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Edelstein effect of spin polarization means an electric field could induce a magnetization in nonmagnetic
materials. This effect can be well understood by a Zeeman-like term due to an effective magnetic field in spin-
orbit coupling systems. We propose a mechanism of current-induced spin polarization, where the real spin is not
directly related to the effective magnetic field induced by an electric field. This effective field only results in the
polarization of a general spin. Then the real spin polarization is generated through the coupling between the real
spin and the general spin in pseudospin Dirac systems with low symmetry. The values of our spin polarization
and the conventional one may have the same order of magnitude though ours involves two processes, which has
been further verified by the numerical calculation in the 1T ′-WTe2 distorted monolayer. It will be helpful for the
deeper understanding of the current-induced spin polarization in pseudospin Dirac materials.
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I. INTRODUCTION

One of the central goals in spintronics is to realize the
efficient generation and manipulation of the spin in especially
nonmagnetic materials, which remains a crucial challenge
[1,2]. The Edelstein effect, also called inverse spin galvanic
effect or current-induced spin polarization, refers to the gen-
eration of nonequilibrium spin polarization in the presence of
an electric field in solids without structure or bulk inversion
symmetry [3,4]. This effect offers us a viable pathway towards
all-electric spintronics devices. Hence, continuous attention
has been paid by researchers all over the world [5–14]. It was
first observed in GaAs heterojunctions [15–18]. In addition
to these traditional semiconductors with spin-orbit couplings,
more recently, the Edelstein effect has also been studied in
topological insulators [14,19–23], van der Waals heterostruc-
tures [24,25], Weyl semimetals [26,27], and superconductors
[28,29].

The conventional Edelstein effect can be understood from
the effective magnetic field induced by the spin-orbit inter-
action [Fig. 1(a)]. For example, the two-dimensional electron
gas with Rashba spin-orbit coupling is described by

H = k2

2m
+ α(kyσx − kxσy), (1)

with m being the effective mass, k = (kx, ky) the wave vector,
σ = (σx, σy, σz ) the Pauli matrices, and α the coupling con-
stant. In the presence of an electric field along the y direction
E = Eŷ, the spin-orbit coupling of a diffusive system can be
viewed as a spin Zeeman term α〈ky〉σx from an effective mag-
netic field Beff ∝ α〈ky〉 along the x direction. This effective
Zeeman interaction results in different occupation of different
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spin orientation, leading to the net magnetization M along the
effective magnetic field, i.e., the x direction.

In contrast to the relatively simple structure of spin-
momentum locking in traditional semiconductors, an ad-
ditional degree of freedom, pseudospin, usually exists in
topological materials, providing a new platform for studying
the Edelstein effect. In this paper, we propose a mechanism
of current-induced spin polarization in this system with low
crystal symmetry [Fig. 1(b)]. The external electric field first
induces an effective magnetic field B̃eff applied on the general
spin, not the real spin. Then the net real spin polarization or
magnetization is generated due to the coupling between the
general spin and the real spin (GSSC). It can be viewed as the
second-order Edelstein effect. Though this mechanism relates
to two processes, surprisingly, the magnitude of the generated
spin polarization is comparable to, or even larger than, the
conventional one. This mechanism can be realized widely in
low-symmetry pseudospin Dirac systems, where both the real
spin and the pseudospin are involved. There exists a large class
of low-symmetry pseudospin Dirac systems, including two-
dimensional transition-metal dichalcogenides. Among them,
the 1T ′ phase monolayer WTe2 is established as a quantum
spin Hall insulator [30,31]. The 1T ′-WTe2 distorted mono-
layer, being applied to a normal electric field, can induce
both in-plane spin orientation and out-of-plane spin orienta-
tion arising from the out-of-plane asymmetry [32]. Further,
the electrically tunable Edelstein effect has been observed
up to room temperature [27]. Taking the 1T ′-WTe2 distorted
monolayer as an example, we demonstrate the mechanism of
this type of the Edelstein effect proposed here.

II. MODEL AND GENERAL ARGUMENT

We consider an effective four-band k · p description
of the 1T ′-WTe2 distorted monolayer as an example to
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(a) (b)

FIG. 1. Schematic of (a) the conventional Edelstein effect and
(b) the type proposed in this paper. Note that the effective magnetic
field Beff in (a) is not normal to the plane of the electron gas with
Rashba spin-orbit coupling, actually. Here the effective magnetic
field plotted perpendicular to the plane is just for convenience. GSOC
is the general-spin–orbit coupling. GSSC is the coupling between the
general spin and the real spin. EF is the Fermi energy. D↑/↓ and μ↑/↓
are the density of states and the magnetic moment for spin up or
down.

discuss this Edelstein effect proposed here. Under the basis
{ψc↑, ψv↑, ψc↓, ψv↓}, the Hamiltonian has the form [32]

H = H0 + HSOC. (2)

In the basis, c and v represent the conduction and valence
orbits, and ↑ and ↓ mean spin up and down. Here H0 refers
to a Hamiltonian describing the electronic behavior without
the electric-field-induced spin-orbit coupling:

H0 = ε + mτ0 ⊗ σz + vxkxτz ⊗ σx − vykyτ0 ⊗ σy, (3)

with ε = (εc + εv )/2, m = (εc − εv )/2, and τ = (τx, τy, τz )
being the Pauli matrices, τ0 the identity matrix, and εc and
εv denoting the diagonal parts for the conduction and valence
bands. The spin-orbit coupling HSOC can be decomposed into
two parts HSOC = HZ + HR. Here

HZ = λkyτz ⊗ σ0 − δzτz ⊗ σy, (4)

HR = −δxτy ⊗ σx + αxkxτy ⊗ σ0 + αykyτx ⊗ σ0 (5)

represent the Zeeman-like and Rashba-type spin-orbit cou-
pling terms, respectively. λ, δx/z, and αx/y are coupling
constants. In this paper, we set h̄ = 1. We emphasize that the
Zeeman-like term HZ leads to the out-of-plane spin polariza-
tion, while the Rashba-type one HR gives rise to the in-plane
spin polarization. Due to the order of the spin up and down in
the basis, the spin operators are not 1

2τ0 ⊗ σa, and should have
the form [33]

ŝa = 1
2τa ⊗ σ0, (6)

with a = (x, y, z).
We first give a general argument of the current-induced

spin polarization for this distorted low-symmetry monolayer.
If a dc electric field is applied along the y direction, there
will exist a nonzero average wave vector 〈ky〉 in the diffu-
sive monolayer, resulting in an effective magnetic field Beff ∝
λ〈ky〉 acting on the ŝz from the first term of HZ . Therefore,

the spin polarization along the z direction occurs due to this
conventional Edelstein effect. This spin polarization is propor-
tional to the coupling λ. Moreover, it is found that the nonzero
〈ky〉 also brings about an effective magnetic field B̃eff ∝ vy〈ky〉
coupling to a general spin component 1

2τ0 ⊗ σy from the last
term of spin-orbit coupling independent H0. Since δzτz ⊗ σy =
δz(τ0 ⊗ σy)(τz ⊗ σ0), the GSSC term in HZ also leads to a part
of the z component of spin polarization proportional to δzvy.
This is the proposed type of the Edelstein effect mentioned in
the Introduction. Here the Fermi velocity vy is usually large
in the Dirac system. Hence, although the type proposed here
is a secondary process, the spin polarizations due to two types
of Edelstein effects will have the same order of magnitude
when the coupling constant δz/kF is comparable to the λ with
kF being the Fermi wave vector. For the in-plane component
of spin polarization, the electric field along the y direction
only induces the in-plane x-component spin (∝αy) due to
the conventional Edelstein effect. When the dc electric field
is along the x direction, the out-of-plane spin polarization
vanishes, completely. For the in-plane case, the conventional
Edelstein effect contributes the y direction spin polarization
(∝αx), while the type proposed here leads to the x-component
one (∝δxvx). In the above process, we realize the electrical
control of the spin orientation in the whole three-dimensional
space.

III. ANALYTICAL CALCULATION
OF SPIN POLARIZATION

To demonstrate the above argument, we analytically eval-
uate the spin polarization based on the Kubo formula in this
section. The general expression for the spin polarization that
appears as a response to the external electric field along the
b direction E = Ebb̂ can be written in the following form
[34,35]:

Sa(ω) = − eEb

ω

∫
dε

2π
nF(ε)

∑
k

Tr{v̂bGA(ε − ω)ŝa

× [GR(ε) − GA(ε)] + v̂b[GR(ε) − GA(ε)]ŝa

× GR(ε + ω)}. (7)

Here GR/A are the retarded/advanced Green’s functions, nF(ε)
is the Fermi distribution function, and υ̂b is the bth component
of the velocity operator:

υ̂b = ∂H

∂kb
, (8)

with b = (x, y, z). We focus on the dc electric-field limit,
where the Green’s functions GA(ε − ω) and GR(ε + ω) can
be expanded to the first order of frequency ω. At zero temper-
ature T → 0, − ∂nF (ε)

∂ε
→ δ(ε − EF) with EF being the Fermi

energy. Further, the terms relating to the production of two
retarded or advanced Green’s functions are negligibly small
comparing to the one GAGR. Therefore, the Kubo formula for
the spin polarization Sa in the dc limit is

Sa = eEb

2π

∑
k

Tr[v̂bGA(EF)ŝaGR(EF)]. (9)
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In the following analytical calculation, we concentrate on
the z component of spin polarization Sz since it is fascinating
that an in-plane electric field results in the spin out of the
two-dimensional monolayer. Further, this out-of-plane spin
polarization is particularly useful for its potential high-density
magnetic application [36]. In this case, the electric field is
assumed along the y direction E = Eyŷ and we only consider
the spin-orbit coupling term HZ for simplicity. Since these
coupling terms are generated by the vertical electric field E⊥,
one can properly tune E⊥ to make δx, αx, and αy vanish [32].
In the scenario, the considered Hamiltonian is H = H0 + HZ .
Hence, the related velocity component is v̂y, which is written
as

v̂y = −vyτ0 ⊗ σy + λτz ⊗ σ0. (10)

The energies of the system are

Eμν = με0 + νεμ, (11)

with μ, ν = ±1, and

ε0 = λky, (12)

εμ =
√

v2
x k2

x + (vyky + μδz )2 + m2. (13)

Here we have set ε = 0.

A. Bare bubble approximation

We first calculate the spin polarization in the bare bubble
approximation. The retarded and advanced Green’s functions
are

GR/A = 1

EF − H ± iη
. (14)

Here η = 1/(2τ ) with τ being the relaxation time. By intro-
ducing 16 matrices τi ⊗ σ j with i, j = (0, x, y, z), the Green’s
functions can be obtained as

GR/A =
∑
i, j

GR/A
i j τi ⊗ σ j, (15)

with the nonzero coefficients of the retarded one:

GR
00 = 1

4

∑
μν

G̃R
μν, (16)

GR
0x = vxkx(vyδz + λẼF)

2
[
λ
(
�2

k − λ2k2
y + Ẽ2

F

) + 2vyẼFδz
] ∑

μν

μG̃R
μν, (17)

GR
0y = vy

(
�2

k − λ2k2
y − Ẽ2

F − 2δ2
z

) − 2λẼFδz

4
[
λ
(
�2

k − λ2k2
y + Ẽ2

F

) + 2vyẼFδz
] ∑

μν

μG̃R
μν,

(18)

GR
0z = −m

(
�2

k − λ2k2
y − Ẽ2

F

)
4ky

[
λ
(
�2

k − λ2k2
y + Ẽ2

F

) + 2vyẼFδz
] ∑

μν

μG̃R
μν, (19)

GR
z0 = 1

4

∑
μν

μG̃R
μν, (20)

GR
zx = −vxkx

(
�2

k − λ2k2
y − Ẽ2

F

)
4ky

[
λ
(
�2

k − λ2k2
y + Ẽ2

F

) + 2vyẼFδz
] ∑

μν

μG̃R
μν, (21)

GR
zy = δz

(
�2

k − λ2k2
y − Ẽ2

F − 2v2
y k2

y

) − 2λvyk2
y ẼF

4ky
[
λ
(
�2

k − λ2k2
y + Ẽ2

F

) + 2vyẼFδz
]

×
∑
μν

μG̃R
μν, (22)

GR
zz = m(vyδz + λẼF)

2
[
λ
(
�2

k − λ2k2
y + Ẽ2

F

) + 2vyẼFδz
] ∑

μν

μG̃R
μν. (23)

Here ẼF = EF + iη, �2
k = v2

x k2
x + v2

y k2
y + m2 + δ2

z , and

G̃R
μν = 1

EF − Eμν + iη
. (24)

Likewise the advanced Green’s function GA could be obtained
by replacing η with −η in GR.

From the Kubo formula (9), we find that the spin polar-
ization Sz can be decomposed into two parts: Sz = Sz1 + Sz2

with

Sz1 = λ
eEy

π

∑
k

[
GA

00GR
00 + GA

0xGR
0x + GA

0yGR
0y

+ GA
0zG

R
0z + GA

z0GR
z0 + GA

zxGR
zx + GA

zyGR
zy + GA

zzG
R
zz

]
,

(25)

Sz2 = −vy
eEy

π

∑
k

[
GA

00GR
zy+GA

0yGR
z0+GA

z0GR
0y + GA

zyGR
00

]
.

(26)

The coefficient λ before the Sz1 means it originates from the
conventional Edelstein effect.

In the following calculation, we consider the electronic
conduction, that is, the Fermi energy is positive, EF > m > 0.
The coupling constants λ and δz in Green’s functions of the
conventional Sz1 could be omitted since only the leading order
of the spin-orbit coupling is taken into account. After some
direct but tedious derivations, the Sz1 due to the conventional
Edelstein effect is written as

Sz1 = λ
3eEy

8
DFτ. (27)

Here DF is the density of states in the absence of spin-orbit
couplings at Fermi energy:

DF = 2
∑

k

δ(EF − ξk). (28)

with ξk =
√

v2
x k2

x + v2
y k2

y + m2 being the dispersion of elec-
trons without any spin-orbit couplings. The density of states
could be calculated as DF = EF/(πvxvy).

Similarly, for the Sz2, we consider the diagonal productions
of Green’s functions and expand it to the first order of the
coupling constants: Sz2 = S′

z2 + S′′
z2. Here S′

z2 and S′′
z2 are pro-

portional to vyδz and λ, respectively. To the leading order of
scattering, S′

z2 is written as

S′
z2 = δz

kF

vykF

EF

eEy

2
D̃Fτ, (29)
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with kF = EF/
√

vxvy and

D̃F = DF + 2
∑

k

v2
y k2

y

EF
δ′(EF − ξk). (30)

The S′′
z2 has the form

S′′
z2 = −λ

eEy

4
D̃′

Fτ, (31)

with

D̃′
F = DF − 4

∑
k

v2
y k2

y

EF
δ′(EF − ξk). (32)

Hence, according to the argument in Sec. II, the conven-
tional spin polarization proportional to λ is SI

z = Sz1 + S′′
z2 and

the one related to vyδz is due to this type of Edelstein effect
proposed here: SII

z = S′
z2. They can be calculated explicitly:

SI
z = − λ

eEyτ

8πvxvyEF

(
2E2

F − m2
)
, (33)

SII
z = − δz

kF

vykF

EF

eEyτ

4πvxvyEF

(
E2

F − m2
)
. (34)

The expression of the conventional spin polarization is in
accordance with the usual one [3,5–9], proportional to the
spin-orbit coupling constant. If the values of coupling con-
stants λ and δz/kF are comparable, proposed type SII

z and the
conventional SI

z will have the same order of magnitude since
vykF/EF ∼ 1. It is amazing that SII

z can be very large although
it relates to a combined process. The effective magnetic field
first induces a general spin relating to the Fermi velocity vy

in the part of the Hamiltonian having nothing to do with the
spin-orbit coupling. Then the real spin is generated through
the GSSC in the spin-orbit coupling part of the Hamiltonian.
Hence, this type of spin polarization is a phenomenon in
pseudospin Dirac systems.

B. Vertex correction

The impurity vertex correction usually has a significant
impact on various physical quantities. For example, it com-
pletely cancels the spin Hall conductivity of the bare bubble
approximation in two-dimensional electron gas with linear
spin-orbit couplings [37–41]. The renormalized spin vertex
function s̃z by considering the noncrossing ladder diagrams
is determined by the following equation:

s̃z = ŝz + niu
2
0

∑
k

GA(EF)s̃zG
R(EF). (35)

Then the spin polarization Sz could be obtained by replacing
ŝz with s̃z in the Kubo formula (9). Here ni is the impurity
density and u0 is the scattering strength, satisfying niu2

0 =
1/(2πDFτ ).

This ladder equation for s̃z can be solved by first
finding the structure of the solution. The structure can
be obtained iteratively by setting the zeroth-order s̃(0)

z =
1
2τz ⊗ σ0, then the first-order s̃(1)

z satisfies s̃(1)
z = ŝz +

niu2
0

∑
k GA(EF)s̃(0)

z GR(EF). After integrating all the integra-

tions

Ii j,i′ j′ = niu
2
0

∫
d2k

(2π )2
GA

i jG
R
i′ j′ , (36)

with i, j, i′, j′ = (0, x, y, z), the first-order s̃(1)
z is found s̃(1)

z ∝
τz ⊗ σ0 for small gap system m  EF . Hence, the accurate
solution s̃z can be assumed as

s̃z = Cτz ⊗ σ0. (37)

With the help of the integrations Ii j,i′ j′ , we can easily obtain
C = 2/3, and then the vertex correction of spin is

s̃z = 2
3τz ⊗ σ0. (38)

Hence, the spin polarizations by considering vertex correction
can be obtained directly by multiplying 4/3 from the bare
ones:

SI
z = − λ

eEyτ

6πvxvyEF

(
2E2

F − m2
)
, (39)

SII
z = − δz

kF

vykF

EF

eEyτ

3πvxvyEF

(
E2

F − m2
)
. (40)

The qualitative behavior of the spin polarization does not
change when the vertex correction of the spin function is
included.

IV. NUMERICAL RESULTS

To further demonstrate this type of Edelstein effect
proposed here in this low-symmetry system, we nu-
merically calculate the spin polarization from the Kubo
formula (9). In the evaluation, all the spin-orbit cou-
pling terms are considered for the realistic 1T ′-WTe2

distorted monolayer. The parameters are the Fermi ve-
locities [32] vx = 15.5 × 10−11 eV m and vy = 4 × 10−11

eV m, the mass m = 2.5 meV, the other coupling con-
stants αx = 1 × 10−11 eV m and δx = 10 meV, the Fermi
energy EF = 10 meV, and the electric field Ey = 1 V/m.
The out-of-plane spin polarization linearly depends on both
λ and δz at small coupling constant, but is almost independent
of the other coupling constants, in agreement with the above
analytical discussion. At large coupling λ or δz, the deviation
from the linearity appears. In this parameter regime, the con-
ventional spin polarization and the type proposed here are of
the same order of magnitude. The y component of spin polar-
ization still vanishes completely even when all the spin-orbit
couplings are considered for the field along the y direction.
However, the x component is nonzero, which is proportional
to the coupling constant αy. Hence, we can deduce that it is
from the conventional Edelstein effect. It is also influenced by
the δz and the λ, as shown in Fig. 2(d). This is due to the reason
that the density of states depends on these coupling constants.

We have also calculated the spin polarization by consid-
ering a lattice model, where the wave vector ki is replaced
by sin kia/a with a being the lattice constant [42]. Then the
model is periodic in the wave vector. The results are shown
in Fig. 2 with the dots. It is found that the spin polarizations
of this lattice model are in agreement with the low-energy
model. In real materials, there may be multiple valleys. The
total spin polarizations are the summation of the contributions
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FIG. 2. Current-induced spin polarization as the function of cou-
pling constants. The z component of spin polarization is plotted vs
the λ for various δz (a) and the δz for various λ (b). The x component
is plotted vs the αy for various δz (c) and the δz for various λ (d). The
dots are the ones calculated from the lattice model. In (a), (b), and
(d), αy = 1.0 × 10−11 eV m. In (c), λ = 1.0 × 10−11 eV m.

from all the valleys if the correlation between valleys could be
neglected.

V. DISCUSSION AND CONCLUSION

Recently, the out-of-plane spin polarization was observed
in the WTe2 monolayer in the presence of a normal electric
field [27,43]. Since the Te atoms are not perfectly aligned
in this monolayer system, the normal electric field induces
both out-of-plane and in-plane local potential gradients [32].
The in-plane one results in both the λ and the δz couplings,
simultaneously [32,44,45]. Therefore, if the out-of-plane spin
polarization is observed in this system experimentally, the
conventional and proposed contributions are both included
in the measured value. Thus it is believed that the proposed
one actually has been observed experimentally. The effective
magnetic field of this type, which leads to the general spin,
is proportional to the Fermi velocity vy. However, the con-

ventional one is proportional to the coupling λ. Hence, we
can distinguish two contributions from each other through
their vy-dependent relations. The intercept in the vxvySz axis
of the vxvySz-vy straight line is just the conventional spin
polarization. The present spin polarization at finite vy could
be obtained by subtracting the intercept from the total one. It
has been demonstrated experimentally that, in artificial Dirac
systems, such as the InAs/GaSb asymmetric quantum well
and GaSb/InAs/GaSb symmetric quantum well, the Fermi
velocity could be electrically tuned [46,47].

A general 4 × 4 pseudospin Dirac system can be expanded
by 16 linearly independent τi ⊗ σ j , where the symmetries
make some terms vanish. If the symmetry of the system is
low enough, there will be many spin-polarization components
induced by the conventional or proposed type of Edelstein
effects. Hence, the symmetry breaking by strain, electric
field, etc., will realize the control of the spin polarization
or magnetization. Moreover, for a pseudospin Dirac system
having more degrees of freedom, which are described by
Pauli matrices, the situation will become more complicated.
Several general spins rather than a single one may be involved
in the final generation of the real spin polarization. Hence,
our paper will be helpful for the deeper understanding of
the Edelstein effect and its applications in pseudospin Dirac
materials.

In conclusion, we demonstrate a type of the Edelstein effect
for the spin polarization. This spin polarization induced by the
external electric field cannot be explained by the Zeeman term
due to an effective magnetic field arising from the spin-orbit
coupling as the conventional Edelstein effect. It is produced
by the coupling between the real spin and the general spin
in pseudospin Dirac systems with low symmetry, where the
polarization of the general spin is generated by the effective
magnetic field. This type of Edelstein effect does not come
directly from the Zeeman interaction between the effective
magnetic field and the involved spin. Therefore, it may be ne-
glected by researchers. We validate that the value of this pro-
posed type of spin polarization can be comparable to the con-
ventional one in the realistic 1T ′-WTe2 distorted monolayer.
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