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Control of the exciton valley dynamics in atomically thin semiconductors by tailoring
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The exciton valley dynamics in van der Waals heterostructures with transition metal dichalcogenide monolay-
ers is driven by the long-range exchange interaction between the electron and the hole in the exciton. It couples
the states active in the opposite circular polarizations resulting in the longitudinal-transverse splitting of excitons
propagating in the monolayer plane. Here we study theoretically the effect of the dielectric environment on the
long-range exchange interaction and demonstrate how the encapsulation in hexagonal boron nitride modifies
the exciton longitudinal-transverse splitting. We calculate the exciton spin-valley polarization relaxation due to
the long-range exchange interaction and demonstrate that the variation of the monolayer environment results in
significant, up to fivefold, enhancement of the exciton valley polarization lifetime.
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I. INTRODUCTION

Two-dimensional (2D) materials combined into van der
Waals heterostructures offer a versatile platform with un-
usual optical and transport properties [1,2]. In the family
of the monolayer semiconductors based on transition metal
dichalcogenides the optical properties are controlled by robust
excitons, Coulomb bound electron-hole pairs [3–11]. Tailor-
ing the environment of the monolayer, e.g., by encapsulation
into hexagonal boron nitride (hBN), affects excitonic states
[12,13] and optical spectra of atomically thin semiconductors
[14], and makes it possible to control radiative lifetime of
excitons [15–18]. It opens wide prospects for nanophotonic
applications [19–23].

The direct optical transitions in transition metal dichalco-
genide monolayers involve the electronic states at the edges of
the Brillouin zone. The symmetry and spin-orbit interaction
enable the so-called chiral selection rules: The band-edge
optical transitions at the K+ (K−) valley are induced by the
photon of the σ+ (σ−) circular polarization, since valley and
spin are locked [24–30]. Accordingly, the optically active
excitons possess a valley or pseudospin degree of freedom
[7,9,31].

The valley dynamics of excitons in transition metal
dichalcogenide monolayers is in the focus of the experimental
and theoretical research nowadays [32–38]. It has been estab-
lished [31,39–41] that, similarly to the case of conventional
quasi-two-dimensional semiconductors where the pseudospin
is associated with the spins of electron and hole forming an
exciton [42–44], the bright exciton valley dynamics is con-
trolled by the long-range exchange interaction between the
electron and the hole. The process of valley depolarization of
the exciton can be considered as a virtual recombination of
the electron-hole pair in one valley and its emergence in the
opposite valley [39,40].

Since the radiative properties of the excitons can be ma-
nipulated in van der Waals heterostructures [15–17], it is
natural to ask the question whether the dielectric environment
affects the valley dynamics of excitons in two-dimensional
semiconductors. Here we address this question theoretically.
We demonstrate that the presence of surrounding hBN layers
screens the long-range exchange interaction and slows down
valley depolarization of excitons. We develop a microscopic
theory of the effect based on the electrodynamical approach
for calculating the exchange interaction in the exciton. We
use the density matrix method to study the valley polariza-
tion dynamics in transition metal dichalcogenide monolayers.
We demonstrate a significant, up to fivefold, increase of the
valley polarization lifetime in van der Waals heterostructures
depending on the hBN layer thickness. To the best of our
knowledge, this control of the exciton spin dynamics by the
environment was never demonstrated before in semiconduc-
tors.

The paper is organized as follows: Section II presents the
calculations of the exciton fine structure due to the long-range
exchange interaction in van der Waals heterostructures. Next,
in Sec. III the valley dynamics of the excitons is calculated
and analyzed. Various regimes of valley polarization decoher-
ence depending on the systems’ parameters are identified and
analyzed. The concluding remarks are presented in Sec. IV.

II. EXCITON FINE STRUCTURE

This section presents the microscopic theory of the exciton
fine structure induced by the long-range exchange interaction
between the electron and the hole. The long-range exchange
interaction is the driving force for the pseudospin or val-
ley dynamics of excitons in semiconductors [39,42,44–47].
It can be calculated either quantum mechanically, by eval-
uating the matrix elements of the appropriately screened
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FIG. 1. Schematics of investigated van der Waals heterostruc-
tures. (a) Structure without a cap hBN layer: TMD monolayer–
hexagonal boron nitride (hBN)–silicon dioxide (SiO2). (b) Structure
with a cap hBN layer: hBN–TMD monolayer–bottom hBN layer–
SiO2. We consider the situations where the hBN layers are quasibulk
consisting of several MLs.

Coulomb potential over properly symmetrized two-particle
Bloch functions, or electrodynamically, taking into account
the self-consistent action of the electric field induced by the
exciton. The equivalence of these approaches has been estab-
lished for two-dimensional semiconductors in Ref. [39]. The
electrodynamical approach has an advantage of being easily
adapted for treatment of inhomogeneous structures such as the
one studied here. Thus, we resort to the electrodynamical ap-
proach below and demonstrate its equivalence to the quantum
treatment in Sec. II E.

A. Structure and modes of electromagnetic field

We consider the van der Waals heterostructures based on
transition metal dichalcogenide (TMD) monolayers (MLs)
schematically depicted in Fig. 1. This corresponds to the
typical stacking of the encapsulated TMD monolayers in-
vestigated in most of the experiments [48,49]. Two types of
structures are analyzed: without and with a cap hBN quasibulk
layer (consisting of several monolayers) as shown in Figs. 1(a)
and 1(b), respectively.

Within the framework of the electrodynamical approach
the optically active exciton in the TMD monolayer is consid-
ered as an in-plane electric dipole or current, oscillating at the
optical transition frequency ω0, where

h̄ω0 = Eg − EB + h̄2K2

2m
. (1)

Here Eg is the band gap of the monolayer, EB is the exciton
binding energy, K is the in-plane wave vector of the 2D
exciton, and m is its effective mass. In the relevant range of the
wave vectors the dependence of ω0 on K can be disregarded.
We also note that the variation of the environment, i.e., the
thicknesses of the hBN layers, does not strongly affect the
difference Eg − EB, the spectral position of the exciton, while
both band gap and exciton binding energy strongly depend
on the screening [50,51]. The induced current density can be

written as [39]

j(z) = Jδ(z), J = cω0

2πω

i�0

ω − ω0 + i�
E‖(z), (2)

where J is the 2D (surface) current density, �0 and � are the
radiative (into vacuum) and nonradiative decay rates of the
exciton, the monolayer is assumed to be in the z = 0 plane,
and the subscript parallel (‖) denotes the in-plane components
of the field. We stress that �0 in Eq. (2) is the exciton radiative
decay rate into the vacuum [39],

�0 = 2πe2|pcv|2
h̄cω0m2

0

|ϕ(0)|2, (3)

where pcv is the interband momentum matrix element, m0 is
the free electron mass, and ϕ(ρ) is the envelope function of the
relative electron-hole motion in the exciton to be found using
the Rytova-Keldysh potential [6,9,52,53]; the �0 serves as a
parameter of the theory. In derivation of Eq. (3) the corrections
to the exciton oscillator strength arising in the two-band Dirac
model are disregarded [54].

In Eq. (2) E is the electric field acting on the exciton, which
includes both the external field and the field induced by the
exciton, and ω is the frequency of the field. The thickness of
the monolayer is negligible as compared with the wavelength
of light emitted by the exciton, which is why it is sufficient to
use a strictly two-dimensional model for the current density,
Eq. (2).

In what follows we apply the uniaxial approximation for
description of the excitonic states. In such a case the eigen-
modes of the system, being the coupled modes of the exciton
and electromagnetic field, can be described by the wave vector
K in the monolayer plane and polarization: the s polarization
corresponds to the j(z) ⊥ K, the state denoted as the trans-
verse (T) exciton, and the p polarization corresponds to the
j(z) ‖ K, the state denoted as the longitudinal (L) exciton.

The current j(z) in Eq. (2) is associated with the exciton-
induced electromagnetic field, which can propagate away
from the monolayer or decay with the distance from the mono-
layer depending on the exciton wave vector. These regimes of
field propagation are shown in Fig. 2. The top panel shows the
light cones, i.e., the dispersion of free electromagnetic waves
in the vacuum, SiO2, and hBN. In the case where the wave
vector of the exciton lies in areas I or II,

K � ω0

c
nSiO2 ,

the exciton emits propagating waves, which cause its radiative
decay. Interestingly, for K � ω0/c the waves are propagating
both to the vacuum and to the substrate (region I), while
for ω0/c � K � ω0nSiO2/c the field decays into vacuum but
propagates into SiO2. A self-consistent interaction of such an
exciton with the induced field leads to the difference of the de-
cay rates for the longitudinal and transverse excitons [39]. The
exciton with the wave vector outside the SiO2 light cone, areas
III and IV in Fig. 2, induces exponentially decaying waves
(both into the vacuum and substrate). Here, its interaction with
the self-consistent field results in the renormalization of the
longitudinal and transverse exciton energies. We will mainly
focus on the latter case where K � ω0nSiO2/c, as for typical
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FIG. 2. Exciton dispersion and induced electromagnetic field. Top: Schematic illustration of longitudinal (L, solid curve) and transverse
(T, dashed line) exciton energy spectra. K = 0 point corresponds to center of the exciton Brillouin zone. Dispersion is shown not to scale.
Four bottom panels, I–IV, show schematics of the electromagnetic field distribution depending on the area where the exciton wave vector
lies. Wavy lines correspond to propagating waves ∝ exp(ikz|z|) induced by the exciton, and decreasing curves correspond to decaying waves
∝exp(−κz|z|).

experimental parameters the states outside the light cones are
mostly populated.

In order to find the exciton energy spectrum fine structure
we have to self-consistently solve the Maxwell equations

rot E = −1

c

∂B
∂t

, (4a)

rot B = 1

c

∂D
∂t

+ 4π

c
j(z), (4b)

together with Eq. (2) for the exciton-induced current and
explicit expression for the electric induction D = ε(z)E with
ε(z) being the high-frequency (background) dielectric con-
stant of the structure found disregarding excitonic effects.
In this way, both the damping of the exciton and its energy
renormalization due to the long-range exchange interaction
can be derived automatically accounting for the screening and
retardation effects [39,55,56].

The formal solution of Eqs. (4) with the material relation
(2) can be written as follows: We transform Eqs. (2) into a
single equation for the electric field,


E − ∇(∇ · E ) +
(

ω

c

)2

ε(z)E = −i
4πω

c2
j(z), (5)

and express the electric field E via the current density using
the electrodynamical Green’s function. Making use of the
fact that, due to the translational invariance, the fields depend
on the in-plane coordinates as exp(iK · ρ), the latter can be
written as

Gαβ (ω; K; z, z′) =
∫

Gαβ (ω; ρ, z, z′)eiK·ρ dρ, (6)

with α, β = x, y, z being the Cartesian subscripts. Thus, the
solution can be recast as

Eα (z) = i
4πω

c2

∫
Gαβ (ω; K; z, z′) jβ (z′) dz′ (7)

Substituting Eq. (7) into the material equation (2) we obtain
the expression for the eigenmodes in the form (we disregarded
the difference between ω and ω0 everywhere apart from the
resonant denominator1)

det

{
δαβ − 2iω0

c

i�0

ω − ω0 + i�
Gαβ (ω0, K; 0, 0)

}
= 0. (8)

Equation (8) makes it possible to determine the excitonic
eigenstates taking into account the light-matter coupling. Tak-
ing into account the axial symmetry we can take K ‖ y and
obtain the splitting between the L and T modes as


ELT = −2h̄ω0�0

c
×[Gyy(ω0, K; 0, 0) − Gxx(ω0, K; 0, 0)]. (9)

Thus, for any van der Waals heterostructure the splitting can
be evaluated via the electrodynamical Green’s function of the
structure.

Below we present the explicit solutions of the Maxwell
equations (4), which is equivalent to the determination of the
Green’s function Gαβ (ω; K; z, z′), for the structures of interest

1This is valid in the weak light-matter coupling regime; otherwise
the explicit frequency dependence of the Green’s function should be
used to find the exciton-polariton modes.
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shown in Fig. 1: with and without a cap layer. To that end, it is
convenient to include the current j(z) into the boundary con-
dition for the in-plane components of magnetic field, namely,

B‖(z → 0+) − B‖(z → 0−) = 4π

c
[J × ez], (10)

with ez being the unit vector along the normal to the ML. The
remaining boundary conditions are the standard ones imply-
ing continuity of the in-plane components of E and normal
components of D and B at the interfaces. In the following
sections we derive and analyze the exciton fine structure.

B. Structure without a cap layer

It is instructive to analyze in detail the eigenstates of the
exciton coupled with electromagnetic field in the simplest
structure without a hBN cap layer, Fig. 1(a). Let us enumer-
ate the layers of the structure: i = 0 is the vacuum (z < 0),
i = 1 is the substrate hBN layer (0 < z < d), and i = 2 is the
substrate SiO2 (z > d). Inside each bulk layer we can write,
combining Eqs. (4):

rot rot E = − εi

c2

∂2E
∂t2

, (11)

where εi is the dielectric permittivity of the ith layer. We seek
the solution of Eq. (11) in the form of a plane wave in each
layer,

E(r) = E (i)eiki·r−iωt , (12)

with E (i) being its complex amplitude, and ki is the light
wave vector at the frequency of ω in the ith layer. Naturally,
we find the absolute value of the wave vector, ki = √

εiω/c.
Without loss of generality, we set ki = (0, ki,y, ki,z ) and take
into account that its y component, ki,y ≡ ky, remains constant
in each dielectric layer because of the translational invariance
of the system in the (xy) plane. The z component of the

wave vector reads ki,z =
√

εik2
z + (εi − 1)k2

y , with kz being the

wave-vector component in the vacuum.
There are two eigenmodes of the electromagnetic field in

each layer, namely, transverse electric (TE, or T) mode and
transverse magnetic (TM or L) mode, whose eigenvectors read

E (i)
T E =

⎛
⎝E (i)

x
0
0

⎞
⎠, and E (i)

T M =
⎛
⎝ 0

E (i)
y

− ky

ki,z
E (i)

y

⎞
⎠. (13)

Correspondingly, the TE mode couples with the transverse ex-
citon and the TM mode couples with the longitudinal exciton.

Furthermore, we have to construct the solution that satisfies
the boundary conditions at the interfaces. Let us start with the
TE mode. We seek a solution for the electric field in the form
(we assume the amplitude of the wave at z → −0 wave equals
unity)

Ex = eikyy

⎧⎨
⎩

eκ0,zz, z < 0
E1e−κ1,zz + E2eκ1,zz, 0 < z < d
E3e−κ2,z (z−d ), z > d.

(14)

Here we have selected the form of the fields relevant for the
states outside the light cone [ky > maxi

√
εi(ω/c), region IV

in Fig. 2] where κi,z = [k2
y − εi(ω/c)2]1/2 > 0, which decay

to the both sides of the structure. The boundary conditions
of the continuity of the tangential components of the electric
field read

E1 + E2 = 1, (15a)

E3 = E1e−κ1,zd + E2eκ1,zd . (15b)

Expressing the tangential components of the magnetic field
from Eq. (4a) and making use of the boundary condition (10)
at z = 0 and the continuity condition at z = d we have

κ1,z(E1 − E2) + κ0,z = (ω/c)2

ω0/c

2�0

ω0 − ω − i�
, (16a)

κ2,zE3 = κ1,zE1e−κ1zd − κ1,zE2eκ1,zd . (16b)

The boundary conditions, Eqs. (15) and (16), represent the
set of four equations for three amplitudes E1, E2, and E3.
Its compatibility condition allows us to find the renormalized
energies of excitons due to the light-matter interaction, i.e.,
taking into account the long-range exchange interaction. As
we are looking for the relatively small renormalizations of
the exciton energy, where |h̄ω − h̄ω0| 	 h̄ω0, it is accurate
to replace ω with ω0 everywhere except for the denominator
in the right-hand side of Eq. (16a). As a result, combining
Eqs. (15) and (16), we find for the eigenfrequency ωT ≡ ω of
the transverse exciton

ωT − ω0

�0
= − 2ζ

s0 − s1 + 2s1(s1+s2 )
s1+s2+(s1−s2 )e−2as1

. (17a)

Here the following notations are introduced:

ζ = 1

K

ω0

c
, si =

√
1 − εiζ 2, a = Kd. (17b)

Analogous calculation for the TM-polarized mode yields
the eigenfrequency ωL of the longitudinal exciton:

ωL − ω0

�0
= 2

ζ

s0
+ ε1ζ

s1

( 2(ε2s1+ε1s2 )
ε1s2+ε2s1+(ε1s2−ε2s1 )e−2as1

− 1
) . (17c)

Equations (17a) and (17c) describe the dispersion of the
transverse and longitudinal excitons in the van der Waals
heterostructure without a cap layer [Fig. 1(a)].

C. Effect of the cap hBN layer

Now we consider a van der Waals heterostructure capped
with a hBN layer as the ones used in most of the experiments,
Fig. 1(b). Explicit expression for exciton energies with ac-
count for the exchange interaction can be found by solving
the set of Maxwell equations (4) with appropriate boundary
conditions. As the solution is completely analogous to that
presented above in Sec. II B for an uncapped structure and
quite lengthy, we just give here the results for the radiative
doublet eigenfrequencies:

ωT − ω0

�0
= − ζ√

1 − ε1ζ 2

(1 − r1,sξ0)(1 + rb,sξ1)

1 + r1,srb,sξ0ξ1
, (18a)

ωL − ω0

�0
=

√
1 − ε1ζ 2

ε1ζ

(1 − r1,pξ0)(1 + rb,pξ1)

1 + r1,prb,pξ0ξ1
. (18b)
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FIG. 3. Exciton fine structure splitting. LT splitting as a function of the exciton wave vector in the structure without a cap hBN layer
(d0 = 0) in (a) linear scale, (b) log-log scale, and in (c) the structures without a substrate hBN layer (d1 = 0), and with (d) the substrate
hBN layer of finite thickness (d1 = 99.2 Å), while the cap hBN layer thickness is varied. Dashed lines illustrate asymptotics: Eq. (23), the
blue dashed line corresponds to dhBN 
= 0 asymptotics, and the red dashed line corresponds to dhBN = 0. Parameters of the calculation are
εhBN = 4.84, the hBN permittivity; εSiO2 = 2.13, the SiO2 permittivity; ω0/c = 981745 cm−1 (which roughly corresponds to MoS2 ML), and
h̄�0 = 0.3 meV.

Here

ξi = exp

[
−2di

ω0

c

√
1 − ε1ζ 2

ζ

]
, (19)

where di are the thicknesses of the cap (i = 0) and the sub-
strate (i = 1) hBN layers; r1,α is the reflection coefficient
of α = s-, p-polarized light from the vacuum-hBN interface,
expressed using Fresnel’s equations [57],

r1,s =
1 −

√
1−ε1ζ 2

1−ζ 2

1 +
√

1−ε1ζ 2

1−ζ 2

, r1,p =
ε1 −

√
1−ε1ζ 2

1−ζ 2

ε1 +
√

1−ε1ζ 2

1−ζ 2

, (20)

and rb,α is the reflection coefficient from the hBN-SiO2 inter-
face,

rb,s =
1 −

√
1−ε2ζ 2

1−ε1ζ 2

1 +
√

1−ε2ζ 2

1−ε1ζ 2

, rb,p =
ε2
ε1

−
√

1−ε2ζ 2

1−ε1ζ 2

ε2
ε1

+
√

1−ε2ζ 2

1−ε1ζ 2

. (21)

As expected, at d0 = 0 Eqs. (18) are identical to Eqs. (17).

D. Effect of the hBN layers on the exciton fine structure

In agreement with the symmetry arguments we have
demonstrated microscopically that the exciton eigenstates in
TMD monolayers are the L- and T-polarized states with the
microscopic dipole moment of the exciton (or microscopic
current) oriented parallel and perpendicular to its in-plane
wave vector. Equations (17) and (18) are valid for arbitrary

values of the exciton in-plane wave vector K , including both
the states inside and outside of the light cone. In what fol-
lows, however, we will mostly consider the states outside of
the light cone, region IV in Fig. 2, where the induced field
decays with the distance from the monolayer and κi,z ∈ R.
Thus, the parameters si in Eq. (17b) and ξi in Eq. (19) are
real. As a result, ωL,T are real. In this case, as expected, the
coupling with the induced electromagnetic field, i.e., the long-
range exchange interaction between the electron and hole,
produces the splitting of the L- and T-exciton energies. Note
that for the states inside the light cone the eigenfrequencies
ωL and ωT contain imaginary parts as well being responsible
for the radiative damping of excitons (see Refs. [15,39] for
details).

Figure 3 shows the results for the exciton LT splitting,


ELT = h̄ωL − h̄ωT , (22)

calculated as function of the exciton wave vector K for differ-
ent thicknesses of the hBN layers. Figures 3(a) and 3(b) show
the results for the absent cap layer (d0 = 0), while Figs. 3(c)
and 3(d) show the results for the structure with the cap layer.
Solid lines are calculated after Eqs. (17) and (18), while dotted
lines are the analytical asymptotics, Eqs. (23) and (25) (see
below).

Let us first analyze the LT splitting as a function of the exci-
ton wave vector K . At small wave vectors K � ω0/c the 
ELT

is a strongly nonlinear function of K and its real part vanishes
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for the states within the light cone.2 For sufficiently large ex-
citon wave vectors, K � ω0/c, the parameter ζ ∼ K−1

‖ → 0.
It follows then from Eqs. (17a) and (18a) that ωT − ω0 ∝ ζ .
Thus, for large wave vectors the energy of the transverse
exciton is almost not renormalized. Conversely, one can see
from the formulas (17c) and (18b) that ωL − ω0 ∼ ζ−1 ∼ K‖.
Therefore, the longitudinal exciton energy renormalization
and the LT splitting of the radiative doublet for large enough
exciton wave vectors are equal and linear in K .

The asymptotic behavior of the exciton LT splitting at K �
ω0/c can be recast as


ELT = h̄�0

εeff (K, d0, d1)

cK

ω0
, (23)

with the effective dielectric constant εeff (K, d0, d1) being a
function of the exciton wave vector and the structure geom-
etry. In the structures with negligible cap layer thickness,
Kd0 	 1,

εeff (K, 0, d1) = 1

2

{
1 + εSiO2 , Kd1 	 1
1 + εhBN, Kd1 � 1.

(24)

The physical sense of this expression is as follows. If there is
no substrate hBN layer at all or hBN layer thickness is negli-
gible, i.e, Kd1 	 1, the field decays mainly into the vacuum
and SiO2 substrate. As a result, an effective permittivity of
such a structure is the average of the permittivities of vacuum
and SiO2. When the hBN layer thickness is sufficiently large,
Kd1 � 1, the electric field induced by the exciton decays into
the hBN layer and there is almost no field in SiO2. So effective
permittivity contains that of hBN instead SiO2.

This behavior is illustrated in Figs. 3(a) and 3(b). The curve
corresponding to the intermediate thickness of the hBN sub-
strate layer, d1 = 9.6 Å (i.e., three monatomic layers of hBN)3

for small wave vectors is close to zero-thickness asymptotics,
and for large ones it goes over to the thick hBN layer asymp-
totics. The behavior of the 
ELT for sufficiently large K is
very well described by the linear law (23) with the effective
dielectric constant εeff given by Eq. (24).

Similar results take place in the structures with the cap
layer. Assuming that its thickness is sufficiently large, Kd0 �
1, we have Eq. (23) with the effective permittivity in the form

εeff (K,∞, d1) = 1

2

{
εhBN + εSiO2 , Kd1 	 1
2εhBN, Kd1 � 1.

(25)

This expression is analogous to Eq. (23) except that instead
of the vacuum permittivity, which is equal to 1, the hBN per-
mittivity enters εeff in Eq. (25). This is because for large wave
vectors the exciton-induced field is mostly concentrated in the
cap hBN layer and does not reach vacuum. Corresponding
behavior is illustrated in Figs. 3(c) and 3(d).

In contrast to the case of the environment effect on the
exciton radiative decay rate, where the decay rate shows pro-
nounced oscillations as a function of the hBN layer thickness

2In region II there are both real and imaginary parts of ωL,T due to
the leaky waveguidelike modes in the structure.

3The thickness of monatomic hexagonal boron nitride equals
3.2 Å.

[15], here the hBN layer thickness enters ωL,T through the
damped exponential function. The difference is because the
LT splitting of the exciton takes place for the states outside the
light cone, where the exciton-induced field decays exponen-
tially to both sides of the monolayer. It is seen from Eqs. (17)
and (18) and asymptotic expressions (23)–(25) that increasing
the hBN thickness results in a reduction of the LT splitting.

One can say that the long-range exchange interaction is
screened by the presence of the hBN layers. Calculations
presented in Fig. 3 confirm this result.

E. Quantum-mechanical approach

In this section we outline the quantum-mechanical ap-
proach for calculating the exciton fine structure and demon-
strate that it is equivalent to the electrodynamical treatment
presented above. We use a diagrammatic approach similar
to the one developed in Refs. [43,45,55,56] and exactly the
same results can be obtained using the standard quantum-
mechanical perturbation theory (see Ref. [39]). Figure 4
presents relevant diagrams: excitonic polarization (or current)
[Fig. 4(a)], and direct [Fig. 4(b)] and exchange [Fig. 4(c)]
Coulomb interactions. Calculation of the loop in Fig. 4(a)
gives Eqs. (2) and (3).

The calculations can be conveniently performed in the
Coulomb gauge where the vector potential A satisfies the
condition (∇ · A) = 0. The direct interaction is characterized
by a zero energy transfer because the Coulomb interaction is
instantaneous, Fig. 4(b) (see Ref. [58] for details). Thus, the
diagram in Fig. 4(b) reduces to the Fourier component of the
screened static Coulomb potential (each vertex gives electron
charge e),

V dir
q = e2D00(0; q; 0, 0), (26)

where D00(ω; q; z, z′) is the 00 (time-time) component of the
photon propagator [cf. Eq. (6)]. For a monolayer in a free
space

D00(0; q; 0, 0) =
∫

dkz

2π

−4π

q2 + k2
z

= −2π

q
.

For a relevant case of a monolayer encapsulated by suf-
ficiently thick dielectric barriers it is described by the
Rytova-Keldysh potential [52,53]

V dir
q = − 2πe2

εbq(1 + qr0)
,

with εb and r0 being the background dielectric constant of the
barriers and the effective screening radius, respectively.

The important difference arises for the exchange part of
the interaction, Fig. 4(c). As clearly seen from Fig. 4 (see
also Refs. [55,56]), the transferred energy is close to h̄ω0. The
corresponding interband vertexes ∝pcv . The calculation of the
diagram in Fig. 4(c) results in (cf. Refs. [39,43])

V exch
αβ;q = −2h̄ω�0

c
Gαβ (ω; q; 0, 0), (27)

where Gαβ (ω; q; z, z′) differs by a common factor only from
the space-space components of the photon propagator. The
Green’s function Gαβ (ω; q; z, z′) is exactly the Green’s func-
tion of the Maxwell equations (5) introduced in Eq. (7).
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(a) (b)Exciton Direct interaction (c) Exchange interaction

FIG. 4. Diagrammatic representation of excitons. (a) Excitonic contribution to the polarization of the monolayer. Solid lines are the
electronic Green’s function; dashed lines are the photon Green’s function. The sum of the Coulomb ladder is represented by the filled left
vertex of the diagram. (b) Diagram representing the direct Coulomb interaction where the charge carriers do not change the bands and the
transferred energy is zero. (c) Diagram representing the exchange Coulomb interaction where the electron-hole pair virtually annihilates and
reemerges. Transferred energy is h̄ω.

Correspondingly, the eigenstates of the exciton can be found
from the equation

det
{
h̄(ω0 − ω)δαβ + V exch

αβ;q

} = 0. (28)

One can readily check that Eq. (28) is equivalent to Eq. (8).

III. CONTROL OF THE EXCITON SPIN AND
VALLEY DYNAMICS

In this section we present the model description of the
exciton valley dynamics. We present and solve the kinetic
equation for the exciton density matrix and analyze the impact
of the environment in the van der Waals heterostructure on the
valley depolarization.

A. Kinetic equation and its solution

We describe valley dynamics of excitons in monolayer
semiconductors within the pseudospin density matrix ap-
proach [39–41,44]. We introduce the 2 × 2 density matrix

�K = nK + σ · sK, (29)

where nK is the average occupancy of the orbital state K,
i.e., nK is the exciton distribution function, and sK is the
pseudospin distribution function, with the sK,z component
describing the valley polarization or circular polarization of
excitons, while the in-plane components sK,x, sK,y describe the
valley coherence or exciton alignment or linear polarization.
In Eq. (29), σ = (σx, σy, σz ) is the vector composed of the
2 × 2 Pauli matrices; the unit matrix in this notation is omit-
ted.

In the basis of circularly polarized components, the Hamil-
tonian of the exciton LT splitting takes the form

H(K ) = 
ELT

2
[σx cos (2ϕK ) + σy sin (2ϕK )]

= h̄

2
(�Kσ), (30)

where the vector

�K = (
ELT /h̄)[cos (2ϕK ), sin (2ϕK ), 0] (31)

plays the role of the exciton pseudospin precession frequency
in the effective field caused by the LT splitting.

Within the relaxation time approximation the kinetic equa-
tion for the exciton pseudospin distribution takes the form [40]

(cf. Ref. [59])

∂sK

∂t
+ sK × �K + sK − s̄K

τ
= gK . (32)

Here τ is the exciton relaxation time, s̄K = (2π )−1
∫ 2π

0 sK dϕK

is the angular average of the exciton pseudospin, and gK is the
pseudospin generation rate. The phonon-assisted processes of
valley depolarization [37] (see also Ref. [60]) can be included
in kinetic equation (32) as well, but they are expected to
be much less sensitive to the dielectric environment of the
monolayer.

In what follows we consider the simplest and experimen-
tally relevant situation where the valley-polarized excitons
are created by a short circularly polarized light pulse. We
perform further calculations in the approximation of the fast
exciton energy relaxation: We suppose that after an ensem-
ble of excitons is excited by optical pulse, the Boltzmann
energy distribution sets in a short time by valley-conserving
processes. Thus we employ the following initial condition for
Eq. (32) and set gK = 0:

sz,K (t = 0) = s0
2π h̄2

mS
exp(−ε/T )

T
. (33)

Here ε = h̄2K2/2m is the exciton kinetic energy, T is the
temperature measured in energy units (kB ≡ 1), S is the nor-
malization area, and s0 = ∑

K sz,K (t = 0) is the average spin
at t = 0. Since our aim is to study the effect of the dielectric
environment on the exciton valley dynamics, we, for simplic-
ity, abstain from the description and analysis of the exciton
formation processes and details of its energy relaxation which
requires also the inclusion of the energy relaxation processes
in the kinetic equation (32) (cf. Refs. [32,36,61,62]). We also
stress that the condition T τ/h̄ � 1 is fulfilled; otherwise the
corrections to the kinetic equation related, e.g, to the weak
localization effects should be taken into account [63].

Making use of the explicit form of �K one arrives at the
following equation for the s̄z,K [64]:(

∂

∂t
+ 1

τ

)
∂

∂t
s̄z,K + �2

K s̄z,K = 0, (34)

where we took into account that sz,K = s̄z,K . In agreement with
Refs. [65,66] we obtain the expression for valley polarization
dynamics:

s̄z,K = e− t
2τ

(
sinh qt

2τ

q
+ cosh

qt

2τ

)
sz,K (t = 0), (35)
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where q ≡ q(ε) =
√

1 − (2
ELT τ/h̄)2. Note that for mo-
noenergetic excitons Eq. (35) already gives temporal evolu-
tion of the valley polarization. Taking into account the energy
distribution equation (33), we arrive at the following expres-
sion for valley polarization dynamics of excitons:

Sz(t ) =
∑

K

s̄z,K

= s0e− t
2τ

∫ ∞

0

e− ε
T

T

(
sinh q(ε)t

2τ

q(ε)
+ cosh

q(ε)t

2τ

)
dε. (36)

Strictly speaking, the integral over energy in Eq. (36) should
be cut off at small energies ε∗ ∼ h̄2ω2

0/(2mc2), i.e., for the
states within the light cone. Estimates show that this cutoff is
unimportant at reasonable temperatures T � 1 K.

B. Exciton spin and valley dynamics in limiting cases

Before turning to the numerical results, let us deduce an-
alytical asymptotics of integral (36) for important limiting
cases. The characteristic—average—energy of the exciton en-
semble is the temperature T , which determines a typical value
of the thermal wave vector KT = √

2mT /h̄ and, accordingly,
the typical pseudospin precession frequency �T ≡ �KT . We
consider the behavior of integral (36) and spin dynamics in
the two important cases, where the pseudospin precession
frequency is either much smaller than the scattering rate τ−1,

�T τ 	 1, (37a)

or much larger than τ−1,

�T τ � 1. (37b)

In both cases simple analytical expressions describing the spin
dynamics are derived.

In the first situation where the scattering acts are frequent,
Eq. (37a), we use the asymptotics q(ε) ≈ 1 − 2(
ELT τ/h̄)2

and obtain

Sz(t ) = s0

∫ ∞

0

e− ε
T

T
exp[−(
ELT /h̄)2τ t] dε. (38)

The energy dependence of the subintegral expression results
from both the Boltzmann exponent exp(−ε/T ) and the wave-
vector dependence on the 
ELT . The latter can be written, in
accordance with Eq. (23), as


ELT = h̄β
√

ε, β =
√

2mc2

ω2
0

�0

εeff (KT , d0, d1)
. (39)

In derivation of Eq. (39) we disregarded the K dependence of
the effective permittivity assuming that relevant wave vectors
are sufficiently large. The resulting integral is readily evalu-
ated as

Sz(t ) = s0

1 + T β2τ t
. (40)

The exciton valley depolarization rate is given by

1

τv

≡ β2T τ ∼ �2
T τ, (41)

in accordance with the general result in the collision-
dominated regime [39,59,67]. Interestingly, the decay is slow

FIG. 5. Exciton spin-valley dynamics in limiting cases. The
blue curve illustrates characteristic valley polarization dynamics in
collision-dominated regime (�T τ 	 1), and the red one corresponds
to the rare scattering regime (�T τ � 1).

with Sz(t ) ∝ t−1 at t � τv . This 1/t “tail” is a result of
neglected energy relaxation processes. If the exciton energy
relaxation time τε is sufficiently short as compared with the
valley depolarization time, τε 	 τv , but simultaneously suf-
ficiently long compared to the momentum relaxation time,
τε � τ , then the exciton ensemble is characterized by a single
relaxation rate τ−1

v in Eq. (41) and, instead of Eqs. (38) and
(40), we obtain

Sz(t ) = s0 exp

[
−

∫ ∞

0

e− ε
T

T
(
ELT /h̄)2τ t dε

]
= s0 exp(−t/τv ). (42)

In this situation the standard exponential decay law of the
valley polarization is recovered.

Now we turn to the limit of rare scattering events [66,68],
Eq. (37b); we have q(ε) ≈ 2i
ELT τ/h̄, and it follows from
Eqs. (36) and (39) that (cf. Ref. [40])

Sz(t ) = s0e− t
2τ

∫ ∞

0

e− ε
T

T
cos(β

√
εt ) dε

= s0e− t
2τ

[
1 −

√
T βt F

(√
T βt

2

)]
, (43)

where F(x) = exp(−x2)
∫ x

0 exp(t2) dt is the Dawson function.
In this regime the valley polarization decays mainly due to
the spread of the pseudospin precession frequencies with the
characteristic rate β

√
T ∼ �T . The scattering breaks phase

of the pseudospin precession and results in the additional
exponential decay with the rate 1/(2τ ) [66].

From asymptotics (40) and (43) one can see that in the
case �T τ 	 1 we expect slow monotonous relaxation of the
exciton valley polarization as shown in Fig. 5. If, by contrast,
�T τ � 1, we expect fast decoherence with a characteristic
minima (see Fig. 5).

C. Numerical results and discussion

Figure 6 shows the valley polarization dynamics calcu-
lated numerically after Eq. (36) for various parameters of
the structure and two characteristic temperatures T = 10 and
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FIG. 6. Valley polarization dynamics for different structure parameters. (a), (b) Absent substrate hBN layer (d1 = 0) and two temperatures
T = 10 and 100 K, respectively. (c), (d) Structure with sufficiently thick substrate hBN layer (d1 = 99.2 Å) and two temperatures T = 10 and
100 K. Different curves show the valley polarization dynamics for different top hBN layer thicknesses. Parameters of the calculations are the
same as in Fig. 3 and the scattering time τ = 0.1 ps is assumed to be temperature and energy independent.

100 K which are accessible in the exciton spin and valley
dynamics experiments (see, e.g., Ref. [67]). To simplify the
analysis of the results we took the scattering time τ = 0.1
ps, which is close to the fitted value in Ref. [67] and also
in line with exciton-acoustic phonon scattering times (see
Ref. [63] and references therein). Figures 6(a) and 6(b) show
the dynamics for the structure without a substrate hBN layer,
while Figs. 6(c) and 6(d) demonstrate the dynamics in the
structures with the substrate layer. Overall behavior of the
valley polarization Sz(t ) is intermediate between the asymp-
totics shown in Fig. 5. Figure 6 demonstrates clearly that
the exciton valley relaxation time can be controlled by the
dielectric environment engineering.

For fixed hBN layer thicknesses the valley depolarization
rate increases with increase of the temperature. This is be-
cause at a higher temperature the characteristic pseudospin
precession frequency �T increases. It is in agreement with
experimental data [67].

An increase of the hBN layer thicknesses results, as dis-
cussed in Sec. II, in the effective screening of the exchange
interaction and, correspondingly, in suppression of the exciton
LT splitting. As a result, at a fixed thickness of the substrate
hBN layer d1, an increase in the cap layer thickness d0 slows
down the valley depolarization (compare the red, green, and
blue curves in Fig. 6). Similarly, an increase in d1 at a fixed
d0 slows down depolarization as well [compare Fig. 6(a) with
6(c) and Fig. 6(b) with 6(d)].

Calculations show that the spin dynamics is fastest for
the structure without hBN, d0 = d1 = 0. At T = 100 K the
product �T τ exceeds unity and the slightly nonmonotonic

behavior of the red curve in Fig. 6(b) is seen. Overall, the
modulation of the valley depolarization time for different sys-
tem parameters is significant [compare red and blue lines in
Fig. 6(a)].

The predictions for the control of the exciton spin and
valley polarization lifetime are summarized in Fig. 7, where
the dependence of the τv on the cap hBN layer thickness is
presented for the structure shown in Fig. 1(b) for different sub-
strate hBN thicknesses d1. We determine the spin and valley
depolarization time τv from the condition Sz(τv )/Sz(0) = 1/e;
i.e., it corresponds to the decay by e ≈ 2.718. One can see
that for a fixed d1 the depolarization time increases with in-
creasing d0 and, similarly, for a fixed d0 the depolarization
time increases with increasing d1. This is because of the
effective screening of the electron-hole long-range exchange
interaction. The significant modulation of τv is seen. Note that
significant variation of τv is observed for very small variations
(at nanometer scale) of the hBN thickness. Comparing the
structures without encapsulation d1 = d0 = 0 and structures
with sufficiently thick encapsulation, 30 MLs of hBN for both
the cap and substrate layers, one can see that the variation of
τv by a factor �5 is possible.

IV. CONCLUSION

We have studied the effect of the dielectric environment of
the atomically thin semiconductor on the exciton fine structure
and its valley depolarization in van der Waals heterostructures
based on transition metal dichalcogenide monolayers encap-
sulated into hexagonal boron nitride. The microscopic theory
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FIG. 7. Controlling the exciton spin and valley depolarization.
Exciton spin and valley polarization lifetime τv as a function of the
top hBN layer thickness d0 for the structure shown in Fig. 1(b) calcu-
lated for different values of the substrate hBN thickness d1 (different
curves). Temperature T = 10 K, scattering time τ = 0.1 ps. The
depolarization time τv is defined as Sz(τv )/Sz(0) = 1/e.

of the exciton fine structure has been developed within the
electrodynamical approach where the long-range exchange
interaction naturally appears as a result of the exciton coupling
with the induced electromagnetic field. The valley dynamics
has been studied within the kinetic equation approach for the
pseudospin density matrix.

We have demonstrated that the encapsulation of the mono-
layer into hBN effectively screens the long-range exchange
interaction and results in a slowdown of the valley depolar-
ization. While the radiative decay of excitons in monolayer
semiconductors and the electron-hole long-range exchange
interaction have the same physical origin, related to the self-
consistent interaction of the exciton with its electromagnetic
field, their dependence on the boron nitride layer thickness is
different. In the radiative recombination process, the excitonic
states within the light cone are involved. Those states induce
a propagating electromagnetic field which oscillates in space.
As a result, the radiative decay rate shows oscillations as a
function of the hBN thickness [15]. In the studied case of the
long-range exchange interaction, the excitons are outside of
the light cone and they induce a decaying-in-space electro-
magnetic field. It gives rise to a monotonic dependence of
the longitudinal-transverse splitting of excitonic states as a
function of the hBN thickness.

Our calculations demonstrate a significant, up to fivefold,
variation of the valley depolarization in hBN-based van der
Waals heterostructures. Our results open up the possibilities to
control the exciton valley dynamics by appropriately tailoring
the electrodynamical environment of the monolayer.
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