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Based on the multiband semiconductor Bloch equations a microscopic approach to high-harmonic generation
in crystalline solids which is able to properly describe degenerate bands and band crossings is presented and
analyzed. It is well known that numerical band structure calculations typically provide electronic wave functions
with an undetermined k-dependent phase which results in matrix elements which contain arbitrary k-dependent
phases. In addition, such approaches usually mix degenerate bands and bands with an energy difference smaller
than the numerical precision in an arbitrary way for each point in k space. These ambiguities are problematic if
one considers the dynamics induced by electric fields since the matrix elements of the position operator involve
a derivative of the wave functions with respect to k. When the light-matter interaction is described in the length
gauge, the problem of arbitrary phases and degenerate subspace mixing of Bloch states is solved by adopting
a smooth gauge transformation along the field direction. The results obtained within this method are validated
by comparing with calculations in the velocity gauge. Although we obtain in both gauges the same overall
result, the length gauge is advantageous since it converges with a smaller number of bands and thus requires
significantly less numerical effort than the velocity gauge. Also a unique distinction between inter- and intraband
contributions and thus an instructive physical interpretation is possible in the length gauge whereas in the velocity
gauge this is unclear. The computed polarization-direction-dependent high-harmonic spectra agree well with
experimental data reported for GaAs. Furthermore, it is demonstrated that, under proper conditions, the Berry
curvature is largely responsible for the even-order harmonics which are polarized perpendicular to the driving
field.
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I. INTRODUCTION

Since its discovery in 2010 [1], high-harmonic generation
(HHG) from solids has been extensively studied. Under the
excitation by an intense laser field, solid crystals can emit
high-order harmonics of the driving frequency, over a very
broad spectrum and with promising properties for applica-
tions. While the role of different mechanisms are still being
discussed, the semiconductor Bloch equations (SBE) serve as
a generic versatile approach that yields good agreement with
several experiments and allows for analyzing fine details of
the generation process and the dynamics of the photoexcita-
tions [2–8].

The interaction between matter and light fields is usually
described in either the length gauge (LG) or the velocity gauge
(VG). Early models for HHG in solids were implemented
exclusively in the LG. In this gauge, the HHG spectrum is
usually analyzed in terms of interband and intraband compo-
nents, which are believed to originate from optical transition
between different bands and the electrons’ acceleration within
each band, respectively. Such an intuitive picture has been
shown to be reliable in the LG; it is, however, questionable
for the VG [9].

However, in the LG the SBE have the disadvantage that
they requires the Bloch-state basis to be smooth in reciprocal

space (k space). When the Bloch states at each k point are
obtained from numerical diagonalization they are prone to
suffer from random phases and swapping of the band index of
degenerate states. This results in phase jumps of the complex
transition dipole ξ(k) between neighboring k vectors. A prim-
itive remedy to this problem was to only consider the absolute
value |ξ(k)|, which is an often used approximation when solv-
ing the SBE. Recently, the transition-dipole’s phase has been
claimed to carry information on the crystal’s symmetry and to
be essential for the description of even-order harmonics [10].
To incorporate the transition-dipole phases properly when
solving the SBE, it is required to implement a gauge which
results in Bloch functions which vary smoothly in k space. For
nondegenerate energy bands, methods to fix the phases have
been proposed and applied to investigate HHG [11–15]. In
the presence of degenerate and crossing bands, this issue has,
however, rarely been addressed, since the Bloch states are fur-
ther subject to an arbitrary unitary transformation within each
degenerate subspace. Here we apply the method proposed by
Virk and Sipe [16] to construct a smooth parallel-transport
gauge of degenerate Bloch functions which allows us to solve
the SBE in the LG and compute HHG emission spectra.

Several recent publications [14,17,18] have demonstrated
that HHG calculations in both the VG and the LG agree if
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in both gauges the relevant band are included and no further
approximations, in particular, no approximations that are not
gauge invariant are made. Here, we confirm the gauge inde-
pendence of our results which verifies the correctness of our
gauge procedure. Even though we obtain in both gauges the
same overall results, the LG converges with a significantly
smaller number of bands (less than half) than required in
the VG and thus the numerical effort of the calculations is
strongly reduced. Furthermore, unlike in the VG, in the LG a
unique distinction between inter- and intraband contributions
and thus an instructive physical interpretation is feasible and
physically sound.

On the other hand, in HHG experiments it has been re-
ported that there exist components whose polarizations are
perpendicular to that of a linearly-polarized driving elec-
tric field. This emission has been ascribed to originate from
the crystal’s Berry curvature via the anomalous-velocity for-
mula within a semiclassical approximation [19,20]. For much
weaker THz fields that follow an optical excitation with
circularly-polarized light, similar Berry-curvature-induced so
called anomalous currents that flow in a perpendicular di-
rection have been proposed and measured in semiconductor
quantum wells [21,22]. In this work, we study that perpen-
dicular HHG component within the microscopic theory of the
SBE. We find that the Berry curvature indeed contributes pre-
dominantly to the perpendicular emission calculated within
the microscopic theory, though only when the laser’s fre-
quency is small compared to the band gap and the field
strength is strong enough to drive electrons to regions of large
Berry curvature.

The paper is organized as follows. In Sec. II A we present
the SBE in both the LG and the VG. Section II B describes
the method of constructing a proper parallel-transport gauge
for linearly polarized incident fields including degenerate
Bloch states. Numerical results are presented and discussed
in Sec. III where we consider GaAs whose band structure and
matrix elements are obtained from the 30-band k · p method
[23]. In the results section we focus on three aspects: the
equivalence between calculations in the LG and in the VG,
the comparison with a reported HHG experiment performed
on GaAs [24], and the contribution of the Berry curvature
to perpendicularly polarized HHG emission. We close with
a brief summary presented in Sec. IV.

II. THEORETICAL METHODS

In this section we first present the derivation of the SBE
in LG and VG and then describe the parallel-transport gauge
which is applied to be able to numerically solve the SBE
in LG.

A. The SBE in LG and VG

In second quantization the Hamiltonian describing Bloch
electrons interacting with a light field is written in LG as

H = H0 − qE(t ) ·
∑

λλ′kk′
rλλ′ (k, k′)a†

λkaλ′k′ , (1)

where H0 is the Hamiltonian of the crystal, a†
λk (aλk ) is

the creation (annihilation) operator of an electron with wave

vector k in band λ, E(t ) is the electric field (whose spatial
dependence is neglected here in the long-wavelength limit), q
is the electron charge, and r is the position operator. Although
its explicit form is not required for the following derivations,
we would like to mention that in our numerical evaluations we
take H0 as the single-particle Hamiltonian of the Bloch elec-
trons, i.e., H0 = ∑

λk ελ(k)a†
λkaλk, where ελ(k) is the band

structure.
In the Bloch basis, the position operator can be represented

as [25]

rλλ′ (k, k′) = (iδλλ′∇k + ξλλ′ (k))δ(k − k′), (2)

where ξλλ′ (k) = −i 〈∇kuλk|uλ′k〉 is the transition dipole ma-
trix element and |uλk〉 is the periodic part of the Bloch
function. While one has the gauge freedom in choosing the
phase of |uλk〉, this representation of r is limited to gauges
that smoothen the k dependence of the wave functions, such
that the above derivative with respect to k is well defined.

The semiconductor Bloch equations [26] that describe the
dynamical optoelectronic response can be expressed in terms
of the reduced density matrix elements ρλλ′ (k) = 〈a†

λ′kaλk〉 as

dρ(k)

dt
= − i

h̄
[H0(k) − qE(t ) · ξ(k), ρ(k)]

− q

h̄
E(t ) · ∇kρ(k), (3)

where H0(k) = e−ik·rH0eik·r. One can see that the equations
of motion at different k vectors are coupled by the deriva-
tive term ∇kρ(k), which stem from the position operator in
Eq. (2). It is this term that poses the requirement of construct-
ing a smooth gauge of the Bloch functions in order to be
able to solve the SBE. In many previous works this problem
has been ignored and it has been assumed that the transition
dipoles are independent of k or have a simple k dependence or
often only their absolute values were considered. The proper
smooth gauge is, however, unavoidable if one wants to work in
the preferred LG and consider the full information in the form
of complex matrix elements which arise from band structure
calculations like k · p or density functional theory that con-
tain arbitrary k-dependent phases arising from the numerical
diagonalization.

In the VG the SBE read

dρ(k)

dt
= − i

h̄

[
H0(k) − q

m
A(t ) · p(k), ρ(k)

]
, (4)

where A(t ) = − ∫ t
−∞ E(t ′)dt ′ is the vector potential and

p(k) = m

h̄
∇kH0(k) is the canonical momentum matrix. In

contrast to Eq. (3), the equations for the reduced density
matrix in VG, Eq. (4), at different k vectors are independent
of each other, hence a gauge choice ensuring the smoothness
of the wave function in k space is not necessary. As is shown
below, whereas we do obtain very similar final results in both
gauges the LG is more efficient since a smaller number of
bands is required to obtain converged results and, in addition,
the interpretation in terms of inter- and intraband contributions
seems to be more adequate. The transformation between the
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LG and the VG can be performed by the unitary operator
Q = eiqA(t )·r/h̄ [14,17].

It is noted that the common expression for the decoherence
term, which describes the exponential decay of off-diagonal
elements of the density matrix,(

dρ(k)

dt

∣∣∣
decoh

)
λλ′

= −ρλλ′ (k)

T2
(1 − δλλ′ ), (5)

is not gauge invariant and the gauge transformation of this
term can only be done by numerical calculations [14]. Instead
of Eq. (5), we therefore use its gauge-covariant form that was
proposed in Ref. [18] and allows for a simple transformation
between these two gauges. The decoherence term is given in
LG and VG, respectively, by [18]

dρ(k)

dt

∣∣∣∣
decoh

= − 1

T2E2
g

[H0(k), [H0(k), ρ(k)]] (6)

and

dρ(k)

dt

∣∣∣∣
decoh

= − 1

T2E2
g

[
H0(k) − q

m
A(t ) · p(k),

[
H0(k) − q

m
A(t ) · p(k), ρ(k)

]]
, (7)

where T2 is the phenomenological decoherence time and Eg is
the band-gap energy.

B. The parallel-transport gauge

As described above, Bloch functions that vary smoothly
in k space are required for solving the SBE in the LG. This
is, however, not what is directly provided by numerical band
structures calculations which compute wave functions inde-
pendently for each k point. This issue is usually referred to as
the random-phase problem. It means that for nondegenerate
bands the wave functions’ k-dependent phase is arbitrary and
is thus not a continuous function of k. For degenerate bands
numerically obtained wave functions may suffer furthermore
from the unitary mixing of states in the degenerate subspace
which can also change in an arbitrary way as a function of k.

In order to solve the the SBE in LG, we follow Virk and
Sipe [16] and construct a local gauge transformation of the
Bloch functions, in the presence of degenerate bands. The
procedure is based on the k · p perturbation theory for the
band structure. To first order in �k, the perturbation theory
provides the relation between the eigenstates at k and k + �k
[16,27]

|uλk+�k〉 =
∑
νμ

|uμk〉 (δνμ − i�k · ξter
μν (k))gνλ(k, k + �k),

(8)
where g(k, k + �k) = exp(−i�k · ξtra(k)) is a unitary ma-
trix accounting for arbitrary phase factors and the arbitrary
mixing of degenerate states originating from numerical band
structure calculations. The ultimate goal is to find the matrix
g and then to perform an inverse transformation in order to
obtain a smooth variation of the wave functions between k
and k + �k. The transition dipole matrix ξ(k) is separated
into ξtra(k) and ξter(k) which contain matrix elements between
connected states and between disconnected states, respec-
tively. Here, two states |uλk〉 and |uνk〉 are called connected

if they have the same energy at at least one k point in the
Brillouin zone (BZ), otherwise they are called disconnected.

Introducing the overlap matrices between the two
bases at different k points Stra

λμ(k, k′) = 〈uλk|uμk′ 〉 �λμ and
Ster

λμ(k, k′) = 〈uλk|uμk′ 〉 (1 − �λμ), where �λμ = 1 if λ = μ

or if two bands λ and μ are connected and �λμ = 0 otherwise,
the above perturbative relation gives

g(k, k + �k) = Stra(k, k + �k) (9)

and

−i�k · ξter(k)g(k, k + �k) = Ster(k, k + �k). (10)

Equations (9) and (10) allow one to calculate g(k, k + �k)
and ξter(k) from the overlap matrices which are determined
by the wave functions obtained from the band structure cal-
culations. To eliminate the relative phase of nondegenerate
eigenstates between k and k + �k and the unitary mixing of
degenerate eigenstates, in other words to remove the g matrix
from Eq. (8), one performs the gauge transformation

|uλk+�k〉 �−→
∑

μ

g−1
μλ(k, k + �k) |uμk+�k〉 . (11)

Although in practical calculations g(k, k + �k) obtained
from Eq. (9) is not exactly unitary, it can be made unitary by
a singular value decomposition (SVD) algorithm [28].

By extending Eq. (11) to a series of k points on a straight
line in j direction, with unit vector ê j , and starting from the
first point k0, one constructs a matrix

W j (k0, k) = g(k0, k0 + ê j�k)...g(k − ê j�k, k). (12)

Its inverse matrix, (W j )−1 = W j†, defines a unitary trans-
formation that makes the Bloch functions smooth and
differentiable with respect to k in the j-direction

|uλk〉 �−→
∑

μ

W j∗
λμ (k0, k) |uμk〉 . (13)

In the new basis of Bloch functions, the projection onto the j
direction of ξtra(k) vanishes and the projection of ξter(k) given
by

ξ ter
j (k) = i

2�k
W j (k0, k)

× [Ster(k, k + ê j�k)Stra†(k, k + ê j�k)

− Ster†(k − ê j�k, k)Stra(k − ê j�k, k)]W j†(k0, k)

(14)

is a smooth function of k.
With vanishing Berry connection, ξtra, along the k path,

the above gauge of the Bloch functions is called the
parallel-transport gauge [30]. Mathematically, this method is
equivalent to the optimal alignment procedure presented in
Sec. 3.6 of Ref. [29]. For nondegenerate bands, the method
reduces to the procedure of Refs. [11–15]. It should be noted
that another approach to the random-phase problem is to work
in the basis of maximally-localized Wannier functions, which
has been applied recently to study HHG [31].

For the case of linearly polarized light, the gauge transfor-
mation Eq. (13) provides smooth dipole matrix elements in the
polarization direction which are sufficient to solve the SBE in
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the LG. The situation is, however, more complex when the po-
larization direction changes with time, e.g., for excitation with
circularly polarized light. In this case, we need to perform
gauge transformations in each time step when numerically
integrating the SBE. This procedure works as follows: The
intraband term in Eq. (3) can be written as

∑
j=x,y,z

(
i

h̄

[
qEjξ

tra
j , ρ

] − q

h̄
E j

∂

∂k j
ρ

)
. (15)

Applying the transformation of Eq. (13) to each j component
of (15) we obtain

W j

(
i

h̄

[
qEjξ

tra
j , ρ

] − q

h̄
E j

∂

∂k j
ρ

)
W j† = −q

h̄
E j

∂

∂k j
ρ̃ j, (16)

with ρ̃ j = W jρW j†. Since in the new basis ρ̃ j is a smooth
function of k j , the derivative on the right-hand side of Eq. (16)
can be evaluated numerically. After computing the three com-
ponents ( j = x, y, z) of (15) in the new bases, we perform the
inverse transforms to obtain the intraband term in the original
basis ∑

j=x,y,z

W j†

(
−q

h̄
E j

∂

∂k j
ρ̃ j

)
W j . (17)

This term is then used to solve Eq. (3) for ρ at the actual time.
Afterwards the above procedure has to be repeated for the next
time step.

III. HHG FROM GaAs: RESULTS AND DISCUSSION

Applying the method described in Sec. II B, we are able
to investigate the dynamics in both gauges. By integrating the
SBE in LG (3) or VG (4) for an one-dimensional k grid that
is parallel to the polarization direction of the electric field,
we obtain the dynamics of the density matrix ρ(k, t ) which
determines the time-dependent electric current density via

J(t ) = q
∑
λλ′k

vλλ′ (k)ρλ′λ(k, t ), (18)

where v = i
h̄ [H, r] is the velocity operator. The momentum

space representations of v are v(k) = p(k)/m in LG and
v(k) = (p(k) − qA(t ))/m in VG.

The photoexcited current oscillates rapidly and contains
multiples of the excitation frequency which correspond to
high-harmonic radiation. From the Fourier transform of cur-
rent density we obtain the spectrum of the emission intensity

IHHG(ω) ∝ |J (ω)|2. (19)

In the following we carry out numerical calculations for
bulk GaAs. The electronic band structure and wave functions
of GaAs for the entire BZ are obtained from a 30-band k · p
model [23]. This quite sophisticated model includes spin-orbit
coupling and allows us to describe the inversion asymmetry of
GaAs crystal. The electric field of the exciting laser pulse is
described by

E(t ) = E0ê e−2 ln(2)t2/τ 2
sin(ω0t ), (20)

where ê denotes the polarization direction, E0 is the maximal
amplitude, τ is the pulse duration (FWHM of the Gaussian
envelope), and ω0 is the central light frequency.

FIG. 1. (a) shows the electric field of the time-dependent exciting
THz laser pulse. (b) and (c) show the temporal dynamics of the cur-
rent density calculated for a THz field that is linearly polarized in the
[100] crystallographic direction (corresponding to the �X direction
in the BZ) in the LG and the VG, respectively. The total current (red
solid lines) is given by the sum of the intraband (blue dashed lines)
and the interband (orange dashed lines) currents. (c) Intensity spectra
of the emitted high harmonics in the two gauges.

A. Comparison between LG and VG

The computed time-dependent photocurrent for the two
gauges and the resulting emission spectra are presented in
Fig. 1. In the numerical simulations, the driving laser is
linearly polarized in the [100] crystallographic direction (�X
direction in the BZ) and has an amplitude of E0 = 10 MV/cm,
a pulse duration of τ = 60 fs and a center frequency of
h̄ω0 = 0.38 eV.

Figure 1(b) shows the dynamics of the current density
calculated in LG. The red-solid line represents the total cur-
rent, while the blue and orange dashed lines display its two
components corresponding to the intraband (diagonal) and
interband (off-diagonal) contributions, respectively. While the
interband current is in phase with the electric field [gray line
in Fig. 1(a)], the intraband current lags behind the field by a
phase of π/2. This phase lag of the intraband current can be
explained by the acceleration theorem for the electron wave
packet motion h̄k̇ = qE(t ), i.e., the change of k of propor-
tional to the time integral over E(t ).

Figure 1(c) is the same as Fig. 1(b) but calculated in the
VG. Compared to the LG, the interband and intraband currents
in the VG are both much stronger and are apart from their
opposite sign very similar to each other. Obviously, these
currents are gauge dependent and have therefore in the VG
no clear physical significance [9,17]. Due to the strong can-
cellations between the interband and intraband currents in the
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VG, the resulting gauge-independent total current is identical
to that obtained in the LG.

We would like to emphasize that the calculation in the
LG is already converged when the six highest valence and
the eight lowest conduction bands are considered in the SBE,
while the VG requires that all 30 bands are included. Since in
the VG the subcurrent components are gauge dependent, a full
sum (over all available bands) is necessary so that their gauge
dependencies basically compensate each other which results
in a total current which is independent of the chosen gauge
(if sufficiently many bands can be considered). Since the
effort for numerical solutions of the SBE (without including
many-body interactions) scales quadratically with the number
of bands, the evaluations in the LG are significantly faster than
those in the VG and also the required computer memory is
reduced similarly.

In Fig. 1(c) we show the spectral intensity of the emitted
HHG computed in LG and VG. Since the incident laser pulse
is polarized in the �X direction, the spectrum consists of only
odd-order harmonics. Just like the time-dependent total cur-
rents, the HHG spectra in the two gauges are almost identical,
i.e., the 30 bands in our band-structure model are sufficient
to ensure convergence of the VG results for the considered
excitation conditions.

B. Comparison to experiment

Next, we compare our numerical results with experimental
data reported in Ref. [24]. In our simulations, we consider
the experimental conditions and use the following parame-
ters for the driving laser: a photon energy of h̄ω0 = Eg/4, a
pulse duration (FWHM) of five laser cycles, and a maximal
electric field amplitude of E0 = 10 MV/cm. The only fitting
parameter is the decoherence time T2, which is taken to be on
the order of a few femtosecond as in several previous HHG
studies [4]. As shown recently, such very small dephasing
times can be justified as they yield similar HHG spectra as
arising when including propagation effects [32]. By slightly
adjusting the value of T2, both types of the decoherence term
described in Sec. II A can be used to match the experiment.
Here, we show the calculated results in the LG using the
decoherence term Eq. (6) with T2 = 3 fs (which corresponds
to 3/10 of the laser period).

For the case that the incident light is polarized linearly in
the �K direction, both the calculated and the measured HHG
spectra exhibit only odd-order harmonic peaks, see Fig. 2(a),
since the inversion asymmetry of GaAs is not probed in this
excitation configuration. Our theoretical simulations describe
the decrease of the intensity of the odd-order harmonics with
increasing harmonic order in very good agreement with the
experimental observations. An important point is that an opti-
cal excitation polarized in the �K direction does also produce
harmonics that are polarized perpendicularly to the direction
of the incident laser field. This perpendicular component of
HHG was, however, not measured in Ref. [24]. We will
present our theoretical investigation of this component in the
next section.

When the incident light is polarized linearly in the �L
direction ([111] crystallographic direction), besides the odd-
order harmonics, also even-order harmonics with somewhat

FIG. 2. Calculated HHG spectra of GaAs with the exciting laser
field polarized linearly along the (a) �K and (b) �L directions,
respectively, in comparison to experimental data which are extracted
from Ref. [24].

weaker intensities arise, see Fig. 2(b). The even-order har-
monics originate from the inversion asymmetry of GaAs
crystal. In the 30-band k · p model [23], P′ is the only pa-
rameter that models this asymmetry and consequently the
even-order harmonics disappear if one artificially sets P′ = 0.
Compared to experiment, the calculated even-order harmonics
are somewhat weaker which is probably the case because the
30-band k · p model underestimates the inversion asymmetry
of GaAs as it uses a smaller P′ parameter than other k · p
models [33,34], e.g., in the 14-band k · p model this term is
almost ten times larger. For example, if we manually double
the value of P′ in the 30-band model (not shown in figure), the
amplitude of the even-order harmonics increases accordingly
and the calculated even-order peaks agree better with experi-
ment. This is one example showing that HHG spectra can be
used to gain information on the atomic structure as a detailed
comparison between measurements and calculations can be
used to improve the band structure models [35,36].

C. Anomalous perpendicular currents
arising from Berry curvature

Although we solve the SBE here in just one k-space di-
mension, the current density obtained from (18) is still a
three-dimensional quantity. For example, when the laser field
is polarized in the [110] (�K) direction, beside the main cur-
rent that flows parallel to the field direction, the photoexcited
current also has a smaller perpendicular component that flows
in the [001] (�X) direction. We evaluate this perpendicular
current component in two ways: directly from the microscopic
approach using Eq. (18) and indirectly from the perturba-
tive equation for the anomalous velocity (Berry curvature
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FIG. 3. Spectra of the HHG radiation with perpendicular po-
larization calculated by the microscopic and the Berry curvature
approaches for an excitation photon energy of (a) h̄ω0 = Eg/10 and
(b) h̄ω0 = Eg/20. The vertical red lines indicate the band-gap energy
Eg. The amplitudes of the THz fields are E0 = 8 MV/cm in (a) and
E0 = 4 MV/cm in (b) such that the ratio eE0/h̄ω0 remains the same.

approach)

Ja
⊥(t ) = −q2

h̄
E(t ) × 〈�〉, (21)

where 〈�〉 = ∑
λλ′k

�λλ′ (k)ρλ′λ(k, t ) is the average of the Berry

curvature

�λλ′ (k) = i
∑

μ

ξter
λμ(k) × ξter

μλ′ (k). (22)

We solve the SBE in the LG using the decoherence term
Eq. (5) with T2 = 1/5 of the laser period. The perpendicularly
polarized HHG spectra calculated by the microscopic (blue
line) and Berry curvature (orange line) approaches are shown
in Fig. 3(a) for a photon energy of h̄ω0 = Eg/10. We find that
the perpendicular current component is dominated by even-
order harmonics and its amplitude is about two orders smaller
than that of the parallel current component. The overall good
agreement between two approaches confirms the Berry cur-
vature as the origin of the perpendicular current component.
Since �(k) is an odd function of k, the anomalous velocity has
a fundamental frequency of 2ω0, and hence the perpendicular
HHG basically contains only even-order harmonics [19,20].

The results shown in Fig. 3(b) are obtained for a more
slowly varying laser with h̄ω0 = Eg/20. To ensure that the
region which the electronic wave packet traverses to is the
same as in the previous case, we adjust the field amplitude

so that eE0/h̄ω0 is unchanged. We note that the expression for
anomalous velocity, Eq. (21), is derived from the first-order
adiabatic perturbation theory. Thus, the difference between
two approaches describes the contributions beyond this ap-
proximation. Because the adiabatic condition holds better for
smaller laser frequencies, the agreement between two ap-
proaches in Fig. 3(b) is closer than that in Fig. 3(a).

An intrinsic limitation of one-dimensional models is that
they only allow us to compute the interband contribution to
the perpendicularly-polarized current but not the intraband
one. Our result therefore does not include the perpendicu-
lar odd-order harmonics which were shown to be produced
predominantly by the intraband current for fields with high
amplitudes [37].

IV. CONCLUSIONS

We present and analyze a microscopic approach to high-
harmonic generation in solids with degenerate bands and
crossing band. We confirm that the calculations in the LG and
in the VG produce the same results if sufficiently many bands
are included in the numerical solutions and gauge-dependent
approximation, e.g., when including dephasing, are avoided.

To be able to solve the SBE in the LG we implement a
parallel-transport gauge which is able to properly treat degen-
erate bands and results in wave functions and matrix elements
which vary smoothly as a function of k. To obtain converged
HHG results in the LG a bit less than half the number of
bands is required as in the VG. Thus the numerical effort is
strongly reduced in the LG and, furthermore, the LG allows
us to distinguish between inter- and intraband contributions
and thus provides an instructive physical interpretation.

Our calculated results for HHG from GaAs are in good
agreement with recent experimental data on the polarization-
direction dependence. Furthermore, our approach is able to
describe the perpendicularly-polarized even-order harmonics.
These are caused by the Berry curvature and also have contri-
butions beyond the adiabatic approximation that are included
in our microscopic approach. The approach introduced here
is very general, can be combined with various band structure
computation methods, and is applicable to other strong field
phenomena also involving resonant optical fields.
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