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Two-dimensional hole gases (2DHGs) in semiconductor quantum wells are promising platforms for spintron-
ics and quantum computation, but suffer from the lack of the k-linear term in the Rashba spin-orbit coupling
(SOC), which is essential for spin manipulations without magnetism. The Rashba SOC in 2DHGs is commonly
believed to be a k-cubic term as the lowest order. Here, contrary to conventional wisdom, we taking Ge/Si system
as an example uncover a strong and tunable k-linear Rashba SOC in 2DHGs of semiconductor quantum wells
(QWs) by performing atomistic pseudopotential calculations in conjunction with theoretical analysis based on
the effective model Hamiltonian approach. We illustrate that this emergent k-linear Rashba SOC is a first-order
direct Rashba effect, originating from a combination of heavy-hole-light-hole mixing and direct dipolar coupling
to the external electric field. The enhanced interband mixing renders [110]-oriented Ge/Si QWs a much stronger
linear Rashba SOC than [001]-oriented counterpart with the maximal strength exceeding 120 meVÅ, comparable
to the highest values reported in two-dimensional electron gases made by narrow band-gap III-V semiconductors,
which suffers from short spin lifetime due to the presence of nuclear spin. These findings confirm Ge-based
2DHGs to be an excellent platform for large-scale quantum computation.
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I. INTRODUCTION

Spin-orbit coupling (SOC) entangles the spin and orbital
degrees of freedom and has inspired a vast number of pre-
dictions, discoveries, and innovative concepts, including spin
transistors, spin-orbit qubits, spin Hall effect, quantum spin
Hall effect, topological insulators, and Majorana fermions
[1–12]. The exploration, understanding, and control of SOC
have become intensive research subjects across many different
disciplines in condensed matter physics. Very recently, the
strong Rashba SOC of holes in the platform of Ge quantum
wells (QWs) has been demonstrated to provide an efficient
driving manner for rapid qubit control [13]. The electric-field
tunability of the Rashba SOC further ensures the independent
control of multiple qubits [13]. In contrast, the absence of
strong SOC in Si demands the inclusion of complicated com-
ponents in the proximity of each qubit to control the qubit.
It leads the scalability of Si qubits to be a key challenge
[13], despite the fact that Si qubits so far have been consid-
ered as the most promising platform for large-scale quantum
computation [9,13]. Since holes are free from the challenge
of valley degeneracy, and Ge has the highest hole mobility
among all known semiconductors, reaching a hole mobility
over 1.5 million cm2/(V · s) at 3 K in strained Ge QWs [14],
strong SOC of holes renders Ge QWs as the excellent platform
for large-scale quantum computation.
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However, the Rashba SOC of the ground hole subband
in semiconductor QWs, including Ge QWs, is commonly
believed to be k-cubic rather than k-linear as the lowest or-
der [15–17] (see Appendix A for details). This is in sharp
contrast to the electron counterpart, in which a variety of po-
tential applications was proposed based on the k-linear term.
We schematically illustrate the different features between the
k-cubic and k-linear Rashba SOC in Fig. 1. First, compared
to the k-linear spin splitting, the k-cubic spin splitting is
negligible for light doping semiconductors due to their rather
small Fermi wave vector kF , which is close to the �̄ point.
Thus, from the perspective of spin splitting, the k-linear or
k-cubic Rashba SOC is a “yes-or-no” question rather than a
“large-or-small” question for many applications. Second, as
indicated in Figs. 1(b) and 1(c), the texture of the Rashba
SOC induced effective magnetic field in the momentum space
is completely different for k-linear and k-cubic terms. Con-
sidering the substantively different rotation rates, only the
effective magnetic field of the k-linear Rashba SOC is able
to be affectively “locked” perpendicular to the momentum,
providing more precise control over the spin direction. Third,
in real space, as shown in Figs. 1(b) and 1(c), the k-linear
Rashba SOC induces a much faster spin precession than the
k-cubic Rashba SOC, leading to a reduction of two orders
of magnitude smaller in the smallest device length. This ad-
vantage of the k-linear Rashba SOC makes a possibility for
developing ultra-small hole spin transistors.

Because of these compelling differences between k-linear
and k-cubic terms, the lack of strong k-linear Rashba SOC
excludes holes in QWs from many potential applications. Luo
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FIG. 1. Schematical illustration of the compelling different features between k-linear (marked in red) and k-cubic (marked in blue) Rashba
SOC. (a) Rashba spin splitting of the ground heavy hole (HH) subband around �̄ point in semiconductor quantum wells. The effective magnetic
field texture of (b) k-linear and (c) k-cubic Rashba SOC in the momentum space and the corresponding spin precession �θ in the real space.
Here αR (γR) is the k-linear (k-cubic) Rashba parameter, �1 (�3) the k-linear (k-cubic) effective magnetic field, ϕ the angle between spin
orientation and kx direction, kF the Fermi wave vector, L the spin precession length of hole spin transistors, m∗ the hole effective mass (we
take 0.3m0 for Ge, where m0 is the mass of bare electron). The expressions of the spin precession angle based on the k-linear and k-cubic
Rashba SOC are given in Refs. [1,18], respectively. For the k-cubic SOC with a Rashba parameter γR = 2.26 × 105 meV Å3 (value adopted
from Ref. [19] for Ge) and the Fermi wave vector is 0.002 × 2π/a (a = 5.65 Å is the lattice constant of Ge), the spin precession length will
be 3.6 μm. However, for the k-linear SOC with a Rashba parameter αR = 100 meVÅ (value within the range of our SEPM results), the spin
precession length will be 40 nm, which is two orders of magnitude smaller than the length of the k-cubic Rashba SOC.

et al. [20] and Kloeffel et al. [21] independently found, in
one-dimensional (1D) quantum wires, the emergence of a
strong k-linear hole Rashba SOC, originating from a direct
dipolar coupling between heavy-hole (HH) and light-hole
(LH) subbands by an external electric field [21–23]. Such a
giant k-linear Rashba effect, called the direct Rashba effect,
is a first-order effect and much stronger than the conventional
third-order Rashba effect. The strength of the direct Rashba
SOC scales with the HH-LH coupling at zone center (k̄ = 0)
and is thus supposed to vanish in two-dimensional (2D) QWs
in which the HH-LH coupling is commonly considered to be
forbidden by symmetry [15]. However, both experiments and
numerical simulations have demonstrated finite zone-center
HH-LH coupling in QWs [24–30]. One hence expects that
a strong k-linear hole direct Rashba SOC may also exist in
QWs. Such an expectation is highly relevant to the current
understanding of 2D hole spin physics, such as spin-Hall
conductivity [7,31–34], spin-galvanic effect [35], hole spin
helix [36], and current-induced spin polarization [37] since
all these effects were investigated based on the assumption of
the k-cubic Rashba SOC [38].

In this article, we study the Rashba SOC via examining the
spin splitting of energy bands in Ge/Si QWs using the atom-
istic semi-empirical pseudopotential method (SEPM) [39–41]
in combination with the theoretical analysis based on the
Luttinger-Kohn Hamiltonian. We indeed find a finite k-linear
spin splitting in both [001]- and [110]-oriented Ge/Si QWs,
induced by a direct Rashba SOC as comfirmed based on an ef-
fective Hamiltonian considering a finite HH-LH mixing. The
stronger interband mixing results in [110]-oriented QWs hav-

ing a much stronger linear Rashba SOC than [001]-oriented
QWs. Our predicted Rashba parameter αR in [110]-oriented
Ge/Si QWs can be as large as 120 meVÅ, which is among
the largest values measured in 2D electron systems made
by narrow band-gap group III-V semiconductors [12]. This
electric-field tunability of the 2D k-linear Rashba SOC over
an extremely broad range of strength, covering more than
two orders of magnitude, demonstrates its predominance over
2D k-linear Dresselhaus SOC [24], providing a promising
platform for hole spin transistors.

This paper is organized as follows. In Sec. II, we present a
computational method for SOC-included spin splitting. The
results are shown in Sec. III, where we also perform the
theoretical analysis based on an effective model Hamiltonian
considering HH-LH mixing to explain the predicted k-linear
Rashba SOC. We do a brief survey of potential applications
of the k-linear Rashba effect in Sec. IV to further illus-
trate the importance of this effect. In Sec. V, we discuss
the conventional k-cubic Rashba effect, which differs from
the discovered direct Rashba effect in this work. Finally, we
summarize our results in Sec. VI.

II. COMPUTATIONAL METHODS

Our calculations are based on a supercell approach with
a periodic boundary condition. The supercell contains one
Ge/Si QW with a unit cell of 1 × 1 × (m + n) atomic layers
(m and n denote Ge and Si thickness in atomic layers). We
find that 20 atomic layers of the Si barrier are thick enough to
confine the holes in the Ge well. Since the difference in lattice
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constants of bulk Si (5.4307 Å) and Ge (5.6579 Å) results in
a 4.2% lattice mismatch, we use the valence force field (VFF)
approach to minimize the strain energy occurred in Ge/Si
QWs. The VFF approach has been successfully and widely
applied to conventional semiconductors [42], including Si
and Ge (see Appendix B for detailed parameters) [25,43–45].
The relaxed structures [46–48] of [001]- and [110]-oriented
Ge40/Si20 QWs show a 1% compressive strain occured in the
Ge well and a 3% tensile strain in the Si barrier.

Electronic structures of QWs are then calculated using
the atomistic semipseudopotential method (SEPM) accom-
panied with a plane-wave basis set and folded-spectrum
diagonalization [39], which was extensively utilized to study
semiconductor superstructures [20,23–25,46,47,49–51]. An
energy cutoff of 8.2 Ry is used to select the plane-wave basis,
and fast Fourier transformations are used to transform the
wave function between a real space grid and a reciprocal
space grid. A 16 × 16 × 16 grid in real space is used for each
eight-atom cubic (diamond or zinc-blende) cell [40,41]. The
crystal potential of QWs is a superposition of screened atomic
potentials, which contain a local part and a nonlocal spin-orbit
interaction part of all atoms in the QWs. The construction of
atomic potentials is the key to accuracy and realism and was
obtained by fitting to reproduce experimental transition ener-
gies, effective masses, spin-orbit splittings, and deformation
potentials of the bulk semiconductors to remove the “LDA
error” [40,41]. The spin splitting energy is extracted from
the calculated band structure, and the k-linear and k-cubic
Rashba parameters are obtained by fitting the obtained spin
splitting.

III. RESULTS

A. k-linear Rashba spin splitting

Figures 2(a) and 2(c) show the SEPM calculated valence
band structure of [001]- and [110]-oriented Ge/Si QWs upon
application of an electric field of 100 kV/cm perpendicular to
the QWs. The states of the conduction subbands are confined
in Si layers while states of the valence subbands are confined
in Ge layers (not shown) due to the valence band maximum
(VBM) of bulk Ge being 0.5 eV higher than the bulk Si [15].
We find that the doubly spin-degenerate subbands split away
from the �̄ point giving rise to spin-splitting �Ess(k‖), which
is shown in Figs. 2(b) and 2(d) for the ground-state subband
derived from the bulk HH band (HH1). �Ess(k‖) exhibits a
nice linear scale against the in-plane wave vector kx. Due
to the existence of an inversion center, the bulk inversion
asymmetry-induced Dresselhaus spin splitting [52] is absent
in Ge/Si QWs. Hence, the obtained spin splitting is com-
pletely induced by the Rashba effect [53]. Interestingly, we
find that spin-splitting is isotropic in [001]-oriented QWs but
anisotropic in [110]-oriented QWs [15]. This anisotropy is due
to the breaking of the axial symmetry and will be explained
below. To deduce the linear (αR) and cubic (γR) Rashba pa-
rameters, we fit spin-splitting �Ess(k‖) of the HH1 subband
to the equation �Ess(k‖) = 2αRk‖ + γRk3

‖ , obtaining αR = 3,

82 meVÅ for [001]- and [110]-oriented (Ge)40/(Si)20 QWs
(under an external field of 100 kV/cm), respectively. The
cubic parameters γR are found to be negligibly small (smaller

FIG. 2. Calculated energy dispersion of valence subbands and
spin splitting of HH1 for (a, b) [001]-oriented (Ge)40/(Si)20 QW
and (c, d) [110]-oriented (Ge)40/(Si)20 QW, respectively, under an
electric field Ez = 100 kV/cm perpendicular to the interface. Here,
the thickness (subscripts) units in monolayer (ML). The x-direction
in [001]- and [110]-oriented QWs is along the crystalline [100] and
[001] directions, respectively. The labels HH1, HH2, HH3, and LH1
indicate the valence subbands derived mainly from either bulk HH
or LH bands. The label a denotes the lattice constant, which is
5.5792 Å and 5.5796 Å for [001]- and [110]-oriented (Ge)40/(Si)20

QWs, respectively, after VFF relaxation. The Ge-Ge bonding length
is 2.4353 Å and 2.4380 Å for [001]- and [110]-oriented QWs, and
the Si-Si bonding length is 2.3763 Å and 2.3673 Å for [001]- and
[110]-oriented QWs, respectively.

than 1 meVÅ3). The αR value of [110]-oriented QWs is com-
parable to that of direct hole Rashba SOC predicted in 1D
quantum wires [23].

We then turn to examine the field- and size-dependencies
of the k-linear Rashba parameter αR for both [001]- and
[110]-oriented QWs. Figure 3(a) shows that αR scales lin-
early against Ez for the [001]-oriented (Ge)40/(Si)20 QW,
but sublinearly for the [110]-oriented (Ge)40/(Si)20 QW, in
which the difference of αR along kx and ky directions becomes
more obvious with increasing Ez. Under a fixed electric field
Ez = 100 kV/cm with varying well thickness, as shown in
Fig. 3(b), αR increases linearly against the well thickness for
[001]-oriented QWs. Whereas, for [110]-oriented QWs, αR

increases linearly in a much larger rate in well thickness when
L < 20 ML, and then grows slowly towards saturation. The
difference of αR along kx and ky directions is negligible when
L < 20 ML and enlarges quickly with further increasing L.
The field- and size-dependencies of αR in [110]-oriented QWs
are similar to the case of 1D quantum wires [23], indicating
spin-splitting arising from the first-order direct Rashba SOC
rather than conventional third-order Rashba SOC. Interest-
ingly, α

[110]
R is one order of magnitude larger than α

[001]
R , and

is strongly tunable by external field to exceed 120 meVÅ.
This strong tunable Rashba SOC in [110]-oriented QWs is a
striking property for hole spin manipulation.
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FIG. 3. Calculated k-linear hole Rashba parameters αR in Ge/Si
QWs as a function of (a) electric field strength with 40 ML
well thickness, and (b) well thickness under an electric field of
100 kV/cm, respectively. The Si thickness is 20 ML. For [110]-
oriented QWs, the x- and y-directions are along the crystalline [001]
and [11̄0] directions, respectively. The inset to (a) shows a linear
dependence in [001]-oriented QWs, reflecting the negligible QCSE
in comparison to QCE. Note that a larger electric field strength than
200 kV/cm is not experimentally available, hence the results are not
shown.

B. Origin of the k-linear Rashba SOC

We turn to unravel the origin of the emergence of
k-linear hole Rashba SOC and illustrate the decisive role
of the HH-LH mixing through the envelope function ap-
proximation based on the Luttinger-Kohn (LK) Hamiltonian.
The lowest-energy subband spectrum is governed by the
effective Hamiltonian projected into the subspace spanned
by the four states |HH1±〉 and |HH2±〉 of the two topmost
HH-like subbands (indicated in the SEPM band struc-
ture by HH1 and HH2) at the �̄-point. The four basis
states are constructed by including the HH-LH mixing:
|HH1±〉 = a1φ1(z)| 3

2 ,± 3
2 〉 + b1φ1(z)| 3

2 ,∓ 1
2 〉 and |HH2±〉 =

a2φ2(z)| 3
2 ,± 3

2 〉 + b2φ2(z)| 3
2 ,∓ 1

2 〉, where a1 and b1 (a2 and
b2) are real coefficients of bulk HH and LH Bloch functions in
QW HH1 (HH2) states, respectively, and envelope functions

φn(z) =
√

2
L sin[ nπ (z+L/2)

L ], n ∈{1,2,. . .}, by assuming an infi-
nite confinement potential.

In the [001]-oriented QWs with D2d symmetry, the HH-LH
mixing at k̄ = 0 originates from symmetry reduction caused
by the local symmetry of the C2v interface [25,26], otherwise
is absent (i.e., b1,2 = 0). Starting from the [001]-oriented
three-dimensional (3D) LK Hamiltonian [21,54], we obtain
the 4 × 4 effective Hamiltonian of 2D [001]-oriented QWs in
the absence of the external electric field

H [001]
eff = A+ + A−τz + γ3C0τx(kxσy − kyσx ), (1)

where τ and σ are the Pauli matrices describing the or-
bital part and the spin part of the eigenstates, respectively,
and γ3 is the LK parameter. A± = h̄2k2

x (m−1
1x ± m−1

2x )/4 +
h̄2k2

y (m−1
1y ± m−1

2y )/4 ± �0/2, where m1x and m1y (m2x and
m2y) are effective masses along x- and y-directions, re-
spectively, for the HH1 (HH2) subband and �0 is the
energy separation between HH1 and HH2 states arising from

the space confinement effect (SCE). The off-diagonal term
〈HH1±|H [001]

eff |HH2∓〉 = ∓iγ3C0(kx ∓ iky), where the cou-

pling parameter C0 = (a1b2 − a2b1) 8
√

3h̄2

3m0L reflects the strength
of HH-LH mixing.

Upon application of an external electric field Ez to
[001]-oriented QWs, Ez will couple directly to the spins
owing to HH-LH mixed QW states, yielding a direct dipolar
coupling term 〈HH1±|(−eEzz)|HH2±〉 = eEzU0, where the
coupling constant U0 = (a1a2 + b1b2) 16L

9π2 is also related to the
HH-LH mixing. Using the quasidegenerate perturbation the-
ory
[55], we finally obtain the first-order 2 × 2 effective
Rashba SOC Hamiltonian for the HH1 subband:
H [001]

soc = α
[001]
R (kxσy − kyσx ) (see Appendix C for details),

where the k-linear Rashba parameter reads

α
[001]
R = 2eγ3C0U0Ez√

�2
0 + 4e2U 2

0 E2
z

. (2)

The denominator term is the energy separation �E1,2

between HH1 and HH2 induced by SCE (�0) and quantum-
confined Stark effect (QCSE) (2eU0Ez). We clearly observe
that α

[001]
R scales linearly with Ez when 2eU0Ez 	 �0, in

excellent agreement with the SEPM results shown in Fig. 3(a).
The k-linear Rashba SOC originates from a combination of
the HH-LH mixing and the direct dipolar coupling to the
external electric field, with α

[001]
R having the same formula

[Eq. (2)] as that of the direct Rashba SOC in 1D nanowires
[21]. Hence, the k-linear Rashba SOC uncovered in [001]-
oriented QWs is a 2D direct Rashba effect.

In the [110]-oriented QWs, in addition to the interface-
induced HH-LH mixing, the breaking of the axial symmetry
causes an intrinsic HH-LH mixing at k̄ = 0 [15] with its mag-
nitude proportional to (γ3 − γ2) × k̂2

z , where k̂2
z ∼ (π/L)2

[22]. This intrinsic HH-LH mixing leads to an enhanced direct
Rashba effect in [110]-oriented QWs in comparison to [001]-
oriented QWs as we observed in the SEPM results (Fig. 3).
We perform the same procedure as done in [001]-oriented
QWs and obtain an in-plane anisotropic linear Rashba SOC
(see Appendix D for details)

α
[110]
R (kx ) = 2eγ3C0U0Ez√

�0
2 + 4e2U0

2E2
z

, (3)

and

α
[110]
R (ky) = 2eγ2C0U0Ez√

�0
2 + 4e2U0

2E2
z

. (4)

We find α
[110]
R (kx )/α[110]

R (ky) ≈ γ3/γ2 [the Luttinger param-
eters for Ge are γ3 = 5.69 and γ2 = 4.24 [38], hence
α

[110]
R (kx )/α[110]

R (ky) ≈ 1.34], which explains the SEPM re-
sults shown in Fig. 3.

C. Reason of much larger Rashba SOC in [110]-oriented
Ge/Si QWs

To understand the observed differences between [001]- and
[110]-oriented QWs in the field- and size-dependencies of
Rashba SOC strength (αR as shown in Fig. 3), we next turn
to examine the energy separation �E1,2 which is the denom-
inator term in the expression of Rashba parameters [Eqs. (2)
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FIG. 4. Energy separation �E1,2 =
√

�2
0 + 4e2U 2

0 E 2
z between

HH1 and HH2 states at � point in [001]- and [110]-oriented Ge/Si
QWs as a function of (a) electric field strength for a fixed QW
thickness and (b) well thickness with an applied electric field of
100 kV/cm, respectively.

to (4)]. Figure 4(a) shows �E1,2 as a function of the applied
electric field Ez for a fixed thickness L = 40 ML, in which
�E1,2 is solely induced by SCE at Ez = 0. With increasing
Ez, �E1,2 grows in substantially different rates for [001]- and
[110]-oriented QWs. A much larger rate in [110]-oriented
QWs implies a stronger QCSE, illustrating that the HH-LH
mixing and the direct Rashba SOC could strongly respond to
the external electric field. At Ez = 200 kV/cm, we find that
the QCSE contributes 50% to �E1,2 in [110]-oriented QWs,
but less than 10% in [001]-oriented QWs. The significantly
enhanced contribution of QCSE (2eU0Ez) to �E1,2 causes a
sublinear field dependence of αR as observed in [110]-oriented
QWs [Eq. (3) and Fig. 3(a)]. Whereas, in [001]-oriented QWs,
the weak field dependence of �E1,2, implying a much weaker
QCSE, leads to a linear scale of αR as applied field Ez [Eq. (2)
and Fig. 3(a)]. Figure 4(b) displays �E1,2 against the well
thickness L under a fixed Ez. We see that, with increasing
L, �E1,2 drops rapidly for L � 40 ML and then decreases
slowly towards the bulk zero value owing to the reduced
SCE. Interestingly, in addition to the much stronger QCSE,
[110]-oriented QWs have a three to four times smaller �E1,2

than [001]-oriented QWs. In combination with the enhanced
HH-LH mixing originated from the breaking of the axial sym-
metry, [110]-oriented QWs possess an order stronger k-linear
Rashba SOC than [001]-oriented QWs.

We note that the k-linear Rashba SOC is also applicable
to two-dimensional hole gases (2DHGs) in other tetrahedral
semiconductors, such as GaAs/AlAs QWs (see Appendix E
for details). For III-V group semiconductors with zinc-blende
structure, the [110]-oriented QWs have C2v symmetry along
the [001] crystalline direction, resulting in no Dresselhaus
spin-splitting in this direction [20] and the spin-splitting is
completely induced by the Rashba effect. We find that the
Rashba parameters of GaAs/AlAs QWs are approximately
half as large as Ge/Si QWs (see Appendix E), but their energy
separations are close to each other (Fig. 5). Using the effec-
tive model, we mainly attribute these results to the different
material-dependent LK parameter γ3, where γ3(Ge) = 5.69

FIG. 5. Energy separation �E1,2 =
√

�2
0 + 4e2U 2

0 E 2
z between

HH1 and HH2 states at � point in [110]-oriented GaAs/AlAs QWs
and [110]-oriented Ge/Si QWs as a function of (a) electric field
for fixed well thickness and of (b) well thickness with applied
100 kV/cm electric field, respectively.

is about twice as large as γ3(GaAs) = 2.90 [15]. The results
of GaAs/AlAs QWs further improve the reliability of the
effective model and also extend the k-linear Rashba SOC into
III-V group semiconductor QWs.

IV. POTENTIAL APPLICATIONS OF THE k-LINEAR
RASHBA EFFECT

The k-linear Rashba effect plays a significant role in 2D
electron systems. However, the absence of this k-linear term
in 2D hole systems rules out its potential applications. Our
results will force us to review all the effects related to hole
spins in 2D systems, further driving forward the development
of devices. Table I summarizes the potential applications of
this k-linear term, whereby we also list the formulas connect-
ing the concerning physical quantities and the k-linear Rashba
parameter to show the impact of the k-linear term more
clearly. For example, the interplay between the linear Rashba
and Dresselhaus effect with equal strength, i.e., αR = ±βD,
guarantees the spin precession robust against spin scatterings
in [001]-oriented QWs, leading to a long spin lifetime [2,56].
This property, protected by SU(2) symmetry [58], is crucial
to devices such as nonballistic spin-field-effect transistors [2].
The past point of view that only the k-cubic Rashba effect
exists in 2D hole systems overlooks this k-linear counterpart,
thus misleading us ruling out the 2D hole systems for high-
quality spin transport. This emergence of the k-linear Rashba
spin splitting fills this void. The effects related to the k-linear
Rashba spin splitting, where electrons have in 2D systems,
become implementable for holes at present.

However, the k-linear Rashba effect for holes is not the
reprint of electrons. Although both electrons and holes have
the effective Hamiltonian in the same form, they possess dif-
ferent effective spins because of the different orbital angular
momentums. One example is the intrinsic spin Hall effect,
which converts the unpolarized charge current to chargeless
pure spin current (Table I) [5,7]. The spin Hall conductiv-
ity will have a different expression due to the change in
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TABLE I. Physical effects related to spin-orbit interaction and their applications [12]. Here, αR and γR denote k-linear and k-cubic Rashba
parameters, respectively. βD represents the k-linear Dresselhaus parameter. e is the elementary charge, h̄ the reduced Plank constant, m∗ the
effective mass. �σ is the Pauli matrix, �p the momentum.

Phenomenon Physical quantity Formula Application

Spin relaxation suppression [56] Spin relaxation time τ±, k-linear
Rashba parameter αR,

Dresselhaus parameter βD

1
τ± ∝ (αR ± βD )2 Nonballistic spin-field-effect

transistors [2]

Spin Hall effect (SHE) [5,7] Spin Hall conductivity σH , spin
current ĵz

spin, hole velocity �v
σH = eh̄

V �k,n �=n′ ( fn′,k − fn,k )

× Im[〈n′k| ĵz
spin,x |nk〉〈nk|vy |n′k〉]

(Enk−En′k )(Enk−En′ k−h̄ω−iη)

All-semiconductor spin Hall
effect transistor [57]

Spin-galvanic effect [60,61] Induced charge current density
�jc, non-equilibrium spin density

�S

�jc = −eαR
ẑ×�S

h̄ Non-local spin detection [59]

expression of spin current and hole velocity. Another example
is the spin galvanic effect, where nonequilibrium spin density
created by optical or electrical means is converted to a charge
current (Table I) [59–61]. Both the induced charge current
density �jc and the nonequilibrium spin density �S are associ-
ated with the effective spins.

V. DISCUSSION

Even in the absence of the direct dipolar coupling, Win-
kler [15] argued that the HH-LH mixing at k̄ = 0 will also
produce a conventional k-linear Rashba term to HH-like
subbands. However, this conventional k-linear Rashba SOC
effect is small compared to the k-cubic term. Kloeffel [21]
demonstrated that, in 1D nanowires, this conventional k-linear
Rashba SOC is in the third order of multiband perturbation
theory and hence different from the first-order direct Rashba
SOC in both field and size dependence. Specifically, the con-
ventional k-linear Rashba term is 10 to 100 times weaker than
the direct Rashba SOC, and is stronger in narrower QWs,
which is opposite to the results shown in Fig. 3. We note that
in a recent experiment the k-linear Rashba SOC of the 2DHG
is claimed to be absent in [001]-oriented strained Ge/SiGe
QWs, where the weak antilocalization (WAL) feature in the
magnetoconductivity measurement failed to be described by
the k-linear term alone but described well by the k-cubic
term alone [19]. First, we have to stress that both k-linear and
k-cubic terms are presented in the SEPM results, although the
k-linear term dominates over the k-cubic term in an extreme
small k-range. Therefore, in fitting to WAL data, one has to
include both k-linear and k-cubic terms instead of exclusively
considering the k-linear or k-cubic term only [19]. Second,
the experiment adopts different barrier materials (SiGe alloy)
from our barrier (Si). Adopting the SiGe alloy can reduce the
lattice mismatch, and may induce the breaking of inversion
symmetry, giving rise to Dresselhaus spin-splitting. Third, the
experiment was conducted at the temperature range of 1.6 to
10 K, while the SEPM results give an order of tens μeV spin
splitting in the [001]-oriented QWs, corresponding to a tem-
perature lower than 1 K. Therefore, the temperature is still too
high to observe this k-linear effect in the experiment. By con-
trast, the much larger Rashba spin splitting in [110]-oriented
QWs may facilitate further experimental characterization.

We next clarify the feasibility of the growth of
[110]-oriented Ge/Si QWs in experiments. In general, most

Ge/SiGe QWs are fabricated along the [001] direction
(usually adopting the SiGe alloy to eliminate the lattice
mismatch induced built-in strain) [62,63]. Growth along the
[111] direction was recently demonstrated [64]. We also find
a series of literature that reported the growth of Si/SiGe
or SiGe/Si QWs along the [110] direction [65–70], al-
though more literature reported the growth of Ge-on-insulator
p-channel metal-oxide-semiconductor-field-effect-transistors
(MOSFETs) [71] and Ge layers on Si(110) substrates [72].
Our current finding may stimulate research efforts to grow
[110]-oriented Ge/SiGe QWs.

VI. CONCLUSION

In conclusion, we uncover a strong electric-tunable
k-linear Rashba SOC of 2DHGs in Ge/Si QWs. We illustrate
that this previous unknown k-linear Rashba SOC is a first-
order direct Rashba effect, originating from a combination
of HH-LH mixing and direct dipolar intersubband coupling.
Specifically, in [110]-oriented Ge/Si QWs, the strength of this
k-linear Rashba SOC can be significantly enhanced by applied
electric field to exceed 120 meVÅ, comparable to the largest
values of 2D electron gases reported in narrow band gap III-
V semiconductors, facilitating the fast manipulation of hole
spins. This finding renders 2DHGs in Ge/Si QWs an excellent
platform for quantum computation. These results make a call
to revisit the understanding of 2D hole spin physics, which
were explored with the assumption of k-cubic Rashba SOC.
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APPENDIX A: 2D k · p MODEL HAMILTONIAN

According to the bulk symmetry, the Hamiltonian describ-
ing HH and LH states is [73]

HSO = β1k × E · J + β2k × E · J , (A1)
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TABLE II. Bond-length parameters of Ge and Si. Here, α, α3,
and α4 are the bond stretching parameters.

Types Bond length (Å) α α3 α4

Si-Si 2.351562 49.9995 −154.88 540.13
Ge-Ge 2.449943 33.1495 −128.58 260.25
Ge-Si 2.400753 41.5745 −150.38 381.62

where J = (Jx, Jy, Jz ) and J = (J3
x , J3

y , J3
z ), with Jx, Jy, Jz

are the angular momentum matrices for j = 3/2. For QWs
confined in the z-direction, where the external electric field is
applied, Eq. (A1) can be written as

HSO = β1Ez

⎛
⎜⎜⎜⎝

0 0 i
√

3
2 k− 0

0 0 0 −i
√

3
2 k+

−i
√

3
2 k+ 0 0 ik−
0 i

√
3

2 k− −ik+ 0

⎞
⎟⎟⎟⎠

+ β2Ez

⎛
⎜⎜⎜⎝

0 −i 3
4 k+ i 7

√
3

8 k− 0

i 3
4 k− 0 0 −i 7

√
3

8 k+
−i 7

√
3

8 k+ 0 0 i 5
2 k−

0 i 7
√

3
8 k− −i 5

2 k+ 0

⎞
⎟⎟⎟⎠,

(A2)

with k± = kx ± iky in the basis {| 3
2 ,+ 3

2 〉,
| 3

2 ,− 3
2 〉, | 3

2 ,+ 1
2 〉, | 3

2 ,− 1
2 〉} as the HH and LH eigenstates.

We can simply use the quasidegenerate perturbation theory to
observe the relationship between spin-splitting and the wave
vector, by reducing the 4 × 4 matrix to a 2 × 2 one. For the
first term, the reduced Hamiltonian matrix element H̃12 keeps
zero till the second-order perturbation, and appears to be
nonzero at third-order perturbation (H̃12 = H ′

13H ′
34H ′

42 ∝ k3
−).

Hence the first term gives a cubic splitting �εHH ∝ β1Ezk3
‖ .

For the second term, due to the appearance of nonzero
matrix elements H12 = −i 3

4 k+ and H21 = i 3
4 k−, the splitting

shows a linear relationship �εHH ∝ β2Ezk‖. However, the
prefactor β2, originating from the isotropic k · p coupling
between �v

8 and �c
6, is much smaller than the prefactor β1,

originating from the anisotropic k · p coupling between �v
8

and remote conduction bands �c
7 and �c

8 [73]. Consequently,
the second term could be neglected, even for QWs grown in
low-symmetric directions, and the Rashba spin splitting for
HH exhibits a k-cubic relationship.

TABLE III. Bond-angle parameters of Ge and Si. Here, β, β3,
and β4 are the bond-angle bending parameters and σ is the parameter
of the interaction between bond-length and bond-angle.

Types σ β β3 β4

Si-Si-Si 0.74550 13.8273 46.28 373.89
Ge-Ge-Ge −2.71400 11.3301 57.35
Ge-Si-Si −0.98425 12.5787 33.54 186.94
Ge-Si-Ge −0.98425 12.5787 20.80
Si-Ge-Ge −0.98425 12.5787 39.07
Si-Ge-Si −0.98425 12.5787 20.80

TABLE IV. Energies at �, X , and L point and effective masses
of bulk Ge.

Property Target value SEPM value Error

�8v (eV) 0.520 0.522 0.002
�6c (eV) 0.90 0.86 −0.04
L6c (eV) 0.74 0.76 0.20
X6c (eV) 1.16 1.13 −0.02
m∗(�1c) 0.04 0.40 0.01
m∗

l (L1c) 1.59 1.47 −0.12
m∗

t (L1c) 0.08 0.09 0.01
m∗

l (X1c) 1.59 0.82 −0.77
m∗

t (X1c) 0.08 0.20 0.12
m∗

hh(100) 0.20 0.28 0.09
m∗

hh(111) 0.50 0.73 0.23
m∗

lh(100) 0.05 0.06 0.01
m∗

lh(111) 0.04 0.05 0.01
�SO (eV) 0.29 0.27 −0.02

However, Eq. (A1) is constructed under the bulk symmetry
and the reduction from Eq. (A1) to Eq. (A2) results in a ficti-
tiously higher symmetry for QWs, leading to the ignorance of
mixings between pure bulk HH and LH states. In other words,
the HH (LH) eigenstates are not pure bulk HH (LH) states,
but the so-called HH-type (LH-type) states with the bulk HH
(LH) states dominating over the tiny bulk LH (HH) states
[Eq. (C4)]. Notably, the second valence bands in QWs can
also be of HH-type (see Fig. 2 in the main text), determined
by the strength of the space confinement effect (SCE). We
next illustrate that the mixings between pure bulk HH and
LH states lead to the mixing between the ground states (HH1)
and the excited states (HH2), finally resulting in the k-linear
spin-splitting.

APPENDIX B: SEPM PARAMETERS OF Ge AND Si

We list the SEPM parameters of Ge and Si, including
the bond-length parameters and the bond-angle parame-
ters in Tables II and III, respectively. We start the VFF

TABLE V. Energies at �, X , and L point and effective masses
of bulk Si.

Property Target value SEPM value Error

�8v (eV) 0 0 0.00
�6c (eV) 3.34 3.36 0.02
L6c (eV) 2.04 2.33 0.29
X6c (eV) 1.13 1.14 0.01
m∗(�1c) 0.20 0.40 0.20
m∗

l (L1c) 1.81 1.72 −0.09
m∗

t (L1c) 0.12 0.14 0.01
m∗

l (X1c) 0.92 0.90 −0.01
m∗

t (X1c) 0.19 0.20 0.01
m∗

hh(100) 0.34 0.27 −0.07
m∗

hh(111) 0.69 0.69 0.00
m∗

lh(100) 0.15 0.21 0.06
m∗

lh(111) 0.11 0.14 0.03
�SO (eV) 0.04 0.04 0.00

085309-7



XIONG, GUAN, LUO, AND LI PHYSICAL REVIEW B 103, 085309 (2021)

TABLE VI. Luttinger parameters for several semiconductors [38].

GaAs InAs InSb Si Ge

γ1 6.85 20.40 37.10 4.28 13.38
γ2 2.10 8.30 16.50 0.34 4.24
γ3 2.90 9.10 17.70 1.45 5.69

approach for structure relaxation based on these parameters.
We show the SEPM energies at the �, X , and L point and

effective masses for Ge in Table IV and Si in Table V, respec-
tively.

APPENDIX C: EFFECTIVE 2D HAMILTONIAN OF [001]-ORIENTED QWs

The Luttinger-Kohn (LK) Hamiltonian is commonly used to describe the valence bands. For z along the [001] direction, it is
given by [22]

H [001]
LK = h̄2

2m0

[(
γ1 + 5γ2

2

)
k2 − 2γ2

(
k2

x J2
x + k2

y J2
y + k2

z J2
z

) − 4γ3({kx, ky}{Jx, Jy} + {ky, kz}{Jy, Jz} + {kz, kx}{Jz, Jx})

]
. (C1)

Here the x and y directions are along the crystallographic [100] and [010] directions, respectively. And γ1, γ2, and γ3

are the LK parameters with the values shown in Table VI [38]. Next, we express the H [001]
LK in the basis {| + 3

2 〉, | − 3
2 〉,

| + 1
2 〉, | − 1

2 〉} as

H [001]
eff (k±, kz ) =

⎛
⎜⎜⎜⎜⎝

μ( γ1+γ2

2 k2
‖ + γ1−2γ2

2 k2
z ) 0 −√

3μγ3k−kz −
√

3μ

2 (ηk2
− + δk2

+)

0 μ( γ1+γ2

2 k2
‖ + γ1−2γ2

2 k2
z ) −

√
3μ

2 (ηk2
+ + δk2

−)
√

3μγ3k+kz

−√
3μγ3k+kz −

√
3μ

2 (ηk2
− + δk2

+) μ( γ1−γ2

2 k2
‖ + γ1+2γ2

2 k2
z ) 0

−
√

3μ

2 (ηk2
+ + δk2

−)
√

3μγ3k−kz 0 μ( γ1−γ2

2 k2
‖ + γ1+2γ2

2 k2
z )

⎞
⎟⎟⎟⎟⎠,

(C2)

where μ = h̄2

m0
, η = γ2+γ3

2 , δ = γ2−γ3

2 , k± = kx ± iky, and k‖ =
√

k2
x + k2

y . Considering the confinement (−L/2 < z < L/2) as a

hard wall, we can describe the envelope function using

φn(z) =
√

2

L
sin[

nπ (z + L/2)

L
]. (C3)

In the presence of HH-LH mixing, the four basis states read

|HH1±〉 = a1φ1(z)

∣∣∣∣3

2
,±3

2

〉
+ b1φ1(z)

∣∣∣∣3

2
,∓1

2

〉
,

|HH2±〉 = a2φ2(z)

∣∣∣∣3

2
,±3

2

〉
+ b2φ2(z)

∣∣∣∣3

2
,∓1

2

〉
.

(C4)

Here, |HH1±〉 and |HH2±〉 denote the ground states (HH1) and the first excited states (HH2), respectively, with the subscripts
“+” and “−” representing two different “spin blocks” of the contained spin states |3/2,±3/2〉 at the �̄ point. Then, we obtain
the effective 2D Hamiltonian in the presence of perpendicular external electric field written as

H [001]
eff =

⎛
⎜⎜⎜⎜⎜⎜⎝

h̄2k2
x

2m1x
+ h̄2k2

y

2m1y
0 eU0Ez −iγ3C0k−

0 h̄2k2
x

2m1x
+ h̄2k2

y

2m1y
iγ3C0k+ eU0Ez

eU0Ez −iγ3C0k−
h̄2k2

x
2m2x

+ h̄2k2
y

2m2y
+ �0 0

iγ3C0k+ eU0Ez 0 h̄2k2
x

2m2x
+ h̄2k2

y

2m2y
+ �0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C5)

where U0 = (a1a2 + b1b2) 16L
9π2 denotes the direct coupling strength to the external electric field, C0 = (a1b2 − a2b1) 8

√
3μ

3L
characterizes the mixing strength between the HH-type ground states and the HH-type excited states, and �0 is the energy
separation between HH1 and HH2 states.

Next, we use the quasidegenerate perturbation theory to reduce this 4 × 4 effective Hamiltonian and obtain the k-linear direct
Rashba parameter. Analogous to the derivation in Ref. [21], the reduction of this Hamiltonian involves three steps. First, we split
it into two parts, including the leading-order part and the perturbation part. Then we find a unitary matrix to diagonalize the
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leading-order Hamiltonian and obtain the transformed perturbation Hamiltonian. Finally, we use the standard quasidegenerate
perturbation theory to obtain the reduced effective Hamiltonian.

In the first step, considering the wave vector near the Brillion zone center, we split the 4 × 4 effective Hamiltonian H eff
4×4

[Eq. (C5)] into the leading-order Hamiltonian

H0
4×4 =

⎛
⎜⎝

0 0 eU0Ez 0
0 0 0 eU0Ez

eU0Ez 0 �0 0
0 eU0Ez 0 �0

⎞
⎟⎠, (C6)

and the perturbation Hamiltonian

H ′
4×4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

h̄2k2
x

2m1x
+ h̄2k2

y

2m1y
0 0 −iγ3C0k−

0 h̄2k2
x

2m1x
+ h̄2k2

y

2m1y
iγ3C0k+ 0

0 −iγ3C0k−
h̄2k2

x
2m2x

+ h̄2k2
y

2m2y
0

iγ3C0k+ 0 0 h̄2k2
x

2m2x
+ h̄2k2

y

2m2y

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C7)

All the elements in the leading-order Hamiltonian H0
4×4 are eU0Ez or �0, and all k-linear and k-squared terms are involved in

the perturbation Hamiltonian H ′
4×4.

In the second step, we use the unitary matrix Ũ to perform the unitary transformation Ũ †H eff
4×4Ũ . The unitary matrix can be

written as

Ũ =

⎛
⎜⎝

cosθ 0 sinθ 0
0 −cosθ 0 sinθ

−sinθ 0 cosθ 0
0 sinθ 0 cosθ

⎞
⎟⎠, (C8)

where

cosθ = �0 + �′√
(�0 + �′)2 + (2eU0Ez )2

,

sinθ = 2eU0Ez√
(�0 + �′)2 + (2eU0Ez )2

,

(C9)

with

�′ =
√

�2
0 + (2eU0Ez )2. (C10)

We then obtain the transformed leading-order Hamiltonian [omitting the constant energy shift (�0 − �′)/2]

H̃ (0)
4×4 = Ũ †H0

4×4Ũ =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 �′ 0
0 0 0 �′

⎞
⎟⎠, (C11)

and the transformed perturbation Hamiltonian

H̃ ′
4×4 = Ũ †H ′

4×4Ũ =

⎛
⎜⎝

E1 −iγ3C0k−sin2θ T −iγ3C0k−cos2θ

iγ3C0k+sin2θ E1 iγ3C0k+cos2θ −T
T −iγ3C0k−cos2θ E2 −iγ3C0k−sin2θ

iγ3C0k+cos2θ −T iγ3C0k+sin2θ E2

⎞
⎟⎠, (C12)

where

E1 =
(

h̄2k2
x

2m1x
+ h̄2k2

y

2m1y

)
cos2θ +

(
h̄2k2

x

2m2x
+ h̄2k2

y

2m2y

)
sin2θ,

E2 =
(

h̄2k2
x

2m1x
+ h̄2k2

y

2m1y

)
sin2θ +

(
h̄2k2

x

2m2x
+ h̄2k2

y

2m2y

)
cos2θ,

T =
[(

h̄2k2
x

4m1x
+ h̄2k2

y

4m1y

)
−

(
h̄2k2

x

4m2x
+ h̄2k2

y

4m2y

)]
sin2θ. (C13)
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In the third step, we use the standard second-order quasidegenerate theory to obtain the reduced 2 × 2 effective Hamiltonian

H eff
2×2 =

[(
h̄2k2

x

4m1x
+ h̄2k2

y

4m1y

)
+

(
h̄2k2

x

4m2x
+ h̄2k2

y

4m2y

)]
+ �0

�′

[(
h̄2k2

x

4m1x
+ h̄2k2

y

4m1y

)
−

(
h̄2k2

x

4m2x
+ h̄2k2

y

4m2y

)]

− �2
0γ

2
3 C2

0 (k2
x + k2

y )

(�′)3
+ 2eγ3C0U0Ez

�′ (kxσy − kyσx ). (C14)

We illustrate that only the fourth term in Eq. (C14) is the first-order result, and the other terms are the second-order results.
Obviously, for the k-linear terms, the first-order perturbation provides sufficiently reliable k-linear results. Consequently, the
direct Rashba parameter has the form

αR = 2eγ3C0U0Ez√
�2

0 + 4e2U 2
0 E2

z

, (C15)

given by the first-order coupling to the external electric field. If the eigenstates were pure HH states (b1 = b2 = 0), we would
obtain C0 = 0 and U0 = 0, and thus αR = 0. This implies that the lack of HH-LH mixing at the zone center will lead to the
vanishment of the k-linear Rashba SOC. Although the proposed effective model is phenomenological by assuming the infinite
confinement potential, this model succeeds in describing the origin and change of the k-linear Rashba SOC in 2DHGs.

APPENDIX D: EFFECTIVE 2D HAMILTONIAN OF [110]-ORIENTED QWs

For the [110] direction, the LK Hamiltonian reads [22]

H [110]
LK = h̄2

2m0
[(γ1 + 5γ2

2
)k2 − γ2(2k2

x J2
x + k2

y J2
y + k2

z J2
z )

− γ2(k2
y J2

z + k2
z J2

y + 4{ky, kz}{Jy, Jz})

− 4γ3({kx, ky}{Jx, Jy} + {kz, kx}{Jz, Jx})

− γ3(k2
y − k2

z )(J2
y − J2

z )].

(D1)

Here the x and y directions are along the crystallographic [001] and [11̄0] directions, respectively. In the basis
{| 3

2 ,+ 3
2 〉, | 3

2 ,− 3
2 〉, | 3

2 ,+ 1
2 〉, | 3

2 ,− 1
2 〉}, the H [110]

LK (k±, kz ) is written as

H [110]
eff (k) = μ

2

⎛
⎜⎜⎝

M1 0 2
√

3kz(−γ3kx + iγ2ky) T1 + √
3δk2

z

0 M1 T †
1 + √

3δk2
z 2

√
3kz(γ3kx + iγ2ky)

2
√

3kz(−γ3kx − iγ2ky) T1 + √
3δk2

z M2 0
T †

1 + √
3δk2

z 2
√

3kz(γ3kx − iγ2ky) 0 M2

⎞
⎟⎟⎠, (D2)

with μ = h̄2

m0
, T1 = γ2(

√
3k2

y

2 − √
3k2

x ) + 2i
√

3γ3kxky + 1
2

√
3γ3k2

y , M1 = − 3
2 [γ2k2

x + (2γ2 − γ3)k2
y + (2γ2 + γ3)k2

z ], and M2 =
− 7

2γ2k2
x − (2γ2 + 3

2γ3)k2
y + ( 3

2γ3 − 2γ2)k2
z . By assuming kx = ky = 0, one can see that there is an intrinsic mixing of HH and

LH, which is proportional to δ × k2
z .

Similarly, we construct the basis states in the presence of HH-LH mixing as that of [001]-oriented QW in Eq. (C4) and obtain
the effective 2D Hamiltonian under the perpendicular external electric field for [110]-oriented QWs

H [110]
eff =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 2
3 h̄2k2

x

2m1x
+ γ 2

2 h̄2k2
y

2m1y
0 eU0Ez −iC0(γ3kx − iγ2ky)

0 γ 2
3 h̄2k2

x

2m1x
+ γ 2

2 h̄2k2
y

2m1y
iC0(γ3kx + iγ2ky) eU0Ez

eU0Ez −iC0(γ3kx − iγ2ky) γ 2
3 h̄2k2

x

2m2x
+ γ 2

2 h̄2k2
y

2m2y
+ �0 0

iC0(γ3kx + iγ2ky) eU0Ez 0 γ 2
3 h̄2k2

x

2m2x
+ γ 2

2 h̄2k2
y

2m2y
+ �0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (D3)

Finally, using the quasidegenerate perturbation theory (similar to the derivation of [001]-oriented QWs), we obtain the k-linear
direct Rashba splitting term, which takes the form of α

[110]
R = 2eγ3C0U0Ez√

�0
2+4e2U0

2E2
z

for kx and α
[110]
R = 2eγ2C0U0Ez√

�0
2+4e2U0

2E2
z

for ky.
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FIG. 6. (a) Calculated energy dispersion of valence subbands
and (b) spin splitting of HH1 for [110]-oriented (GaAs)20/(AlAs)20

QWs. The external perpendicular electric field is Ez = 100 kV/cm.
The x-direction is along the crystalline [001] direction. The labels
HH1, HH2, LH1 in (a) represent the main components of each
Kramers pair of valence subband states at � point, respectively.

APPENDIX E: RESULTS OF [110]-ORIENTED
GaAs/AlAs QWs

The k-linear Rashba SOC also exists in GaAs/AlAs QWs.
As shown in Fig. 6, the Rashba spin splitting of [110]-oriented
GaAs20/AlAs20 QWs exhibits a k-linear relationship as well,
where the Rashba parameter reaches the value of 31 meVÅ.

FIG. 7. Calculated k-linear hole Rashba parameters αR along the
kx direction in [110]-oriented GaAs/AlAs QWs and [110]-oriented
Ge/Si QWs as a function of (a) electric field strength with fixed well
thickness and (b) well thickness under an electric field of 100 kV/cm,
respectively. (For GaAs/AlAs QWs, the number of the subscript
denotes the number of bilayers.) Note that a larger electric field
strength than 200 kV/cm is not experimentally available, hence the
results are not shown.

Figure 7 shows the relationship between k-linear Rashba
parameters and electric field and well thickness, compar-
ing the parameters of [110]-oriented GaAs/AlAs QWs and
[110]-oriented Ge/Si QWs.
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