)

where Gα (t ) is the correlation function for a single Josephson
junction,

Gα (t ) = 〈Nα (t )Nα (0)〉 . (29)
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Hereafter time-dependent operators indicate the interaction
picture (Heisenberg picture with respect to Hamiltonian HB).

B. The large Josephson energy limit:
The harmonic approximation

In what follows, we shall detail the calculation of the
single-junction correlation function Gα (t ) and then take the
continuum limit to obtain the bath correlation function �(t ).
The main aim of this paper is to discuss the large charging
energy regime. However, before we head toward this end, let
us first detour to discuss the extensively studied large Joseph-
son energy regime, that is ECα 	 EJα and β−1 	 EJα , where
the harmonic bath approximation can be applied. [25,32] In
this regime, thermal excitations are near a fixed minimum
of the cosine potential and the effect of quantum phase slips
may be neglected to leading order. In this case, the JJA bath
can be approximated by a harmonic bath such that the bath
Hamiltonian in Eq. (1) becomes

HB =
∑

α

[
1

2Lα

�2
α + 1

2
Lαω2

αQ2
α

]
, (30)

where Lα = �2
0/EJα is the effective Josephson inductance—

not to be confused with the total Lagrangian Ltot—and ωα is
the characteristic frequency of the oscillator given by

ωα = 1√
LαCα

=
√

2EJαECα. (31)

Even though ECα 	 EJα , the characteristic frequency ωα can
still take values in a wide spectrum. Therefore, by properly
controlling the variations of the charging and Josephson en-
ergies along the JJA, one can still emulate a harmonic bath,
which is usually implemented in transmission lines. The cor-
relation function for a harmonic oscillator is well-known [4],
namely,

Gα (t ) = ωα

4ECα

[
coth

(
βωα

2

)
cos(ωαt ) − i sin(ωαt )

]
. (32)

Since a genuine thermal bath has infinitely many degrees of
freedoms, we have to find the correlation function in the con-
tinuum limit. To this end, we assume that Josephson junctions
are spatially distributed along the JJA according to the density
ν(x). The JJA correlation function is then given by

�(t ) =
∫

dxν(x)g2(x)G(x, t ), (33)

where the junction number index α has been replaced by
the position variable x, and the explicit expression for the
coupling parameter g(x) is analogous to that given in Eq. (18).
Through a simple change of variables, it is straightforward to
obtain

�(t ) =
(

εI

2e

)2∫
dωJ (ω)

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
,

(34)

where J (ω) is the spectral density defined as

J (ω) =
∑

k

ωνk (ω)E (k)
C (ω)

∣∣∣∣dxk

dω
(ω)

∣∣∣∣. (35)

Here the index k labels the different intervals Ik on which
ω(x) is a monotonic function. On each of these intervals, ω(x)
can be inverted and xk (ω) denotes the corresponding inverse
function. From this, we define

νk (ω) ≡ ν[xk (ω)], (36)

E (k)
C (ω) ≡ EC[xk (ω)]. (37)

Hereafter, we will focus on the low-temperature regime where
β−1 	 ω(x) for (almost) all x. In that case, Eq. (34) becomes

�(t ) =
( εI

2e

)2
∫ ∞

0
dωJ (ω)e−iωt . (38)

It should be noted that in the large EJ regime where EC(x) 	
EJ(x), the condition β−1 	 ω(x) implies that β−1 	 EJ(x).

For the extensively studied geometry of JJA, where the
stray capacitances are nonvanishing but the capacitances be-
tween neighboring islands are neglected [48,49], in large
Josephson energy and zero-temperature limits, one can show
that �(t ) decays as power-law according to Eq. (38), due to
the linear dispersion relation of sound modes characterizing
the lead-order effects of the JJA. However, in our setup shown
in Fig. 1, the behavior of �(t ) is controlled by the distribution
of the junction parameters in real space, rather than the sound
modes in the momentum space. Therefore, in our setup �(t )
does not necessarily decay as power law in large Josephson
energy and zero-temperature limits.

C. The large charging energy limit

In the remainder of this article, we focus on the large
charging energy limit, where

EJα 	 ECα,
√

ECαδEC, (39)

β−1 	 �α ≡ ECα

− ln λα

, (40)

where λα ≡ EJα/ECα 	 1 and δEC is the width of the
effective spectral density of the Josephson bath [defined sub-
sequently in Eq. (75)], which represents the characteristic
frequency of the bath. In this regime, the physics is dominated
by capacitors, which are quantum mechanically equivalent to
free rotors from Eq. (1). The ground state fixes the charge but
the phase variable can fluctuate accordingly. Thermal excita-
tion in a junction is negligible so that each junction stays in
the exact ground state of the total Hamiltonian to the leading
order. Based on this intuition, we can evaluate Gα (t ) to second
order in λα at low temperature perturbatively with either the
time-independent degenerate perturbation theory [52] or the
Matsubara imaginary time formalism [53,54]. However, it is
unclear whether results obtained through the Matsubara for-
malism hold at very low temperatures. The time-independent
perturbation method does not suffer from such limitation,
which is why we focus on this method in the main text, with
further details given in Appendix B 1. The derivation of the
correlation function using the Matsubara formalism can be
found in Appendix B 2. When Eqs. (39) and (40) hold, the
single-junction correlation function reads

Gα (t ) = λ2
α

2
e−iECαt + O

(
λ3

α, e−βECα
)
. (41)
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Note that Eq. (41) is dramatically different from Eq. (32)
as the characteristic oscillation frequency in Eq. (41) is ECα

instead of
√

EJαECα . This substantial difference is due the
fact that they are valid in two opposite regimes. The first
frequency represents the energy necessary to add a charge on
a capacitor, while the second one defines the plasma (reso-
nance) frequency due to sound modes in the JJA.

1. Derivation of the single-junction correlation function through
time-independent perturbation method

We now derive the correlation function in the limit of large
charging energy for a single Josephson junction so we can
drop the subscript α. The corresponding Hamiltonian is H =
HC + λHJ, where λ = EJ/EC 	 1 and

HC = ECN2, (42)

HJ = −EC cos ϕ. (43)

We consider time-independent perturbation theory treat-
ing the Josephson Hamiltonian as a perturbation. In this
framework, we compute the average values in the correlation
function explicitly using the eigenenergies and eigenstates
obtained from our perturbative calculation.

As pointed out earlier, the Hamiltonian H is invariant under
charge conjugation, C HC = H , which yields [H,C ] = 0. As
such, H and C share a common eigenbasis. Since C 2 = 1,
the eigenvalues of C are ±1, which means that the corre-
sponding eigenstates are either symmetric or antisymmetric
under charge conjugation. We consequently denote by |ψn,±〉
the common eigenstates of H and C such that

H |ψn,±〉 = En,± |ψn,±〉 , (44)

C |ψn,±〉 = ± |ψn,±〉 , (45)

where the index n is a positive integer that labels the energy
levels of the charging Hamiltonian HC. Working in this basis,
the single-junction correlation function G(t ) = 〈N (t )N (0)〉 is
expressed as

G(t ) = 1

Z

∑
m,n,±

|〈ψm,±|N |ψn,∓〉|2e−βEm,±ei(Em,±−En,∓ )t , (46)

with the partition function

Z =
∑
n,±

e−βEn,± . (47)

One should note that, since the number operator N is odd
under charge conjugation, it only couples states of different
charge parities. This is why we only have to consider scalar
products of the type 〈ψm,±|N |ψn,∓〉 in Eq. (46).

Let us now compute the eigenstates |ψn,±〉 and eigenen-
ergies En,± to lowest orders in λ using time-independent
perturbation theory [52]. The starting point is to write En,±
and |ψn,±〉 as power series in λ,

En,± =
∞∑

q=0

λqE (q)
n,±, (48)

|ψn,±〉 =
∞∑

q=0

λq
∣∣ψ (q)

n,±
〉
. (49)

Equating the two sides of Eq. (44) to all orders in λ then yields

HC

∣∣ψ (q)
n,±

〉 + HJ

∣∣ψ (q−1)
n,±

〉 =
q∑

p=0

E (p)
n,±

∣∣ψ (q−p)
n,±

〉
. (50)

To the zeroth order in λ, we simply obtain

HC

∣∣ψ (0)
n,±

〉 = E (0)
n,±

∣∣ψ (0)
n,±

〉
. (51)

This means that E (0)
n,± is an eigenenergy of HC, with |ψ (0)

n,±〉
being the corresponding eigenstate. While we can readily
identify E (0)

n,± with the charging energy, E (0)
n,± = n2EC, the state

|ψ (0)
n,±〉 remains undetermined at this stage. This is because

all the energy levels of the charging Hamiltonian except the
ground state are twofold degenerate, and Eq. (51) then only
tells us that |ψ (0)

n,±〉 belongs to the subspace generated by the
charge states |n〉 and |−n〉. However, since each state |ψn,±〉
has a definite charge parity—we recall that it is an eigenstate
of both H and C —, all the corrections |ψ (q)

n,±〉 must have
the same property. This includes the zeroth order eigenstates
which must also satisfy C |ψ (0)

n,±〉 = ± |ψ (0)
n,±〉. For all n > 0,

we then find the appropriate choice for these states to be

∣∣ψ (0)
n,±

〉 = |χn,±〉 ≡ 1√
2

(|n〉 ± |−n〉), (52)

where C |χn,±〉 = ± |χn,±〉. Hence, each twofold degenerate
charge energy level can be further subdivided into two eigen-
states of different charge parities; we expect the degeneracy of
these states to be lifted by the Josephson Hamiltonian. Finally,
one should note that the relevant zeroth order eigenstate for
n = 0 is simply |ψ (0)

0 〉 = |0〉, which indicates that the ground
state |ψ0〉 is even under charge conjugation.

Using Eq. (50) with q = 1, we find the corrections to the
energy to first order in λ,

E (1)
n,± = 〈

ψ
(0)
n,±

∣∣HJ

∣∣ψ (0)
n,±

〉
. (53)

The Josephson potential only couples neighboring charge
states as, for any charge states |m〉 and |n〉, we have

〈m|HJ|n〉 = −EC

2
(δm,n+1 + δm,n−1). (54)

Thus, the perturbation does not yield any correction to the
energies to first order in λ, E (1)

n,± = 0.
The first-order eigenstates are given by

∣∣ψ (1)
n,±

〉 = −
∑
m �=n

〈
ψ

(0)
m,±

∣∣HJ

∣∣ψ (0)
n,±

〉
(m2 − n2)EC

∣∣ψ (0)
m,±

〉
. (55)

Note that here the norm and phase of |ψn,±〉 have been chosen
such that 〈ψn,±|ψn,±〉 = 1 and 〈ψ (0)

n,±|ψn,±〉 be real. To first
order in λ, this imposes 〈ψ (0)

n,±|ψ (1)
n,±〉 = 0. In what follows,

the cases for n = 0 or n = 1 must be treated separately since
they involve the ground state which is clearly distinct from
the excited states as regards the structure of their leading-
order terms. Namely, we have |ψ (0)

0 〉 = |0〉 while, for n > 0,
|ψ (0)

n,±〉 = |χn,±〉. For n = 0, we obtain

|ψ0〉 = |0〉 + λ√
2

|χ1,+〉 + O(λ2). (56)
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For n = 1, we find

|ψ1,+〉 = |χ1,+〉 + λ

6
|χ2,+〉 + λ√

2
|0〉 + O(λ2), (57)

|ψ1,−〉 = |χ1,−〉 + λ

6
|χ2,−〉 + O(λ2). (58)

Finally, for n > 1, we have

|ψn,±〉 = |χn,±〉 + λ

4n + 2
|χn+1,±〉

− λ

4n − 2
|χn−1,±〉 + O(λ2). (59)

We now consider the second-order corrections to the en-
ergy. According to Eq. (50) with q = 2, we have

E (2)
n,± = −

∑
m �=n

∣∣〈ψ (0)
m,±

∣∣HJ

∣∣ψ (0)
n,±

〉∣∣2

(m2 − n2)EC
. (60)

For n = 0, this yields

E0 = −λ2EC

2
+ O(λ3). (61)

For n = 1, we obtain

E1,+ = EC

(
1 + 5λ2

12

)
+ O(λ3), (62)

E1,− = EC

(
1 − λ2

12

)
+ O(λ3). (63)

The Josephson Hamiltonian thus lifts the degeneracy of the
first excited eigenstates to second order in λ. Conversely,
higher-energy excited states remain degenerate to this point
as, for n > 1, we find

En,± = EC

(
n2 + λ2

2(4n2 − 1)

)
+ O(λ3). (64)

We can now use the result obtained with the perturbation
method to compute the single-junction correlation function in
Eq. (46). However, the eigenenergies only appear in oscillat-
ing exponentials multiplied by the time t or in the Boltzmann
factors multiplied the inverse temperature β in Eq. (46). This
must be accounted for in subsequent calculations as one has
to ensure that energy corrections to high orders in λ can still
be neglected. This is clearly the case if we restrict ourselves
to short times, t 	 1/(λ2EC). This limitation to short times
does not constitute a hindrance to our analysis. Indeed, we
are interested here in situations where the correlation function
for the whole chain rapidly decays so that the Born–Markov
approximations hold. The crucial point of our calculation
is to ensure that this fast decay does happen, and we do
not need to resolve the dynamics of correlations for longer
times. Therefore, we will only consider the short-time regime
t 	 1/(λ2EC) hereafter. Overall, our approach provides a sat-
isfactory description of correlations in a single junction, so
long as ω−1

B 	 1/(λ2EC), where ω−1
B is the correlation time

for the whole chain. We typically estimate ωB ∼ δEC, where
δEC is the width of the charging energy distribution across the
chain, as shown in Eq. (74) later. This results in the constraint
EJ 	 √

ECδEC in Eq. (39). A more accurate estimate of ωB

for a specific example will be derived in Eq. (99) later.

As regards the Boltzmann factors, we will actually con-
sider two opposite regimes of temperature in what follows.
First, we analyze the regime of high temperatures, β−1 
λ2EC. This is in the same spirit as the limitation to short
times discussed above. In this regime, terms to high orders
in λ can be neglected in the Boltzmann factors so our per-
turbative results can be used. Then, in a second time, we
tackle the low-temperature regime. In this case, we cannot
estimate the Boltzmann factors with accuracy through a series
in powers of λ. However, if the temperature is low enough,
then we can only keep the contribution of the ground state
to the correlation function. This is because the Boltzmann
factors corresponding to excited states, e−βEn,± with n > 0, are
negligible with respect to e−βE0 , which is typically the case
when β−1 	 EC. Then, the Boltzmann factors e−βE0 in the
numerator and the denominator cancel each other so it is not
necessary to have the full expansion for the energy E0.

Let us first analyze the regime of high temperatures where
β−1  λ2EC. For simplicity, we only keep terms to lead-
ing order in λ, En,± = n2EC + O(λ2) and 〈ψm,±|N |ψn,∓〉 =
mδmn + O(λ) (recall that N only couples states of different
charge parities). In this context, we find that the single-
junction correlation reduces to that of a free rotor,

G(t ) ≈ 2
∑∞

n=1 n2e−n2βEC

1 + 2
∑∞

n=1 e−n2βEC
, (65)

where we recall that the short-time limit, t 	 1/(λ2EC), is
considered here. The factors of 2 above illustrate that excited
states of different parities contribute equally to the correlation
function.

We now turn to the opposite low-temperature regime where
β−1 	 EC. In this case, we only keep the terms in Eq. (46)
whose Boltzmann factor is associated to the ground state. The
correlation function then reads

G(t ) ≈
∞∑

n=1

|〈ψ0|N |ψn,−〉|2e−i(En,−−E0 )t . (66)

Again, N only couples states of different charge parities and
|ψ0〉 is even under charge conjugation, which is why the sum
above only features the odd eigenstates |ψn,−〉. Moreover,
since N |0〉 = 0, we deduce that the term of zeroth order in λ

vanishes here. To leading-order in λ, only |ψ1,−〉 contributes
to the sum, so that we find, for t 	 1/(λ2EC),

G(t ) ≈ λ2

2
e−iECt . (67)

We observe two clearly different dynamics for correlations
in Eqs. (65) and (67). In the high temperature regime, we
find that the correlation function is constant. This rules out
the possibility for the whole chain’s correlation function to
decay fast and forbids Markovianity. Crucially, in the case of
free rotors (λ = 0), the dynamics of the correlation function
is always given by this constant term so the Born–Markov
approximation never applies. On the contrary, Eq. (67) fea-
tures an exponential oscillating in time. We will show later
that this time dependence can give rise to a rapidly decaying
correlation function for the whole chain to leading order pro-
vided that the charging energy distribution along the chain is
appropriately chosen. This underlines the primary importance
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FIG. 2. Check of G(t ) against numerical calculation. The value
of the Josephson energy is EJ = 0.01EC. The red solid and blue
dotted lines are analytical calculations of the real parts of G(t )
at temperatures β−1 	 EC/ ln(EC/EJ ) = 0.2EC and β−1 = 0.1EC,
respectively, which are plotted according to Eq. (68). The purple
squares and black stars are the corresponding numerical calculations
of the real parts of G(t ) for these two temperatures. We clearly
see that the perturbative results from Eq. (68) are in excellent
agreement with the numerical results for t 	 1/(λ2EC) = 104/EC.
Furthermore, the constant offset in G(t ), i.e., the second term in the
right-hand side of Eq. (68), which becomes nonnegligible at tem-
perature β−1 ∼ EC/ ln(EC/EJ ), is also confirmed by the numerical
calculations.

of the Josephson potential as it introduces an overlap between
the ground state |ψ0〉 and the even charge eigenstate |χ1,+〉 as
shown in Eq. (66). This overlap gives rise to the oscillating
behavior of the correlation function, which is the leading-
order behavior in the low-temperature regime. In summary,
we observe that the Josephson junction chain can behave as
a Markovian bath at low temperature while this is no longer
the case for higher temperatures. Here, Markovianity breaks
down as temperature increases contrary to what is usually wit-
nessed in the usual harmonic bath, where the short correlation
time at high temperature guarantees Markovianity, as one can
see from Eq. (34).

In the low-temperature regime, only the ground state’s
contribution to correlations have been taken into account
when moving from Eq. (46) to Eq. (66). When temperature
is increased, contributions from excited states must also be
taken into consideration. In doing so, the transition in the
dynamics of correlation from oscillatory to constant can be
analyzed more thoroughly. For example, when e−βEC ∼ λ2,
that is β−1 ∼ EC/(− ln λ), it is necessary to include the con-
tribution from the first excited states into the calculation. We
then obtain

G(t ) ≈ λ2

2
e−iECt + 2e−βEC . (68)

This expression provides a satisfactory description of single-
junction correlation function for short times, t 	 1/(λ2EC),
and moderately low temperatures, λ3EC 	 β−1 	 EC. This
justifies a posteriori the form of Eq. (40) refining the regime
of validity of Eq. (67). Figure 2 shows that Eq. (68) can
characterize the dynamics for t 	 1/(λ2EC) with excellent
precision and the constant offset corresponding to the second

term in the right-hand side of Eq. (68) is confirmed by the
numerics. The simulation is performed by numerically cal-
culating 〈N (t )N (0)〉 taking into account the first 41 charge
eigenbasis states, namely, the states |n〉 for n = −20, . . . , 20.

More details about the perturbative calculation of
the single-junction correlation function are given in
Appendix B 1.

2. JJA correlation function in the continuum limit

When temperature is further lowered such at Eq. (40) is
satisfied, the subleading order is much smaller than the lead-
ing order in Eq. (68). Therefore, it reduces to Eq. (41). In this
regime, the Josephson bath correlation function obtained from
Eq. (41) is

�(t ) =
∑

α

g2
αE2

Jα

2E2
Cα

e−iECαt = 1

2

(
εI

e

)2 ∑
α

E2
Jαe−iECαt , (69)

where we have used the explicit Eq. (18) for gα in the last
equality. In the continuum limit, this becomes

�(t ) = 1

2

(
εI

e

)2 ∫
dxν(x)[EJ(x)]2e−iEC(x)t . (70)

We emphasize that x and ν(x) in Eq. (70) have their own
meaning depending on the specific context of how the JJA
bath is built. We will come back their exact meaning when
we discuss specific examples in Sec. VI. Here, one can simply
view x as the index for the modes of the JJA and ν(x) is the
degeneracy of the mode of EC(x). Furthermore, we note that
Eq. (70) is valid if the continuous versions of Eqs. (39) and
(40) hold. Namely, for all x, we must have

EJ(x) 	 EC(x),
√

EC(x)δEC, (71)

β−1 	 �∗ ≡ min
x

�(x), (72)

where δEC is the width of the distribution of the charging
energy across the chain and

�(x) ≡ EC(x)/[− ln λ(x)]. (73)

We deem the junction at position x to be in the zero-
temperature limit if β−1 	 �(x). Then, the whole chain is in
the zero-temperature limit if all junctions are, that is if Eq. (72)
is satisfied.

We change variables in Eq. (70) to obtain

�(t ) =
(

εI

2e

)2 ∫ ∞

0
dECJ (EC)e−iECt , (74)

where

J (EC) ≡ 2
∑

k

νk (EC)
[
E (k)

J (EC)
]2

∣∣∣∣ dxk

dEC
(EC)

∣∣∣∣. (75)

Here k labels the intervals Ik on which EC(x) is monotonic so
that the inverse function xk (EC) is properly defined, and

νk (EC) ≡ ν(xk (EC)), (76)

E (k)
J (EC) ≡ EJ(xk (EC)). (77)

Comparing to Eq. (34), we notice that J (EC) plays a similar
role to that of the spectral density in the harmonic regime,
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accounting for the decay of the correlation function. Roughly
speaking, �(t ) will decay on a timescale of the order of the
width of J (EC) since �(t ) is the “half Fourier transform” of
J (EC) as seen in Eq. (74). Then, if we denote by δEC the
width of J (EC), the characteristic decay time of �(t ) will
approximately be 1/δEC.

IV. TEMPERATURE-DRIVEN TRANSITION
TO NON-MARKOVIANITY

When temperature is much smaller than the charging en-
ergy but violates Eq. (40), the single-junction correlation
function is given by Eq. (68) rather than Eq. (67). This is
because the next-to-leading order term e−βEC becomes com-
parable to the leading-order term. In the continuum limit, this
term contributes to a constant offset to the correlation func-
tion when the bath temperature reaches the point β−1 ∼ �∗,
but β−1 	 minx EC(x). Thus, the Josephson bath correlation
function no longer decays in this regime, meaning that the dy-
namics of the system becomes non-Markovian. The presence
of this constant offset can be intuitively understood consid-
ering that in the regime we analyze, charge fluctuations in
the Josephson chain are long-lived due to the small value of
the Josephson energy (the commutator of the charge operator
Nα with the chain Hamiltonian is very small). When the con-
stant offset is nonnegligible, one can expect that correlations
between the state of the system and the bath built up by
the interaction never completely decay, which invalidates the
GKSL treatment. To understand when this happens, we use
Eqs. (18) and (28), to calculate the constant offset,

�0 = 2

(
εI

e

)2 ∫
dx ν(x)E2

C(x)e−βEC(x). (78)

However, the magnitude of the constant offset will depend on
the spatial variation of �(x): We denote the place where �(x)
reaches its minimum �∗ as x∗. When the temperature of the
chain β−1 becomes comparable to �∗, obviously the offset
will contribute to the single-junction correlation function for
junctions near x = x∗. If the spatial variation of the �(x) is
small, i.e., maxx |�(x) − �∗| is not too much larger than �∗,
then the offset will contribute to a significant portion of the
single-junction correlation functions across the chain, not just
for junctions near x = x∗ so that the overall bath correlation
functions is significantly shifted.

However, if the spatial variation of �(x) is relatively large,
then it may happen that only a small portion of the chain
near x = x∗ surpasses the zero-temperature limit when β−1

becomes comparable to �∗. When this is the case, the offset
of the bath correlation function may be small compared to the
magnitude of the one in the zero-temperature limit, or even
negligible.

We will discuss this phenomenon again for a concrete
example with effective Lorentz spectral density in Sec. VI A.

V. THE GKSL MASTER EQUATION AND BATH DUALITY

A. The decay rate and Lamb shift

We now discuss the dynamics of the LC oscillator that is
weakly and capacitively coupled to the Josephson bath, shown
in the dotted box in Fig. 1(a). When the correlation function

�(t ) decays fast, the system dynamics may be described by a
GKSL master equation. Combined with the results of previous
section, it requires δEC be large enough, which can come
from reservoir engineering or disorder of the charging energy
(see Sec. VI). When this is the case, we can perform the
Born–Markov approximation and the secular approximation
[3,4], to find the following (interaction picture) Markovian
master equation for the LC oscillator shown in the dotted box
in Fig. 1(a):

dρS

dt
= −i[HLS, ρS(t )] + κ (ω0)D[b]ρS(t ). (79)

Here ω0 is defined in Eq. (21), HLS = δLS(ω0)b†b is the
Lamb shift Hamiltonian that accounts for the renormalization
of the LC oscillator’s energy levels due to the coupling to
the JJA bath, while the dissipator D[b]ρS(t ) ≡ b†ρS(t )b −
{ρS(t ), b†b/2} describes the equilibration of the oscillator with
the bath through the emission of photons at frequency ω0.
The Lamb shift δLS(ω0) and the emission rate κ (ω0) are both
deduced from the Fourier transformed correlation function
�(ω0),

δLS(ω0) = −Cω0

2
Im[�(ω0) + �(−ω0)], (80)

κ (ω0) = Cω0Re�(ω0), (81)

�(ω0) =
∫ ∞

0
dt�(t )eiω0t . (82)

A brief derivation of the GKSL master equation is presented
in Appendix A. Let us now calculate the Lamb shift and decay
rate stemming from the JJA bath correlation function given in
Eq. (74). The half Fourier transform yields

�(ω) =
(

εI

2e

)2[
πJ (ω)�(ω) − iP

∫ ∞

0
dEC

J (EC)

EC − ω

]
, (83)

where �(ω) is the Heaviside function and P denotes the
Cauchy principal value. We then straightforwardly obtain the
Lamb shift,

δLS(ω0) = ω0ε
2
I

16EQ
P
∫ ∞

0
dECJ (EC)

(
1

EC − ω0
+ 1

EC + ω0

)
,

(84)

where we have introduced EQ = e2/(2C), the renormalized
charging energy of the LC oscillator. Finally, the decay rate
reads

κ (ω0) = πε2
I ω0J (ω0)

8EQ
, (85)

which is the rate of emission of a photon at frequency ω0 by
the LC oscillator. The rate for the opposite process, where the
oscillator is excited by the absorption of a photon vanishes
here. This indicates that the JJA bath is effectively at zero
temperature: The oscillator cannot absorb any photon if the
bath emits none.

B. Bath duality

From Eqs. (38) and (74), it is clear that the zero-
temperature correlation function of the JJA bath takes similar
forms whether EJ or EC defines the largest energy scale in the
problem, leading to similar effects on the system’s dynamics.
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TABLE I. Parameter correspondence between the large EC

regime and large EJ regime at the zero temperature limit, where the
leading order correlation function of JJA bath produces the same
coarse-grained dynamics for the primary LC oscillator. The parame-
ters in the large EJ regime come with tildes to distinguish those in the
large EC regime. The basic variable on the left column is EC while
the one on the right column is ω̃.

Large EC limit Large EJ limit
EJ(x) 	 EC(x) ẼC(x) 	 ẼJ(x)

Zero-temperature limit Zero-temperature limit
β−1 	 �∗ β̃−1 	 minx ω̃(x)

xk ∈ Ik xk ∈ Ik

EC(xk ) ω̃(xk ) ≡
√

2ẼC(xk )ẼJ(xk )

νk (EC) ν̃k (ω̃)

2
[
E (k)

J (EC)
]2

/EC Ẽ (k)
C (ω̃)

The only difference between the two regimes is then how the
spectral density, and therefore the damping rate and Lamb
shift, are related to the microscopic parameters of the JJA.

We found that the spectral densities in the two regimes
can be mapped onto each other, e.g., through the parameter
correspondence list in Table I. The existence of such mapping
implies that there exist two sets of parameters, (EJ(x), EC(x))
in the large EC regime and (ẼJ(x), ẼC(x)) in the large EJ

regime, linked by the relation in Table I, which lead to the
same coarse-grained dynamics for any small system coupled
to the JJA, i.e., the same form of GKSL master equation and
the same value of the coefficients. We dub the mapping the
between the two regimes as bath duality.

Let us now illustrate how the bath duality is actually per-
formed. The parameters in the large EJ regime come with
tildes to distinguish them from those in the large EC regime.
Moreover, the parameter EC(xk ) in the left column plays the
same role as the frequency ω̃k in the right column.

To obtain the same dynamics, one can ensure that the
value of EC(xk ) (second row of the table) is the same as that
of ω̃(xk ), that the function νk (EC) = ν(xk (EC)) (third row)
takes the same values as ν̃k (ω̃) = ν̃(xk (ω̃)), and finally that
2{E (k)

J (EC)}2/EC = 2{EJ(xk (EC))}2/xk (EC) (last row of the
table) equals Ẽ (k)

C (ω̃) = ẼC(xk (ω)).
From this correspondence rules, we find

ẼC(xk ) = 2E2
J (xk )

EC(xk )
, (86)

and

ẼJ(xk ) = ω̃2(xk )

2ẼC(xk )
= ω̃3(xk )

4E2
J (xk )

= E3
C(xk )

4E2
J (xk )

, (87)

using the identification of ω̃(xk ) with EC(xk ). This leads to the
relation

ẼC(xk )/ẼJ(xk ) ∼ [EJ(xk )/EC(xk )]4 	 1, (88)

which shows the mapping indeed connects the large EC

regime to the large EJ regime. Furthermore, one can also
check that the mapping preserves the zero-temperature

limit

β̃ 	 ω̃(xk ), ∀xk ∈ Ik, (89)

as along as the temperature for the large EJ regime is taken as

β̃−1 � ln [EC(x)/EJ(x)]minβ
−1. (90)

An example of how this mapping can be implemented will
be discussed in next section.

VI. EXAMPLES

In this section, we will give two concrete examples illus-
trating how the result in Sec. V can be applied. Practically, we
know [55]

ECα = 2e2wα

εrAα

, (91)

EJα = FJAα

ζ sinh(wα/ζ )
, (92)

where wα and εr are the thickness and dielectric constant of
the oxidation material, Aα is the area of the junctions, FJ is a
constant that depends on the density of the cooper pairs on the
islands which has the dimension of a force, and ζ is a constant
that depends on the tunneling barrier that has the dimension of
a length. Below, we will consider variations of the oxidation
material thickness and of the junction area across the chain,
all other parameters being kept fixed.

In the first example, the junction density and the junction
area distribution are properly engineered such that the effec-
tive spectral density is Lorentzian, a case frequently studied in
the field of open quantum systems. In the second example, we
discuss a common case in condensed matter physics where
the JJA presents disorder in the values of the charging and
Josephson energies caused by the Gaussian disorder of the
width of the oxidation material. It should be noted that in
the first example the spatial dependences of the charging and
Josephson energies on the junction position are known, while
in the second example these energies at each junction are
random and correlated through the width of the oxidation
material.

A. Engineering the areas of the junctions

EC(x) =
(

1 + ax2

2L2

)
EC0, (93)

where a > 0 is dimensionless quantity characterizing the vari-
ation of the charging energy across the chain, x ∈ [−L, L].
According to Eqs. (91) and (92), the distribution of EJ across
the chain is

EJ(x) = EJ0

(
1 + ax2

2L2

)−1

, (94)

where

EJ0 = 2e2FJw

εrζEC0 sinh(w/ζ )
. (95)

To satisfy the large EC condition in Eq. (71), we require
EC0  EJ0. The junctions are assumed to be distributed
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(a)

(b)

FIG. 3. (a) The junction density given by Eq. (96), (b) the
spectral density given by Eq. (97), which is nonvanishing only in
the range of characteristic frequencies of the Josephson bath, i.e.,
[EC0, (1 + a/2)EC0 ]. Value of parameters:A = 500, σ = 0.25, a =
0.4, EJ0 = 0.05EC0. The total number of the junction is the JJA is
roughly NJ = ∫ L

−L dx ν(x) ≈ 1277.

according to the junction density

ν(x) = AL2|x|
x4 + 4σ 2L4

(
1 + ax2

2L2

)2

, (96)

where the dimensionless quantities A and σ , respectively,
characterize the amplitude and variation of the junction den-
sity across the chain. The junction density ν(x) accounts for
the weights of a junction with parameter EC(x) and EJ(x),
similarly to the concept of density of states accounting for the
degeneracy of energy levels. The shape of ν(x) is shown in
Fig. 3(a). Then, according to Eq. (75),

J (EC) = aAEC0E2
J0

(EC − EC0)2 + (aσEC0)2
, (97)

when EC0 � EC � (1 + a/2)EC0, and J (EC) = 0 otherwise.
The plot of J (EC) is shown in Fig. 3(b).

To justify the Born–Markov and secular approximations,
the following conditions must be satisfied:

κ (ω0) 	 ωB, ω0, (98)

where ω−1
B is the timescale, on which the JJA bath correlation

function �(t ) decays.

Now we derive an empirical rule for the above example,
under which Eq. (98) can be satisfied. Similar rules can
be analogously derived for other distributions of the junc-
tion density and parameters. According to Eq. (74), one can
roughly regard �(t ) as the Fourier transform of J (EC), al-
though, strictly speaking, it is “the half Fourier transform”
J (EC). Therefore, the decay rate of �(t ) should be the width
of J (EC), i.e.,

ωB ∼ δEC ≡ aEC0 min

{
σ,

1

2

}
. (99)

According to Eqs. (85) and (97), the maximum decay
rate is obtained for ω0 = EC0

√
1 + (aσ )2, with κmax =

ζMEC0(1 +
√

1 + (aσ )2)/2, where

ζM ≡ πAε2
I E2

J0

8aσ 2EC0EQ
(100)

characterizes the Markovianity of the chain. The maximum
ratio between κ (ω0) and ω0 occurs when ω0 = EC0, where
[κ (ω0)/ω0]max = ζM. Therefore, Eq. (98) can be satisfied if

ζM[1 +
√

1 + (aσ )2]

aσ
	 1, 2σ, (101)

ζM 	 1. (102)

It turns out that Eqs. (101) and (102) are satisfied when ζM is
small enough. In such a case, the JJA behaves as a Markovian
bath. In Fig. 4, one can see that for the given parameters for the
JJA and the LC oscillator, Eqs. (101) and (102) are satisfied
so that the validity of the GKSL master equation is justified.
From Figs. 4(a) and 4(b), we observe that the Josephson bath
correlation time ω−1

B is roughly about 10/δEC and κ/ωB ∼
10−4–10−3. Thus, within the GKSL weak-coupling approach,
the coupling that the circuit QED setup here has achieved is
already much larger compared to the atomic case where [3,4]
κ/ωB ∼ 10−7–10−6.
Note that the Markovian property of the Josephson bath,
where the correlation function decays faster than the LC oscil-
lator, as shown in Fig. 4(a), only holds in the zero-temperature
limit given by Eq. (72). As we have discussed in Sec. IV,
when the temperature of the chain is comparable to �∗ defined
in Eq. (72), non-Markovian dynamics may occur due to the
significant constant offset in the Josephson bath correlation
function. For the charging energy distribution in Eq. (93),
�∗ is EC0/ ln(EC0/EJ0), which is reached at the origin. The
magnitude of the offset depends on the spatial variation of
�(x) defined in Eq. (73): The flatter the spatial distribution,
the larger the offset. The correlation function for cases with
small and large spatial variation of �(x) are given in Figs. 5
and 6, respectively. One can easily find that for β−1 = 0.33�∗
and β−1 = 0.42�∗, the portion in the JJA near the origin in
Fig. 5(b) that surpasses the zero-temperature limit is larger
than the one in Fig. 6(b). This is why the offset in Fig. 5(a) is
larger when compared to Fig. 6(a).

B. Gaussian disorder in the oxidation thickness

In this section, We denote the oxidation thickness at junc-
tion as wα and assume it is a Gaussian random variable
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(a)

(b)

(c)

FIG. 4. (a) The normalized correlation function of the JJA,
�(t )/Re[�(0)]. (b) The decay rate versus the frequency of the LC
oscillator. (c) The ratio between Lamb shift and the decay rate over
the frequency of the LC oscillator. The chain is in the limit of zero-
temperature given by Eq. (72), where the bath correlation function
decays rapidly compared to the decay timescale of the oscillator,
as shown in panels (a) and (b). Other parameters for the junction
chain is the same as Fig. 3. The value for the LC oscillator and
the coupling εI = 0.01, EQ = 100EC0, and δEC = 0.1EC0. The decay
rate, proportional to the spectral density shown in Fig. 3, is nonzero
only when the frequency of the LC oscillator ω0 is resonant with
the characteristic modes in the Josephson bath, whose frequencies
lie in the range [EC0, (1 + a/2)EC0]. Comparing panels (a) and (b),
one obviously observe that the decay of the bath correlation function
is much fast than the decay of the LC oscillator so that the Born–
Markov approximation is satisfied in this case. The red line in panel
(c) indicates that the decay rate is much smaller than the frequency
of the LC oscillator such that the secular approximation is satisfied.

(a)

(b)

FIG. 5. (a) The real part of the normalized correlation function
versus time. (b) The distribution of the energy scales of the �(x),
EC(x) and the zero-temperature limit (given by the blue dashed
lines) are β−1 � �∗/10. The junction parameters are the same as
described in the caption of Fig. 3. In particular, EC ∈ [1, 1.2]EC0,
EJ0 = EC0/20, δEC = 0.1EC0, and �∗ = �(0) = 0.33EC0. The nor-
malization is performed by dividing the value of the real part of
correlation function in the zero-temperature limit evaluated at t = 0.
The blue dashed line in panel (a) corresponding to the normalized
correlation function in the zero-temperature limit is the same as
the one shown in Fig. 4. The offset in the correlation function for
β−1 = 0.42�∗ shown in red solid line in panel (a) is about 100%
when compared to the magnitude for the correlation function in the
zero-temperature limit. We note that the shape of �(x) in panel (b) is
quite flat. This indicates when the temperature is increased beyond
the zero-temperature limit for x∗ = 0, significant portion of near the
origin will also violate the zero-temperature. This accounts for the
huge offset in panel (a).

with mean w0 and width δw. From Eqs. (91) and (92), we
immediately

In the continuum limit, the correlation function Eq. (69)
can be written as

�(t ) = ε2
I NJF 2

J A2

2e2ζ 2

∫ ∞

wmin

dw
P(w)

sinh2(w/ζ )
e2ie2wt/(εrA). (103)

Comparing with Eq. (70), we see that w and NJP(w) play
the roles of x and ν(x), respectively. The plots of correlation
function, decay rate and Lamb shift are shown in Fig. 7. While
it is clear that the JJA bath correlation time decreases with the
width of the disorder δEC, it is straightforward to show that for
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(a)

(b)

FIG. 6. (a) The real part of the normalized correlation function
versus time. (b) The distribution of the energy scales of the �(x),
EC(x) and the zero-temperature limit (given by the blue dashed
lines) are β−1 � �∗/10. The junction parameter a = 40 so that EC ∈
[1, 21]E0, wider than Fig. 5. Other parameters: EJ0 = EC0/20, A =
50, σ = 0.25, EQ = 100EC0, εI = 0.01, δEC = 10EC0, and �∗ =
�(0) = 0.33EC0. The normalization of the correlation function in
panel (a) is performed by dividing the value of the real part of the
correlation function in the zero-temperature limit evaluated at t = 0.
The blue dashed line in panel (a) corresponding to the normalized
correlation function in the zero-temperature limit is the same as
the one shown in Fig. 4. The offset in the correlation function for
β−1 = 0.42�∗ shown in red solid line in panel (a) is about 5%
when compared to the magnitude for the correlation function in the
zero-temperature limit. Note that the shape of �(x) in panel (b) is
more warped than that in Fig. 5(b). Therefore, we expect when
the temperature is increased beyond the zero-temperature limit near
x∗ = 0, offset in the correlation function should be smaller than that
in Fig. 5(a).

fixed oscillator frequency ω0 and E0, the decay rate reaches its
maximum when δEC = √

2|ω0 − E0|. Note that in Fig. 7(b),
the ratio of κ/ωB ∼ κ/(10δEC) is of the order 10−5, similar to
the atomic case where [3,4] κ/ωB ∼ 10−7–10−6.

VII. DISCUSSION AND CONCLUSION

We showed that when the charging energy is the largest
energy scale comparing to temperature and the Josephson
energy, a 1D Josephson junctions array (JJA) can behave as

(b)

(a)

(c)

FIG. 7. 2D plots of (a) the normalized magnitude of the real part
of the Josephson bath correlation function |Re�(t )|/�(0) versus time
and the width of the disorder, (b) the normalized decay rate κ/E0

versus the width of the disorder and the oscillator frequency, and
(c) the normalized Lamb shift δLS/E0 versus the width of the disorder
and the oscillator frequency. Values of parameters: FJA/ζ = E0/100,
Emin = Eζ = E0/5, EQ = 2E0, εI = 0.01, and NJ = 10000.

a Markovian bath of nonlinear rotors provided the distribution
for the chain parameters meet specific conditions, namely, the
leading-order of the bath correlation function decays rapidly.
We calculated the dynamics of an LC oscillator that is coupled
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to the JJA the using approach of the GKSL Markovian master
equation. In particular, we derived explicit expressions of the
Lamb shift and decay rate of the LC oscillator caused by the
coupling to the JJA. We found the leading order of the JJA
bath correlation function in the large charging energy regime
bears the same form as that of a harmonic bath, which can
be approximated in the large Josephson energy regime to the
leading order. Based on this observation, we established a
mapping between the junction parameters in the two regimes,
identifying the set of parameters inducing the same coarse-
grained dynamics for a small quantum system coupled to
the chain. We gave two specific examples and showed that
it fits into the GKSL framework. In the first example the
spatial distributions of junction density and charging energy
are properly engineered such that effective spectral density is
a Lorentzian while in the second example the charging energy
is a Gaussian random variable so that the effective spectral
density is a Gaussian.

When the temperature is increased to the point where a
large region across chain is beyond the zero-temperature limit,
the JJA bath correlation function gets significantly shifted
by a constant, which renders the dynamics of the LC os-
cillator non-Markovian. This phenomenon is an indication
that beyond the zero-temperature limit the primary system
is correlated with the JJA bath on a very long timescale,
which cannot be addressed within the framework of the GKSL
master equation approach. Sophisticated techniques aiming at
tackling such non-Markovian effects will be further explored
in the future. Other possible future directions may include
generalizing the discussion here to other types of geometry
of JJA, investigating strong-coupling and strong nonlinear
effects, etc.
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APPENDIX A: DERIVATION OF THE GKSL
MASTER EQUATION

In this section, we start with Eqs. (1), (4), and (5) to derive
the GKSL master equation, following the standard procedure
in Refs. [3] and [4]. Assuming

ρtot (t ) = ρS(t ) ⊗ ρB. (A1)

By moving to the interaction picture associated with the free
Hamiltonian Eqs. (1) and (4), we obtain the following Red-
field master equation

dρS

dt
= −

∫ t

0
dt ′TrB{HI(t ), [HI(t

′), ρS(t ) ⊗ ρB]}, (A2)

where

HI(t ) ≡ ei(HS+HB )t HIe
i(HS+HB )t . (A3)

In Eq. (A2), we have used the fact that TrB(HIρB) = 0, which
has been justified below Eq. (25) in the main text. Performing

the Born–Markov approximation, we obtain∫ t

0
dt ′TrB{HI(t ), [HI(t

′), ρS(t ) ⊗ ρB]}

=
∫ ∞

0
ds �(s)[Q(t )Q(t − s)ρS(t ) − Q(t )ρS(t )Q(t − s)]

+ H.c., (A4)

where �(s) is defined as Eq. (28) and

Q(t ) ≡ eiHStQe−iHSt . (A5)

Therefore, we find

Q(t ) = −i

√
Cω0

2
(be−iωt − b†eiωt ). (A6)

Substituting Eq. (A6) into the first term on the right-hand side
of Eq. (A4), one obtains∫ ∞

0
ds �(s)Q(t )Q(t − s)ρS(t )

= Cω0

2

∫ ∞

0
ds �(s)(be−iω0t − b†eiω0t )

× (b†eiω0(t−s) − be−iω0(t−s) )ρS(t )

= Cω0

2
[�(−ω0)bb† + �(ω0)b†b]ρS(t ), (A7)

where we have performed the secular approximation to drop
the anti-rotating and energy nonconservation terms. Similarly,
we find∫ ∞

0
ds �(s)Q(t )ρS(t )Q(t − s)

= Cω0

2
[�(−ω)bρS(t )b† + �(ω)b†ρS(t )b]. (A8)

Defining γ (ω0) and s(ω0) as

γ (ω0) = 2Re�(ω0), (A9)

s(ω0) = −Im�(ω0), (A10)

we may rewrite

�(−ω0)bb†ρS(t ) + H.c. = 1
2γ (−ω0){ρS(t ), bb†}
+ is(−ω0)[bb†, ρS(t )], (A11)

�(ω0)b†bρS(t ) + H.c. = 1
2γ (ω0){ρS(t ), b†b}
+ is(ω0)[b†b, ρS(t )], (A12)

�(ω0)b†ρS(t )b + H.c. = γ (ω0)b†ρS(t )b, (A13)

�(−ω0)bρS(t )b† + H.c. = γ (−ω0)bρS(t )b†. (A14)

Substituting Eqs. (A4), (A7), (A8), (A11), and (A14) into
Eq. (A2) gives

dρS

dt
= −i[ρS(t ), HLS] + κ (ω0)D[b]ρS(t )

+����κ (−ω0)D[b†]ρS(t ), (A15)
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where

HLS = Cω0

2
{[s(ω) + s(−ω)]b†b + s(−ω)}, (A16)

κ (ω0) = Cω0

2
γ (ω0), (A17)

D[A]ρS(t ) ≡ A†ρS(t )A − 1

2
{ρS(t ), A†A}. (A18)

Note that according to Eq. (83) in the main text, the sponta-
neous absorption rate κ (−ω0) is zero. Therefore, Eq. (A15)
reduces to Eq. (79) in the main text.

APPENDIX B: PERTURBATIVE EVALUATION OF THE
SINGLE-JUNCTION TWO-POINT CORRELATION

FUNCTION AT LOW TEMPERATURE

1. Time-independent perturbation method

We consider a single Josephson junction in the regime
EJ 	 EC. The corresponding Hamiltonian is H = HC +
λHJ, with HC = ECN2, HJ = −EC cos ϕ, and λ = EJ/EC 	 1.
Since the Hamiltonian commutes with the charge conjugation
operator C, we choose to work in a common eigenbasis of H
and C. The states of such basis are denoted by |ψn,±〉, with

H |ψn,±〉 = En,± |ψn,±〉 , (B1)

C |ψn,±〉 = ± |ψn,±〉 . (B2)

The Josephson Hamiltonian HJ will be treated as a
perturbation, λ being assumed to be small. Applying time-
independent perturbation theory [52] to lowest nonvanishing
order in λ, we derive the correlation function G(t ) =
〈N (t )N (0)〉, where time dependence indicates that we con-
sider operators in the Heisenberg picture (with respect to
Hamiltonian H). The average value is taken over the thermal
state with inverse temperature β,

ρ = 1

Z
e−βH , (B3)

where Z = Tre−βH is the partition function. The correlation
function is then expanded as follows:

G(t ) = Tr(e−βH eiHt Ne−iHt N )

Tre−βH

=
∑

m,n,± |〈ψm,±|N |ψn,∓〉|2e−βEm,±ei(Em,±−En,∓ )t∑
n,± e−βEn,±

.

(B4)

In the numerator above, we have taken into account the fact
that the number operator N only couples states of different
charge parities.

Let us now compute the approximate eigenstates and
eigenenergies of the Josephson junction Hamiltonian using
time-independent perturbation theory. We consider the fol-
lowing expansions in powers of λ,

|ψn,±〉 =
∞∑

q=0

λq
∣∣ψ (q)

n,±
〉
, (B5)

En,± =
∞∑

q=0

λqE (q)
n,±. (B6)

Equation (B1) then becomes

(HC + λHJ )
∞∑

q=0

λq
∣∣ψ (q)

n,±
〉 =

( ∞∑
q=0

λqE (q)
n,±

) ∞∑
q=0

λq
∣∣ψ (q)

n,±
〉
.

(B7)
Sorting out the terms of same order in λ in the above equation,
we obtain

HC

∣∣ψ (q)
n,±

〉 + HJ

∣∣ψ (q−1)
n,±

〉 =
q∑

p=0

E (p)
n,±

∣∣ψ (q−p)
n,±

〉
. (B8)

To zeroth order in λ, we simply obtain HC |ψ (0)
n,±〉 =

E (0)
n,± |ψ (0)

n,±〉. This means that E (0)
n,± is an eigenenergy of HC,

so we can identify E (0)
n,± = n2EC. However, the correspond-

ing eigenstate |ψ (0)
n,±〉 cannot be fully characterized at this

stage. Indeed, all energy levels except the ground state are
twofold degenerate: the charge states |n〉 and |−n〉 correspond
to the same eigenenergy n2EC, which means that any linear
combination of these states is also an eigenstate of HC with
the same eigenenergy. Consequently, |ψ (0)

n,±〉 can be any such
combination. Here, this issue can be resolved invoking charge
parity. Indeed, since the exact eigenstate |ψn,±〉 has a definite
parity, all the corrections |ψ (q)

n,±〉, in particular |ψ (0)
n,±〉, must too.

The only states of definite parity that can be constructed from
the charge states |n〉 and |−n〉 are

|χn,±〉 = 1√
2

(|n〉 ± |−n〉). (B9)

In conclusion, we choose |ψ (0)
n,±〉 = |χn,±〉 for the excited

states (n > 0), but we simply have |ψ (0)
0 〉 = |0〉 for the ground

state as it is not degenerate.
To first order in λ, Eq. (B8) yields(

HC − E (0)
n,±

) ∣∣ψ (1)
n,±

〉 + (
HJ − E (1)

n,±
) ∣∣ψ (0)

n,±
〉 = 0. (B10)

We obtain the first-order energy correction by projecting this
equation onto |ψ (0)

n,±〉,
E (1)

n,± = 〈
ψ

(0)
n,±

∣∣HJ

∣∣ψ (0)
n,±

〉
. (B11)

It is clear that E (1)
n,± = 0, because HJ only couples neighboring

charge states,

〈m|HJ|n〉 = −EC

2
(δm,n+1 + δm,n−1). (B12)

As such, the perturbation will not induce any correction to the
energy to first order in λ. However, there still are corrections
to the states. Indeed, projecting Eq. (B10) onto |ψ (0)

m,±〉, m �= n,
we find

〈
ψ

(0)
m,±

∣∣ψ (1)
n,±

〉 = −
〈
ψ

(0)
m,±

∣∣HJ

∣∣ψ (0)
n,±

〉
E (0)

m − E (0)
n

=
〈
ψ

(0)
m,±

∣∣cos ϕ
∣∣ψ (0)

n,±
〉

m2 − n2
.

(B13)
Note that, for all m, 〈ψ (0)

m,∓|ψ (1)
n,±〉 = 0 since states of different

charge parities do not overlap. In particular, 〈ψ (0)
n,∓|ψ (1)

n,±〉 = 0.
At this stage, only the component of |ψ (1)

n,±〉 along |ψ (0)
n,±〉 is still

undetermined. It can be obtained invoking the normalization
of the exact eigenstate, 〈ψn,±|ψn,±〉 = 1. Furthermore, we set
the phase of |ψn,±〉 by imposing 〈ψ (0)

n,±|ψn,±〉 ∈ R. To first
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order in λ, this yields 〈ψ (0)
n,±|ψ (1)

n,±〉 = 0. We then conclude

∣∣ψ (1)
n,±

〉 =
∑
m �=n

〈
ψ

(0)
m,±

∣∣cos ϕ
∣∣ψ (0)

n,±
〉

m2 − n2

∣∣ψ (0)
m,±

〉
. (B14)

For n = 0, this yields∣∣ψ (1)
0

〉 = 1√
2

|χ1,+〉 . (B15)

For n = 1, we have∣∣ψ (1)
1,+

〉 = 1

6
|χ2,+〉 + 1√

2
|0〉 , (B16)

∣∣ψ (1)
1,−

〉 = 1

6
|χ2,−〉 . (B17)

Finally, for n > 1, we find∣∣ψ (1)
n,±

〉 = 1

2

(
1

2n + 1
|χn+1,±〉 − 1

2n − 1
|χn−1,±〉

)
. (B18)

To second order in λ, Eq. (B8) yields(
HC − E (0)

n,±
) ∣∣ψ (2)

n,±
〉 + (

HJ − E (1)
n,±

) ∣∣ψ (1)
n,±

〉 = E (2)
n,±

∣∣ψ (0)
n,±

〉
.

(B19)

As before, we project this equation onto |ψ (0)
n,±〉 to find

E (2)
n,± = 〈

ψ
(0)
n,±

∣∣HJ

∣∣ψ (1)
n,±

〉 = −EC

∑
m �=n

∣∣〈ψ (0)
m,±

∣∣cos ϕ
∣∣ψ (0)

n,±
〉∣∣2

m2 − n2
.

(B20)
For n = 0, this yields

E (2)
0 = −EC

2
. (B21)

For n = 1, we find

E (2)
1,+ = 5EC

12
, (B22)

E (2)
1,− = −EC

12
. (B23)

Interestingly, the degeneracy of the first excited states is lifted
here. However, this is not the case for higher-energy excited
states since, for n > 1, we have

E (2)
n,± = EC

2(4n2 − 1)
. (B24)

We can now use the results of our perturbative calculation
to derive the correlation function in Eq. (B4). For simplicity,
corrections to the energies will be neglected in the oscillating
exponentials. This approximation is justified for short times,
t 	 1/(λ2EC). This is not an issue as the main purpose of our
study is to describe the short-time dynamics of correlations.
We can perform the same type of approximation for the Boltz-
mann factors, which corresponds to the high-temperature
regime β−1  λ2EC. More generally, our perturbative calcu-
lation of the energies to second order in λ seems insufficient
to access the long times or low temperatures, t � 1/(λ3EC) or
β−1 � λ3EC.

To leading order in λ, we find that only the states |ψn,±〉 and
|ψn,∓〉 degenerate when λ = 0 but corresponding to different
charge parities, contribute to correlations,

〈ψm,±|N |ψn,∓〉 = mδmn + O(λ). (B25)

The correlation function can then be approximated by

G(t ) ≈ 2
∑∞

n=1 n2e−n2βEC

1 + 2
∑∞

n=1 e−n2βEC
. (B26)

Actually, it is also possible to obtain the correlation func-
tion in the low-temperature regime. In this case, we neglect the
contribution of excited states to the summations in Eq. (B4). In
this context, the Boltzmann factors eβE0 cancel each other we
do not need an accurate expression for E0. The typical energy
gap between two energy levels is the charging energy EC—or
rather EC is a lower bound of the gap—so this approximation
is typically justified when β−1 	 EC. The correlation func-
tion is then approximated by

G(t ) ≈
∑

n

|〈ψ0|N |ψn,−〉|2e−i(En,−−E0 )t . (B27)

To leading order in λ, only the state |ψ1,−〉 contributes to
the summation above, 〈ψ0|N |ψn,−〉 = λ/

√
2 + O(λ2). As a

result, we find, for t 	 1/(λ2EC),

G(t ) ≈ λ2

2
e−iECt . (B28)

As the temperature is increased, we can include the con-
tributions from excited states in the summations of Eq. (B4)
to analyze the transition from Eq. (B28) to Eq. (B26). For
example, when e−βEC ∼ λ2, it becomes relevant to take into
account the contribution of the first excited states to lowest
order in λ. The correlation function can then be approximated
by

G(t ) ≈ λ2

2
e−iECt + 2e−βEC . (B29)

2. Matsubara formalism

The two-point correlation function for a single junction
can alternatively be calculated from the Matsubara formalism
[53,54]. Starting from Eqs. (42) and (43), we analytically
continue to the imaginary time and obtain the Schrödinger
equation in the interaction picture as

∂τUI (τ ) = λHI(τ )UI (τ ), (B30)

where HI(τ ) = −eτHC HJe−τHC . The imaginary time propaga-
tor UI (τ ) can be explicitly expressed as

UI (τ ) = eτHC e−τH , (B31)

which can be verified by substituting into Eq. (B30). With
Eqs. (B30) and (B31), we find

Tr[e−βH ] = Tr[e−βHCUI (β )], (B32)

Tr[e−βH N (τ )] = Tr[e−βHCUI (β )N (0)], (B33)

and

Tr[e−βH N (τ )N (0)]

= Tr
[
e−βHCUI (β )U −1

I (τ )NI (τ )UI (τ )N (0)
]

= Tr[e−βHCT (UI (β )NI (τ )N (0))], (B34)

where NI (τ ) ≡ eτHC N (0)e−τHC is the number operator in
the interaction picture. To the second order of λ, we
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find

UI (τ ) = 1 + λ

∫ τ

0
dτ ′HI(τ

′)

+ λ2
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′HI(τ

′)HI(τ
′′) + · · · . (B35)

In the free rotor basis 〈ϕ|n〉 = einϕ/
√

2π , which are eigen-
states of N and HC with eigenvalues n and n2EC, respectively,
we find

〈n| cos ϕ|m〉 = 1

2
(δn+1, m + δn−1, m), (B36)

〈n| cos ϕ|k〉 〈k| cos ϕ|m〉 = 1

4
(δn+1, kδk+1, m + δn+1, kδk−1, m

+ δn−1, kδk+1, m + δn−1, kδk−1, m).

(B37)

Therefore,

〈n|HI(τ
′)|n〉 = 0, (B38)

〈n|HI(τ
′)|k〉 〈k|HI(τ

′′)|n〉 = E2
C

4
[δn+1, kFn(τ ′ − τ ′′)

+ δn−1, kF−n(τ ′ − τ ′′)], (B39)

where

Fn(τ ) = exp [−ECτ (1 + 2n)]. (B40)

Equation (B32) can be rewritten as

Tr[e−βH ] =
∑

n

e−βECn2 〈n|UI (β )|n〉 . (B41)

To the second order of λ, according to Eqs. (B35), (B38), and
(B39), we find

〈n|UI (β )|n〉 = 1 − λ2E2
C

4
[Kn(β ) + K−n(β )] + O(λ3),

(B42)
where

Kn(τ ) =
∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′Fn(τ ′ − τ ′′)

= 1

(1 + 2n)2E2
C

e−τEC(1+2n)

+ τ

(1 + 2n)EC
− 1

(1 + 2n)2E2
C

. (B43)

The infinite series in the right-hand side of Eq. (B41) can
be evaluated at the limit βEC  1, where the infinite sum
is replaced by the lowest order in e−βEC in the summand.
Therefore,∑

n

e−βECn2
Kn(β )

=
∑

n

e−βECn2
K−n(β )

=
∑

n

1

(1 + 2n)2E2
C

e−βEC(n+1)2

+
∑

n

[
β

(1 + 2n)EC
− 1

(1 + 2n)2E2
C

]
e−βECn2

= β

EC
. (B44)

Therefore, we find

Tr[e−βH ] = 1 − βECλ2

2
+ O(λ2)O(e−βEC ). (B45)

According to Eq. (B42), we observe that 〈n|UI (β )|n〉 is even
in n up the second order in λ. Therefore, we find

Tr[e−βHCUI (β )N (0)] =
∑

n

ne−n2βEC 〈n|UI (β )|n〉 = O(λ3)

(B46)
to all orders of e−βEC . To evaluate Eq. (B34), let us first
calculate the following:

〈n|T (UI (β )NI (τ )N (0))|n〉
= 〈n|NI (τ )N (0)|n〉

+ λ
���������������∫ β

0
dτ ′ 〈n|T (HI(τ

′)NI (τ )Q(0))|n〉

+ λ2

2

∫ β

0
dτ ′

∫ β

0
dτ ′′ 〈n|T (HI(τ

′)HI(τ
′′)NI (τ )Q(0))|n〉

+ O(λ3), (B47)

where the second term in the right-hand side vanish is due
to Eq. (B38). Now let us evaluate the last term in the right-
hand side of Eq. (B47). It can be written as four parts
λ2/2

∑4
k=1 Ikn(τ ), where

I1n(τ ) =
∫ τ

0
dτ ′

∫ τ

0
dτ ′′ 〈n|NI (τ )T (HI(τ

′)HI(τ
′′))N (0)|n〉 ,

(B48)

I2n(τ ) =
∫ τ

0
dτ ′

∫ β

τ

dτ ′′ 〈n|HI(τ
′′)NI (τ )HI(τ

′)N (0)|n〉 ,

(B49)

I3n(τ ) =
∫ β

τ

dτ ′
∫ τ

0
dτ ′′ 〈n|HI(τ

′)NI (τ )HI(τ
′′)N (0)|n〉 ,

(B50)

I4n(τ ) =
∫ β

τ

dτ ′
∫ β

τ

dτ ′′ 〈n|T (HI(τ
′)HI(τ

′′))NI (τ )N (0)|n〉 .

(B51)

Using the short-hand notation introduced in Eqs. (B40) and
(B57), we find

I1n(τ ) = E2
C

2
[n2Kn(τ ) + n2K−n(τ )], (B52)

I2n(τ ) = E2
C

4
[n(n + 1)Ln(τ ) + n(n − 1)L−n(τ )], (B53)

I3n(τ ) = I2n(τ ), (B54)

I4n(τ ) = E2
C

2
[n2Kn(β − τ ) + n2K−n(β − τ )], (B55)
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where

Ln(τ ) =
∫ τ

0
dτ ′

∫ β

τ

dτ ′′Fn(τ ′′ − τ ′)

=
∫ β

τ

dτ ′
∫ τ

0
dτ ′′Fn(τ ′ − τ ′′)

= 1

(1 + 2n)2E2
C

{e−βEC(1+2n)(1 − eτEC(1+2n) )

− e−τEC(1+2n) + 1}, (B56)

and we have used the fact that∫ β

τ

dτ ′
∫ τ ′

τ

dτ ′′Fn(τ ′ − τ ′′) =
∫ β−τ

0
dτ ′

∫ τ ′

0
dτ ′′Fn(τ ′ − τ ′′)

= Kn(β − τ ).
(B57)

The real-time correlation function is

G(t ) = 1

Tr(e−βH )

∑
n

e−βECn2

(
n2 + λ2

2

4∑
k=1

Ikn(it )

)
. (B58)

Let us go back to the real time by replacing τ → it in
Eq. (B58) and then perform the low temperature approxima-
tion e−βEC 	 1. We need to evaluate∑

n

n2Kn(it )e−n2βEC =
∑

n

n2K−n(it )e−n2βEC

= O(e−βEC ), (B59)

∑
n

n(n + 1)Ln(it )e−βECn2 = O(e−βEC ), (B60)

∑
n

n(n − 1)L−n(it )e−βECn2 = O(e−βEC ), (B61)

∑
n

n2Kn(β − it )e−βECn2 =
∑

n

n2K−n(β − it )e−βECn2

= 1

E2
C

e−iECt + O(e−βEC ). (B62)

Based on these results, one readily observe that the leading
order contributions to the Green’s function are of the order
O(e−βEC )O(λ0) and O([e−βEC ]0)O(λ2). There first contribu-
tion comes from the first term in Eq. (B58) while the second
contribution comes from I4n(it ). Therefore, we find

G(t ) = 2e−βEC + λ2e−iECt/2 + O(λ2)O(e−βEC )

1 − βECλ2/2 + O(λ2)O(e−βEC )
. (B63)

From the numerator of Eq. (B63), one concludes that as long
as e−βEC , λ 	 1, the numerator is a good approximation to
Tr[NI (t )N (0)e−βH ]. From the denominator of see that the
Matsubara perturbative approach works well if βECλ2 	 1.
Keeping only second order of λ2 and the first order in e−βEC ,
one can replace the denominator in Eq. (B63) with 1 and ob-
tain Eq. (68). Furthermore, in the zero-temperature limit given
by Eq. (40), e−βEC 	 λ2 and therefore Eq. (B63) reduces to
Eq. (41) in the main text.
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